diamond-graphite-diamond heterostructures produced by … · 2020. 3. 21. · saed, xtem and fft,...

42
1 Diamond-Graphite-Diamond Heterostructures Produced by Implantation and HPHT Annealing for Lift-off Transfer and New Devices V.P. Popov, V.A. Antonov, S.N. Podlesny, M.A. Ilnitskii, A.K.Gutakovskii, I.N. Kupriyanov, Yu.N. Pal’yanov Tomsk 2017 Rzhanov Institute of Semiconductor Physics, Novosibirsk, Russia Sobolev Institute of Geology and Mineralogy, Novosibirsk, Russia

Upload: others

Post on 31-Jan-2021

4 views

Category:

Documents


1 download

TRANSCRIPT

  • 1

    Diamond-Graphite-Diamond Heterostructures Produced by Implantation and HPHT Annealing

    for Lift-off Transfer and New Devices

    V.P. Popov, V.A. Antonov, S.N. Podlesny, M.A. Ilnitskii, A.K.Gutakovskii,

    I.N. Kupriyanov, Yu.N. Pal’yanov

    Tomsk 2017

    Rzhanov Institute of Semiconductor Physics, Novosibirsk, Russia

    Sobolev Institute of Geology and Mineralogy, Novosibirsk, Russia

  • Ec, dia = 107 V∙cm-1

    A. Lohrmann,1 S. Pezzagna,1 I. Dobrinets et al. Appl.Phys.Lett. 99, 251106 (2011)

    Maximal breakdown voltage and mobility vs. doping

    2

  • Band alignment and resistivity of diamond and graphite

    J. Robertson, phys. stat. sol. (a) 205, No. 9 (2008)

    gra-C

    [1] A. Reznik et al., Phys. Rev. B 56 (1997) 7930.

    3

  • 4

    Normally-Off MISFET & MESFET: 10mA/mm

    Normally-Off MOSFET: low current at VGS < 3 V !

    Motivation

    T.Matsumoto et al. Sci. Rep. 6 (2016) 31585

    Hirama K.et al. JJAP 51 (2012) 090112

    Normally-On MESFET: Ion= 1300mA/mm

    H-transfer doped -doped

    Partial C-O channel MESFET

    Y Kitabayashi et al. IEEE EDL, 38 (2017) 363

    10A/mm at 3.0 V

    Inversion channel MISFET

  • 5 5±1 nm

    Status of diamond relative to DiVincenzo criteria for Quantum Information

    Processing (QIP):

    D. DiVincenzo “Quantum bits: Better than excellent” Nature Mat. 9, 468–469 (2010) .

    TD = 1860 K

    63

    7 n

    m

    Diamond as a coolest material for Quantum Information Processing

    Simple read by CCD matrix…

    5

    …but it is still not implemented !

    P. Hemmer, J. Wrachtrup, F. Jelezko et al. “Diamonds for scalable quantum information systems” SPIE Nanotech. 2007

    Joerg Wrachtrup “Defect center room-temperature quantum processors”, Proc. Natl. Acad. Sci. USA 107, 9479 (2010).

    ,

    Write line

  • 1. Motivation for Diamond Electronics

    2. Diamond-Graphite-Diamond by II & Lift-off Process

    3. Diamond Junction & Field Effect Transistors (J- & FET’s)

    4. Sensing by Membranes & NV Defects in Nanostructures

    5. Conclusion

    Outlook

    6

  • {111} Ib type crystal (left) and {100} (right) with the area up to 40 mm2 was grown using (111) seed orientation for 3-4 carat size

    200-400 m plates of {111} plates with the area up to 25 mm2 were produced by laser pointing with subsequent cleavage along the plane of the spikes, grinding & polishing or CVD overgrowth. .

    Doped by B or N (1.0-100 ppm) and undoped (

  • Is injection implantation at. V >50 kV reasonable for multiple cut? 2:1 Relation in the flux between protons and molecular ions is needed. ESR source allows making this!

    Proton and Molecular Ion Range (SRIM) & Peak Position (SIMS) How cut diamond on the slices by ion injector?

