diametral dimension of topological vector spaces · introduction diametral dimensionbibliography...

61

Upload: others

Post on 13-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Diametral Dimension of topological vector spaces

Loïc Demeulenaere

29th april 2014

Page 2: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

IntroductionTopological invariants

Diametral DimensionKolmogorov's diametersDiametral DimensionA very important example : Köthe spacesIn functionnal AnalysisSν spaces

Bibliography

Page 3: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

The Idea...

� Let X ,Y be two topological vector spaces (tvs)

� X ∼= Y ? Finding an isomorphism...

� X � Y ???

Topological invariant

It is a map τ on the class of tvs (or a subclass of the class of tvs)such that

X ∼= Y =⇒ τ(X ) = τ(Y )

orτ(X ) 6= τ(Y ) =⇒ X � Y .

Page 4: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

The Idea...

� Let X ,Y be two topological vector spaces (tvs)

� X ∼= Y ? Finding an isomorphism...

� X � Y ???

Topological invariant

It is a map τ on the class of tvs (or a subclass of the class of tvs)such that

X ∼= Y =⇒ τ(X ) = τ(Y )

orτ(X ) 6= τ(Y ) =⇒ X � Y .

Page 5: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

The Idea...

� Let X ,Y be two topological vector spaces (tvs)

� X ∼= Y ? Finding an isomorphism...

� X � Y ???

Topological invariant

It is a map τ on the class of tvs (or a subclass of the class of tvs)such that

X ∼= Y =⇒ τ(X ) = τ(Y )

orτ(X ) 6= τ(Y ) =⇒ X � Y .

Page 6: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

The Idea...

� Let X ,Y be two topological vector spaces (tvs)

� X ∼= Y ? Finding an isomorphism...

� X � Y ???

Topological invariant

It is a map τ on the class of tvs (or a subclass of the class of tvs)such that

X ∼= Y =⇒ τ(X ) = τ(Y )

orτ(X ) 6= τ(Y ) =⇒ X � Y .

Page 7: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

The Idea...

� Let X ,Y be two topological vector spaces (tvs)

� X ∼= Y ? Finding an isomorphism...

� X � Y ???

Topological invariant

It is a map τ on the class of tvs (or a subclass of the class of tvs)such that

X ∼= Y =⇒ τ(X ) = τ(Y )

orτ(X ) 6= τ(Y ) =⇒ X � Y .

Page 8: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Topological invariants

Another notionA topological invariant τ is complete if

X ∼= Y ⇐⇒ τ(X ) = τ(Y )

Diametral Dimension

� The diametral dimension is a topological invariant (on theclass of tvs)

� Interest : determining the diametral dimension of Sν spaces

� Every Sν (not pseudoconvex) has the same diametraldimension !

Page 9: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Topological invariants

Another notionA topological invariant τ is complete if

X ∼= Y ⇐⇒ τ(X ) = τ(Y )

Diametral Dimension

� The diametral dimension is a topological invariant (on theclass of tvs)

� Interest : determining the diametral dimension of Sν spaces

� Every Sν (not pseudoconvex) has the same diametraldimension !

Page 10: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Topological invariants

Another notionA topological invariant τ is complete if

X ∼= Y ⇐⇒ τ(X ) = τ(Y )

Diametral Dimension

� The diametral dimension is a topological invariant (on theclass of tvs)

� Interest : determining the diametral dimension of Sν spaces

� Every Sν (not pseudoconvex) has the same diametraldimension !

Page 11: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Topological invariants

Another notionA topological invariant τ is complete if

X ∼= Y ⇐⇒ τ(X ) = τ(Y )

Diametral Dimension

� The diametral dimension is a topological invariant (on theclass of tvs)

� Interest : determining the diametral dimension of Sν spaces

� Every Sν (not pseudoconvex) has the same diametraldimension !

Page 12: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

IntroductionTopological invariants

Diametral DimensionKolmogorov's diametersDiametral DimensionA very important example : Köthe spacesIn functionnal AnalysisSν spaces

Bibliography

Page 13: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Kolmogorov's diameters

Let E be a vector space and U,V ⊂ E be such that U ⊂ µV for aµ > 0.

Notation : Ln(E ) ≡ vector subspaces of E with a dimension ≤ n.

De�nitionThe nth Kolmogorov's diameter of U in respect with V is

δn(U,V ) = inf{δ > 0 : ∃F ∈ Ln(E ) such that U ⊂ δV + F}.

Page 14: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Kolmogorov's diameters

Let E be a vector space and U,V ⊂ E be such that U ⊂ µV for aµ > 0.Notation : Ln(E ) ≡ vector subspaces of E with a dimension ≤ n.

De�nitionThe nth Kolmogorov's diameter of U in respect with V is

δn(U,V ) = inf{δ > 0 : ∃F ∈ Ln(E ) such that U ⊂ δV + F}.

Page 15: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Kolmogorov's diameters

Let E be a vector space and U,V ⊂ E be such that U ⊂ µV for aµ > 0.Notation : Ln(E ) ≡ vector subspaces of E with a dimension ≤ n.