    V.P. Popov et al. NIM B 406 (2017) 634–637 8

  • Defect profiles & graphitization after H+II + HPHT

    Nitrogen 130 keV Hydrogen mol. 60 keV

    322 /10 cmVacNcrit

    314 /10*5 cmNDcrit

    Graphitization :

    32

    16 /10*5 cmHDcrit

    Swelling: TNgr>TNam>TNcrit is due to 10-40% lower density in innner layer.

    Rpexp=130-1500 nm

    40

    nm

    gra

    ph

    ite

    140 nm

    graphite layer

    9

  • The pressure p0 in blister (radius R, thickness of cup layer h) as a function of the maximum deflection δ is [*]:

    [ 1 ] p0 is outer pressure. Ē = E/(1-2) is biaxial elastic modulus with plane-strain modulus.

    E = 175±5 GPa Young's modulus to [111] direction. Poisson ratio = 0.1 [**]:

    10 The estimation of internal pressure using diamond mechanical properties

    ,

    * C. Coupeau et al. Appl. Phys. Lett. 103 (2013) 031908 ** V.Blank, et al. Diam. and Relat. Mater. 8 (1999) 1531.

    For HPHT with h = 0.25 m, R = 0.5 m, δ = 0.006 m: p = 7.0 GPa

    For VPHT with h = 0.25 m, R = 0. 5 m, δ = 0.03 m: p = 7.0 GPa,

    HPHT 5 GPa

    VPHT H2

    + fluence Ф = 8x1016 см-2

    Young's modulus to [0001] graphite is equal to E = 32.5 GPa and = 0.3 : p = 1.6 GPa,

    10

  • TEM/HREM planar view: diamond & graphite layers after H2+II & HPHT

    Glassy-C layer with thickness 100÷120 nm with vertical graphite nanolamellas inside with

    interplanar spacing d = 0.35 nm

    Dark field TEM of upper d-C layer (30÷50nm) with 12 diffraction spots due to nd-C twinning by 30o rotation along direction leading to combination of cubic (d-C) and hexagonal (2H) diamond or grains

    D

    D

    D

    P.Nemeth et al. srep18381 11

    Very rare defect region Typical structure of glassy carbon layer

  • C A Graphite

    3.3 Å

    Growth

    С A

    (121)

    2.06 Å

    (111)

    Carbon

    Graphane carbon

    Hydrogen

    С A С A

    Diamond

    Diamond (111)

    GL-C:H \ \ I / I \ = / Diamond

    After HPHT

    After VPHT

    Diamond (111)

    GL-C:H I==I || |=====/ I

    Diamond (112)+ ? ? ?

    B A

    Planar view

    C

    A

    B

    Bernal graphite on

    (121) microtwin

    *W. R. L. Lambrecht et al., Nature 364, (1993) 607-610

    2:3 diamond growth model* – 3:2 graphite growth model for vertical planes

    First model for growth of graphite on (110) planes of diamond

    (11

    0)

    12

  • SAED, XTEM and FFT, HRTEM of HPHT annealed Ib (111) diamond

    50 keV hydrogen molecule fluence Ф = 4x1016 см-2 after HPHT annealing at 1200oC 4 GPa 4 h

    17.3o

    Graphite (nm): 0.335(111), 0.213(100),

    Tetragonal distortion: d111 = 0.354 nm, d100 = 0.204 nm with 72.7o between and

    directions suggests mixed Bernal/rhombohedral graphene sheet package 13

    0.206 nm

    0.206 nm

    0.206 nm

    0.204 nm

    0.354 nm

    From diamond

  • 1/1 graphite growth model corresponds to the experimental angle ~17o and shows increased distances between carbon atoms and graphene planes

    A

    В

    С

    A

    В

    С

    A

    C A

    Graphite

    3.5 – 3.8 Å

    Growth

    (111)

    2.06 Å

    (111)

    Carbon

    Interphase carbon

    Hydrogen

    Diamond

    B A

    Planer view

    C

    A

    B

    (0001) rhombohedral graphite

    on H-(111)-planes

    73.0o

    2.19 Å

    2.16 Å

    70.5o

    *V.P. Popov et al. AIP Conf. Proceed., 2012

    Diamond (111)

    GL-C:H \ \ I / I \ = /

    Diamond

    After HPHT

    After VPHT

    Diamond (111)

    GL-C:H I==I || =====/ I

    Diamond (112)+ ? ? ? ? ?

    Second model for growth of graphite on (111) planes of diamond

    14

  • Hydrogen molecules (H2+),

    50 keV, (1÷13)x1017 cm-2 + Nitrogen (N+), 120 keV, 3.5x1016 cm-2 (through Al-mask for contacts) HPHT treat.: P=4÷8 GPa T=1200÷1600oC, 4 h (BARS) VPHT: P=10-3 Pa

    *J.K.Lee Phys. Rev. B 83, 165423. 2011

    Theoretic bigraphane interpla- nar distance* ~0.45÷0.50 nm

    HPHT VPHT

    HREM micrograph of buried layer and Raman spectra after H2+II & HPHT

    V.P. Popov, V.I. Popok, Yu.N. Palyanov, I.N. Kupriyanov. . EMRS-2011, Nice, France

    0.45 nm

    Nanographane? graphite and glassy-C layers or twisted AA’?

    0.22 nm

    15

    J-K Lee, Scie. Rep. DOI: 10.1038/srep39624

  • 1019cm-3

    1018cm-3

    a)

    c)

    550 600 650 700 750

    0,0

    5,0x103

    1,0x104

    1,5x104

    2,0x104

    2,5x104

    3,0x104

    Inte

    nsity,

    arb

    . units

    Ram

    an

    638 n

    m (

    NV

    - )

    575 n

    m (

    NV

    0)

    Wavelength, nm

    16 Graphite H-C Diamond Graphite H-C Diamond

    C

    Applications for DGD-heterostructures

    Amplifying of NV-centers PL in d-C Ib by E-field

    V.P. Popov et al. Int. J. Nanotechnol., 12, 226 , 2015. 16 -40 -20 0 20 40

    10-1

    100

    101

    102

    103

    Sample B10

    N+, 50 keV, 4*10

    17 cm

    -2

    CN - d-C(B)

    Vd-C(B)

    - COM

    VCN

    - Changeable

    Point 1

    CN - CN

    CN - d-C(B)

    Vd-C(B)

    - COM

    VCN

    - Changeable

    Point 2

    I DS, m

    kA

    UDS

    , V

    CN-heterojunctions

    CN

  • Test structures for conductivity

    Hydrogen implantation for buried conductor

    standard lithography with Al masks

    Nitrogen implantation for contact pads

    Al etching + thermal annealing

    0 200 400 600 800 1000 1200

    102

    103

    104

    105

    106

    107

    DC-1, ILN E=120 keV,

    VPHT, 1h

    D (N), 1016

    cm-2:

    - 1

    - 4

    - 7

    Rs, O

    hm

    /sq.

    T, oC

    Hydrogen molecules (H2+),

    50 keV, (1÷13)x1016 cm-2

    + Nitrogen (N+), 130 keV, 3.5x1016 cm-2 (through Al-mask for contacts)

    VPHT treat.: P=10-3 Pa HPHT treat.: P=4÷8 GPa T=1200÷1600oC, 4 h FIB litography +

    17

  • Quantum correction* due to e-e interaction in diffusion channel:

    σ (T) = σ(0) + σe-e(T) = σ (0)+β∙T1/3

    Variable range hopping mechanism of conductivity S(T)=S0*T-1/2*exp [-(T0/T)1/4] T0=16/a3*k*N(EF) a – radius of hopping site sp2 bond – a=1.2 nm

    When conductivity becomes metallic? Reznik et al. This happens when density of states N(EF) reaches the value N0(EF) determined by the relation N0(EF) *a

    3=1, i.e. N0(EF) =1/a

    3=6x1020 states/(eV*cm3) for a=1.2 nm

    If there is σ (0)0 then the conductivity is quasimetallic after 1200oC or above MIT. 18

    Semimetallic mechanism of conductivity

  • 240 & 32 nm membrane from diamond-graphite-diamond (DGD) heterostructures produced by N+ & H2

    + II .