De�nitionThe nth Kolmogorov's diameter of U in respect with V is

δn(U,V ) = inf{δ > 0 : ∃F ∈ Ln(E ) such that U ⊂ δV + F}.

Page 16: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Kolmogorov's diameters

Some properties !

Lemmas

� δn(U,V ) ≥ δn+1(U,V )

� 0 ≤ δn(U,V ) ≤ µ� U0 ⊂ U and V ⊂ V0, then, δn(U0,V0) ≤ δn(U,V )

� dimE < +∞ =⇒ δn(U,V ) = 0 if n ≥ dimE

� T : E → F linear =⇒ δn(T (U),T (V )) ≤ δn(U,V )

� T : E → F isomorphism of vector spaces⇒ δn(T (U),T (V )) = δn(U,V )

Page 17: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Kolmogorov's diameters

Some properties !

Lemmas

� δn(U,V ) ≥ δn+1(U,V )

� 0 ≤ δn(U,V ) ≤ µ� U0 ⊂ U and V ⊂ V0, then, δn(U0,V0) ≤ δn(U,V )

� dimE < +∞ =⇒ δn(U,V ) = 0 if n ≥ dimE

� T : E → F linear =⇒ δn(T (U),T (V )) ≤ δn(U,V )

� T : E → F isomorphism of vector spaces⇒ δn(T (U),T (V )) = δn(U,V )

Page 18: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Kolmogorov's diameters

Some properties !

Lemmas

� δn(U,V ) ≥ δn+1(U,V )

� 0 ≤ δn(U,V ) ≤ µ

� U0 ⊂ U and V ⊂ V0, then, δn(U0,V0) ≤ δn(U,V )

� dimE < +∞ =⇒ δn(U,V ) = 0 if n ≥ dimE

� T : E → F linear =⇒ δn(T (U),T (V )) ≤ δn(U,V )

� T : E → F isomorphism of vector spaces⇒ δn(T (U),T (V )) = δn(U,V )

Page 19: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Kolmogorov's diameters

Some properties !

Lemmas

� δn(U,V ) ≥ δn+1(U,V )

� 0 ≤ δn(U,V ) ≤ µ� U0 ⊂ U and V ⊂ V0, then, δn(U0,V0) ≤ δn(U,V )

� dimE < +∞ =⇒ δn(U,V ) = 0 if n ≥ dimE

� T : E → F linear =⇒ δn(T (U),T (V )) ≤ δn(U,V )

� T : E → F isomorphism of vector spaces⇒ δn(T (U),T (V )) = δn(U,V )

Page 20: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Kolmogorov's diameters

Some properties !

Lemmas

� δn(U,V ) ≥ δn+1(U,V )

� 0 ≤ δn(U,V ) ≤ µ� U0 ⊂ U and V ⊂ V0, then, δn(U0,V0) ≤ δn(U,V )

� dimE < +∞ =⇒ δn(U,V ) = 0 if n ≥ dimE

� T : E → F linear =⇒ δn(T (U),T (V )) ≤ δn(U,V )

� T : E → F isomorphism of vector spaces⇒ δn(T (U),T (V )) = δn(U,V )

Page 21: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Kolmogorov's diameters

Some properties !

Lemmas

� δn(U,V ) ≥ δn+1(U,V )

� 0 ≤ δn(U,V ) ≤ µ� U0 ⊂ U and V ⊂ V0, then, δn(U0,V0) ≤ δn(U,V )

� dimE < +∞ =⇒ δn(U,V ) = 0 if n ≥ dimE

� T : E → F linear =⇒ δn(T (U),T (V )) ≤ δn(U,V )

� T : E → F isomorphism of vector spaces⇒ δn(T (U),T (V )) = δn(U,V )

Page 22: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Kolmogorov's diameters

Some properties !

Lemmas

� δn(U,V ) ≥ δn+1(U,V )

� 0 ≤ δn(U,V ) ≤ µ� U0 ⊂ U and V ⊂ V0, then, δn(U0,V0) ≤ δn(U,V )

� dimE < +∞ =⇒ δn(U,V ) = 0 if n ≥ dimE

� T : E → F linear =⇒ δn(T (U),T (V )) ≤ δn(U,V )

� T : E → F isomorphism of vector spaces⇒ δn(T (U),T (V )) = δn(U,V )

Page 23: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

IntroductionTopological invariants

Diametral DimensionKolmogorov's diametersDiametral DimensionA very important example : Köthe spacesIn functionnal AnalysisSν spaces

Bibliography

Page 24: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

The de�nition

Let E be a topological vector space and V(E ) be a basis of0-neighbourhood in E .

De�nitionThe diametral dimension of E is the set

∆(E ) ={ξ ∈ CN0 : ∀V ∈ V(E )∃U ∈ V(E ) such that U ⊂ V

and limn→∞

(ξnδn(U,V )) = 0}

Remark : the de�nition does not depend on the choice of the basis.

Page 25: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

The de�nition

Let E be a topological vector space and V(E ) be a basis of0-neighbourhood in E .