    Absorption bands at UV 100 and 300 nm indicate a presence of graphite inclusions after

    1600oC, 19 *V.P. Popov et al. AIP Conf. Proceed., 2012

    0 200 400 600 800 1000 1200 1400

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    wavelenth, nm

    Inte

    nsity,

    arb

    . un.

    Film T

    Bulk R

    Bulk T

    0 200 400 600 800 10000

    2

    4

    6

    8

    10

    wavelenth, nm

    Inte

    nsity,

    arb

    . units

    Bulk Reflection

    Bulk Transmission

  • 800 1000 1200 1400 1600 1800 2000

    100

    1000

    10000

    1596

    cm-1 (G

    -ban

    d)

    1333

    cm-1 (D

    iam

    ond)

    1327

    cm-1 (M

    embr

    ane)

    FWHM = 12 cm-1

    FWHM = 3 cm-1

    Diamond membrane

    Laser 325 nm

    Raman shift, cm-1

    Inte

    nsity,

    arb

    . un.

    Initial diamond

    270 nm membrane

    1100 1200 1300 1400 1500 1600 1700 1800

    200

    400

    600

    800

    1000

    12001400

    Laser 514.5 nm

    FWHM = 4.2 cm-1

    FWHM = 5.2 cm-1

    1329

    cm-1 (M

    embr

    ane)

    1333

    cm-1 (D

    iam

    ond)

    Raman shift, cm-1

    1594

    cm-1 (G

    *-ba

    nd)

    1355

    cm-1 (D

    -ban

    d)

    Inte

    nsity,

    arb

    . u

    nits

    bulk as H2

    + implanted

    initial

    270 nm membrane

    240 nm membranes from diamond-graphite-diamond heterostructures produced by (N+ + H2

    +)II + HPHT + Anodic Etching

    No other PL lines at laser excitation at ex 514.5 nm after 1600oC, only small G*-line and four times larger FWHM for UV RS due to residual stresses*

    20

    600 800 1000 1200 1400 1600

    0,4

    0,6

    0,8

    1

    1,2

    Laser 785 nm

    Raman shift, cm-1

    Inte

    nsity

    , arb

    . un.

    495

    After 1200oC 5 GPa

    0.243мм

    240nm

    1500 1596

    14241280

    935703

    1003

    Tareeva, et al. Bull. Lebedev Phys. Inst. 44 (2017) 210 V.P. Popov et al. Int. J. Nanotechnol., 12, 226 , 2015.

  • Hydrogen molecule fluence Ф =8x1016 см-2 after HPHT annealing at 1200oC 1h

    Bonding of diamond 30 nm film to PMMA or glass substrate

    21

    . UV10

    . UV11

    . UV12

    .UV2

    . UV4

    . UV3

    . UV6

    UV7 .

    UV8,9 .

    .

    UV

    5

    HII: H2+ 50 keV, 8x1016 cm-2,

    HPHT, 1200oC, 5GPa 2h, AO of 110 nm Gl-C and transfer of 290 nm

    diamond on PMMA substrate (delamination by residual stress in diamond membrane)

    AO after Bonding to PMMA

    Diamond Membrane

    300 nm

    on PMMA

    4 mm

    8 m

    m

    21

  • 1. Motivation for Diamond Electronics

    2. Diamond-Graphite-Diamond by II & Lift-off Process

    3. Diamond Junction & Field Effect Transistors J-, MISFET

    4. Sensing by Membranes & NV Defects in Nanostructures

    5. Conclusion

    Outlook

    22

  • -10 -5 0 5 1010

    -12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    - 1 n1/p

    - 2

    - 3

    - 4

    - 5 n2/p

    n/p (in/out of pad)

    I, A

    V, Volt

    Diamond vs. Silicon p-n Junctions

    I-V characteristics of equally doped p-n junctions at RT simulated by TCAD Synopsys

    silicon

    diamond

    -10 -5 0 5 10

    V, Volt

    I, A

    100

    10-10

    10-20

    10-14

    10-4

    Measured I-V characteristics of p-n

    mesa junctions at RT after 1200oC 4 GPa

    23

  • Electron Density at -1 nm

    Design of Diamond Hetero or Schottki Barrier n-MISFET

    Diamond body. The drain and source are made from Al,Pt Schottki or n+-type

    (1019cm-2) silicon carbide Hetero Barrier and located at the edges of the

    diamond body (in one plane):

    •Full length of the transistor is 200 nm. •The length of the gate is 100 nm. •The length of the channel is 104 нм. •The length of drain & source is 20 nm. •The thickness of diamond layer is 20 nm. •The thickness of the gate oxide is 2 нм. •Top aluminum (Al) gate. •The back oxide thickness is 20 nm on Al plate.

    24

  • Electron Density in Diamond FETs with Schottki Barriers

    Vg=-2 V Vg= 0 V

    -10 -8 -6 -4 -2 0 2 4 6 8 10

    1E-18

    1E-17

    1E-16

    1E-15

    1E-14

    1E-13

    1E-12

    1E-11

    1E-10

    1E-9

    1E-8

    1E-7

    1E-6

    1E-5

    1E-4

    1E-3

    nMOS

    Usub=Us=0

    Ud=+0.1V

    SD WorkFunction[eV]:

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6

    2.8

    3.0

    pMOS

    Usub=Us=0

    Ud=-0.1V

    SD WorkFunction[eV]:

    7.4

    7.2

    7.0

    6.8

    6.6

    6.4

    6.2

    6.0

    5.8

    pMOS nMOSeBarrierTunneling (PeltierHeat)

    hBarrierTunneling (PeltierHeat)

    Hydrodynamic Model (eTemperature)

    Hydrodynamic Model (hTemperature)

    Lattice Temperature: 500K

    I ds, A

    /um

    Ugate

    , V

    I-V characteristics of SB MISFET at RT simulated by TCAD Synopsys

    No large difference in SB MISFET for four different parameter sets by TCAD Synopsys

    Ion = 10mA/mm: E-1.8 eV for SB p-MISFET at Vg>+2 V 25

  • -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    103

    eBarrierTunneling

    n-SD 1e19cm-3

    T=500K

    Vg=+6V

    Usub=Us=0

    Ud=0.2V

    Ud=0.1V

    SiC SiCC(Diamond)

    ab

    s(E

    lectr

    on

    Cu

    rre

    nt D

    en

    sity),

    A/c

    m2

    X, um

    -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    ConductionBandEnergy

    eQuasiFermiEnergy

    hQuasiFermiEnergy

    ValenceBandEnergy

    eBarrierTunneling

    n-SD 1e19cm-3

    T=500K

    Vg=+6V

    Usub=Us=0

    Ud=0.1V

    Ud=0.2V

    SiC SiCC(Diamond)

    En

    erg

    y, e

    V

    X, um

    Bottom of conduction band

    E-Bands & Current Density in Diamond Hetero n-MISFET

    and Electron Density at +1 nm under the surface

    26

  • 0 1 2 3 4 5 6 7 8 9

    1E-25

    1E-24

    1E-23

    1E-22

    1E-21

    1E-20

    1E-19

    1E-18

    1E-17

    1E-16

    1E-15

    1E-14

    1E-13

    1E-12

    1E-11

    1E-10

    1E-9

    1E-8

    1E-7

    1E-6

    1E-5

    eBarrierTunneling (Source & Drain)

    Max Length for Tunneling: 17nm

    Electron Effective Mass for Tunneling:

    mt=0.1me

    mt=0.2me

    mt=0.5me

    mt=1.0me

    noTunneling

    I ds, A

    /um

    Ugate

    , V

    nMOS

    SiC-C-SiC

    Gate Length 100nm

    Channel Length 104nm

    n-SD Length 20nm

    Base Thickness 20nm

    Top Oxide Thickness 2nm

    BOX Thickness 20nm

    Top/Sub Gate: Al

    Usub=Us=0, Ud=0.1V

    n-SD 1e19cm-3

    Temperature 500K

    Matsumoto, T. et al. Sci. Rep. 6 (2016) 31585

    Ids = 1-100 mA/mm at 500oC in dependence on the mt under the barrier

    Heterobarrier n-MISFET vs. inversion channel p-MOSFET

    27

    Vg=8V: 20 A/mm

  • 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

    1E-25

    1E-24

    1E-23

    1E-22

    1E-21

    1E-20

    1E-19

    1E-18

    1E-17

    1E-16

    1E-15

    1E-14

    1E-13

    1E-12

    1E-11

    1E-10

    1E-9

    1E-8

    1E-7

    n-SD 1e19cm-3

    eBarrierTunneling (PeltierHeat)

    Hydrodynamic Model (eTemperature)

    Lattice Temperature: 500K

    Usub=Us=0

    Ud:

    1.0V

    0.5V

    0.3V

    0.2V

    0.1V

    I ds, A

    /um

    Ugate

    , V

    28

    Vg=6V: 5 A/mm

    Heterobarrier n-MISFET vs. inversion channel p-MOSFET

    Ids = 100 mA/mm at 500oC But we need to account correctly the

    dependence = (E) Matsumoto, T. et al. Sci. Rep. 6 (2016) 31585

  • Heterobarrier p-JFET with n-type g-C3N4 mesh

    -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

    1E-17

    1E-16

    1E-15

    1E-14

    1E-13

    1E-12

    1E-11

    1E-10

    1E-9

    1E-8

    1E-7

    1E-6

    1E-5

    1E-4

    1E-3

    0.01

    I dra

    in, I s

    ourc

    e, I g

    ate, A

    /um

    Ugate

    , V

    Usource

    =0, Udrain

    =-0.1V

    Currents:

    Isource

    Idrain

    Igate

    SiC n-Mesh Doping:

    P-1e17-1e19

    C p-Base Doping:

    B1e19

    B5e18

    B2e18

    B1e18

    B5e17

    B2e17

    B1e17

    Vg=-3V: 50A/mm vs. 50mA/mm at 500K

    29 *Iwasaki T. et al. JEDS 5 (2016) 2624301

    CN-heterojunctions with Ioff/Ion ~ 10-3

  • 1. Motivation for Diamond Electronics

    2. Diamond-Graphite-Diamond by II & Lift-off Process

    3. Diamond Junction & Field Effect Transistors (J- & FET’s)

    4. Sensing by Membranes & NV Defects in Nanostructures

    5. Conclusion

    Outlook

    30

  • Diamond & Multigraphene Membranes as Silicon FET gate

    I-V characteristics of membrane gated FET with three gate lengths simulated by TCAD Synopsys

    31 V Popov. et al. Proceed. of ICMNE-2016 Int. Conf., Moscow, 2 (2015) 149

    V

    V - diamond

  • Ep-n = 103 V∙cm-1

    δ1,2: ~ 600, 400 GHz

    32

    NV- centers in embedded vertical p-n junctions Stark Effect at NV-centers in forward biased p-i-n diode

    E dia = 106 V∙cm-1

    late

    ral p-

    n ju

    nction

    Exciton luminescence (VFB=35 V)

    ENV0/- = EC-2.58 eV

    Inte

    nsi

    ty, a

    rb.u

    n

    Wavelength shift , arb. un

    Ep-n = 106 V∙cm-1

    Splitting in Stark shift for 2 NV- groups

    The splitting allows to control of the spins in differently oriented NV- groups along axes

    V Popov. et al. Proceed. of ISI-2015 Int. Conf., Moscow, 2 (2015) 13-19

  • ***T.Karin, et al. Appl. Phys. Lett. 105, 053106 (2014).

    *T. Yamamoto et al. Phys. Rev. B 90, 081117(R) (2014).

    **N.Bar-Gill et al. Nat. Commun. 4:1743 (2013).

    If transverse spin-relaxation time T2

    * is:

    T2* = 1/(δ) = 52 ns

    Spin-relaxation time T due to dipolar coupling is:

    TNV 1/[(gsB)2nNV ] = 700 ns

    TNV 1/[(gsB)2nNs ] = 200 ns

    T is limited by high nNs

    Highest TNV ~500 ms for nNs =1015cm-3**:

    TNV 1/[(gsB)2nNV ] = 1 s

    TNV 1/[(gsB)2nNs ] = 130 ms

    No hyperfine splitting* for NII:

    (3.1 MHz)/(9.5 MHz) -> δ = 6.3 MHz

    Δ =151MHz Δ =62MHz Δ =60MHz Δ = 152MHz

    D =2870 MHz

    45% of the NV’s are to the surface***

    33

    ODMR of NV’s in 300 nm N+ implanted layer at high temperature

    H = D [SZ2 – S(S+1)/3] + [B + b(t)]S + E(SX

    2 – SY2),

    V Popov. et al. Proceed. of ISI-2015 Int. Conf., Moscow, 2 (2015) 13-19.

  • Magnetic dipole coupled spin arrays

    T2 limit

    323md ~

    1~ Tdd

    E

    On-Crystal Quantum Network from M. Lukin group. P.R.L. 110 (2013) 067601

    Error in collectively enhanced quantum gates

    = 1 − exp[−(4t/T2* )3]

    For = 10 -4 T2*= 11 ms

    34

  • 35

    The probability to find analogical or other charged centers with content [CNs] = 2.5x1013 cm-3 in neighborhood of 10 nm layer on the distance r and determines as exp(-[CNs]R^2) = 1/2.

    Then the distance R is equal to R ≈ 0.47([C])-1/2 = 1x10-6 cm =10 nm

    V.P. Popov, et al. . ICW-2010, Kyoto 2010

    PL Peaks of NV ensembles in Ar27 Cluster Ion Implanted Diamond

    630 632 634 636 638 640 642 644

    100

    150

    200

    250

    300

    350

    NV-

    637.2 nm

    Inte

    nsity,

    arb

    . un.

    Wavelength, nm

    No5

    Laser 532.1 nm

    -192.1 oC

    tcount

    = 10 sec

    Point 1

    Point 1_double

    Point 2

    574 576 578 580 582 584 586 588

    100

    150

    200

    250

    300

    350

    NV0

    575.0 nm

    Inte

    nsity,

    arb

    . u

    n.

    Wavelength, nm

    No5

    Laser 532.1 nm

    -192.1 oC

    tcount

    = 10 sec

    Point 1

    Point 1_double

    Point 2

    Visible PL at 575 and 637 nm of NV0 & NV- with content [CNV] = 5x1013 cm-3 at LNT

    .

    FWHM of NV- is δ=170 GHz or 230+10 pm instead of δ=30 GHz for single NV- .

    NV’s mainly in clusters!

    FWHM for 0.2-20ppm NV’s is the same for bulk, HNI & HII diamond

  • 36

    The probability to find analogical or other charged centers with content [C] = 2.5x1013 cm-2 in neighborhood on the distance r and determines as exp(-[C]R^2) = 1/2.

    Then the distance R is equal to R ≈ 0.47([C])-1/2 = 1x10-6 cm =10 nm (anneal. 850oC)

    V.P. Popov, et al. . ICW-2010, Kyoto 2010

    425m

    425m

    PL CLM of NV ensembles in Ar27 Cluster Ion Implanted Diamond

    NV- ensemble spots with area content [CNV]s = 3x106 cm-2 or 1/300 of [NCl] !

    .

    Average distance R is equal to R ≈ 0.47([CNV])-1/2 = 1.6 x10-4 cm = 1.6 m at RT

    010

    20

    30

    40

    50

    2,0x103

    4,0x103

    6,0x103

    8,0x103

    1,0x104

    0

    10

    20

    30

    40

    50

    Y/1

    0, nmX/10, nm

    NNV’s: 1 2 3 4 5 … 10

    Number of NV centers в in spice - 25 50 100 150 200 …

  • 37

    Solid State Lenses with One NV Ensemble made by Ga+ FIB

    V.P. Popov et al. RFTT-2015 Conf. Proceed., 2015, 147

    5x increase in NV- PL intensity, but we need a regular matrix !

    532 nm green laser beam with 300 nm in diameter

    570 580 590 600 610 620 630 640 650

    104

    2x104

    3x104

    Inte

    nsity,

    arb

    . u

    n.

    Wavelength, nm

    solid lens

    planar NV-

    637 nm

    PL increasing for solid state lenses due to a suppression of inner reflection

    But what is the influence of FIB induced defects ?

    [CNV]s = 3x106 cm-2 than average content in lens is = 50 pcs.

  • ODMR of NV’s (~50 pcs) in H+II & annealed pillars of 300 nm in the height

    2780 2800 2820 2840 2860 2880 2900 2920 2940 2960

    105000

    110000

    115000

    120000

    125000

    ph

    oto

    n c

    ou

    ntin

    g

    frequency of the microwave Mhz

    0G

    3,26G

    4,8G

    6,44G

    8,7G

    10,81G

    12,86G

    2780 2800 2820 2840 2860 2880 2900 2920 2940 2960

    96000

    98000

    100000

    102000

    104000

    106000

    108000

    110000

    112000

    114000

    ph

    oto

    n c

    ou

    ntin

    g

    frequency of the microwave Mhz

    0G

    3,26G

    4,8G

    6,44G

    8,76G

    12,86G

    NG2 -5dbm s 2,5mm

    For H+II only strain splitting is observed:

    (3.1 MHz)/(6.3 MHz) -> δ = 3.2 MHz

    If transverse spin relaxation time T2* is:

    T2* = 1/(δ) = 100 ns

    Spin-relaxation time T due to dipolar coupling:

    TNV 1/[(gsB)2nNV ] = 3.5 s

    TNV 1/[(gsB)2nNs ] = 140 ns

    T is limited by high nNs !

    E= 6.3 MHz corresponds to the strain = +1.5%

    38

    ~50 pcs

  • Stimulated spin echo for T2 measurements by MW pulse ODMR at constant laser excitation beam

    2830 2840 2850 2860 2870 2880 2890 2900 2910

    2645000

    2650000

    2655000

    2660000

    2665000

    2670000

    2675000

    2680000

    ph

    oto

    n c

    ou

    ntin

    g

    frequency of the microwave Mhz

    0 pulse

    3 pulse

    4 pulse

    Ry1

    MW spin echo

    sequence 1-2 us

    30% decrease in ODMR dip after 5 s means

    T2 value ~ 12 µs 39

    MW

    pu

    lse

    s C

    ou

    nts

    on

    3

    pu

    lse

    C

    ou

    nts

    on

    4

    pu

    lse

    Constant Laser Power

    ..............................

    /2

  • 1. Hydrogen implantation with fluences Ф > 1017 cm-2 and HPHT

    annealing provide the buried conductive layer of mixed graphite

    forms with the resistivity < 10-3 Ohm·cm inside the diamond

    2. Lift-off technique allows forming free and transferred membranes

    of diamonds as thin as 30 nm that are prospective for thin film

    vertical JFETs with a saturation current Ion= 50 mA/mm

    3. The results for Schottki Barrier MISFET simulation using SB

    source-drain contacts show Ion as high as 100 mA/mm for

    optimized SB metals, or ~10 times higher than in normally-off

    MESFETs with H-transfer doping.

    4. Hetero Barrier n-MISFET simulation with CN S-D regions shows

    the Ion as high as 100 mA/mm for optimized S-D doping or about

    ~100 times higher than in inversion channel n-MOSFETs but Ion depends strongly on effective mass of carriers under the barrier

    Conclusion

    40

  • 1. Suspended diamond membranes as a gate of silicon FETs service as a highly sensitive sensors of displacements in the nanoscale range

    2. NV-centers at the concentration 0.2-20 ppm in 30-300 nm layers and membranes have practically the same spectral characteristics as in the bulk diamond crystals

    3. Charge state and ZPL position of NV-centers are effectively controlled by inner electric fields in p-n junction

    4. NV center relaxation and spin coherence times are determined mainly by the interaction with nearest nitrogen donors and should be increased for QIP

    5. NV matrices are the promising candidate for magnetic, electric, and spin nanoscopy and NMR spectroscopy with nanoscale resolution

    Conclusion

    41

  • to the colleagues from the Institutes of Semiconductor Physics, Geology and Mineralogy of SB RAS and Melbourne University :

    Dr. L.N.Safronov for p-n & JFET fabrication,

    Dr. A.A.Kalinin for HPHT treatment,

    Dr. S. Rubanov for SEM analysis.

    Our thanks

    Thank Your for Attention!

    42