De�nitionThe diametral dimension of E is the set

∆(E ) ={ξ ∈ CN0 : ∀V ∈ V(E )∃U ∈ V(E ) such that U ⊂ V

and limn→∞

(ξnδn(U,V )) = 0}

Remark : the de�nition does not depend on the choice of the basis.

Page 26: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

The de�nition

Let E be a topological vector space and V(E ) be a basis of0-neighbourhood in E .

De�nitionThe diametral dimension of E is the set

∆(E ) ={ξ ∈ CN0 : ∀V ∈ V(E )∃U ∈ V(E ) such that U ⊂ V

and limn→∞

(ξnδn(U,V )) = 0}

Remark : the de�nition does not depend on the choice of the basis.

Page 27: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Diametral Dimension

Proposition

If T : E → F is linear, continuous and open, then ∆(E ) ⊂ ∆(F ).

Corollaries

� ∆(∏

α∈A Eα)⊂⋂α∈A ∆(Eα)

� ∆(E ) ⊂ ∆(E/F )

TheoremThe diametral dimension is a topological invariant on the class oftopological vector spaces.

Page 28: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Diametral Dimension

Proposition

If T : E → F is linear, continuous and open, then ∆(E ) ⊂ ∆(F ).

Corollaries

� ∆(∏

α∈A Eα)⊂⋂α∈A ∆(Eα)

� ∆(E ) ⊂ ∆(E/F )

TheoremThe diametral dimension is a topological invariant on the class oftopological vector spaces.

Page 29: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Diametral Dimension

Proposition

If T : E → F is linear, continuous and open, then ∆(E ) ⊂ ∆(F ).

Corollaries

� ∆(∏

α∈A Eα)⊂⋂α∈A ∆(Eα)

� ∆(E ) ⊂ ∆(E/F )

TheoremThe diametral dimension is a topological invariant on the class oftopological vector spaces.

Page 30: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Diametral Dimension

Proposition

If T : E → F is linear, continuous and open, then ∆(E ) ⊂ ∆(F ).

Corollaries

� ∆(∏

α∈A Eα)⊂⋂α∈A ∆(Eα)

� ∆(E ) ⊂ ∆(E/F )

TheoremThe diametral dimension is a topological invariant on the class oftopological vector spaces.

Page 31: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Diametral Dimension

Some properties/examples

� dimE < +∞ =⇒ ∆(E ) = CN

� ∆(E ) ⊃ c0 :={ξ ∈ CN0 : limn→∞ ξn = 0

}� If E is a normed space and if dimE =∞, then ∆(E ) = c0(precompact/totally bounded sets, Riesz's theorem)

Warning !

Diametral dimension is not complete !

Page 32: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Diametral Dimension

Some properties/examples

� dimE < +∞ =⇒ ∆(E ) = CN

� ∆(E ) ⊃ c0 :={ξ ∈ CN0 : limn→∞ ξn = 0

}

� If E is a normed space and if dimE =∞, then ∆(E ) = c0(precompact/totally bounded sets, Riesz's theorem)

Warning !

Diametral dimension is not complete !

Page 33: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Diametral Dimension

Some properties/examples

� dimE < +∞ =⇒ ∆(E ) = CN

� ∆(E ) ⊃ c0 :={ξ ∈ CN0 : limn→∞ ξn = 0

}� If E is a normed space and if dimE =∞, then ∆(E ) = c0(precompact/totally bounded sets, Riesz's theorem)

Warning !

Diametral dimension is not complete !

Page 34: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Diametral Dimension

Some properties/examples

� dimE < +∞ =⇒ ∆(E ) = CN

� ∆(E ) ⊃ c0 :={ξ ∈ CN0 : limn→∞ ξn = 0

}� If E is a normed space and if dimE =∞, then ∆(E ) = c0(precompact/totally bounded sets, Riesz's theorem)

Warning !

Diametral dimension is not complete !

Page 35: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Remark

Where is the diametral dimension complete ?

� The class of power series spaces

� Dragilev's class

Page 36: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Remark

Where is the diametral dimension complete ?

� The class of power series spaces

� Dragilev's class

Page 37: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

IntroductionTopological invariants

Diametral DimensionKolmogorov's diametersDiametral DimensionA very important example : Köthe spacesIn functionnal AnalysisSν spaces

Bibliography

Page 38: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Admissible spaces

Notationl∞ ≡ space of bounded sequences with the norm‖ξ‖l∞ = supn∈N0

|ξn|.

De�nitionA Banach space (l , ‖.‖l) of complex sequences is admissible if

� ∀ξ ∈ l∞, η ∈ l , ηξ ∈ l and ‖ηξ‖l ≤ ‖ξ‖l∞‖η‖l� ek := (δk,n)n∈N0

∈ l and ‖ek‖l = 1

Examples

� l1 := {ξ ∈ CN0 :∑

n∈N |ξn| <∞} with the norm‖ξ‖l1 =

∑n∈N |ξn|

Nothing

Page 39: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Admissible spaces

Notationl∞ ≡ space of bounded sequences with the norm‖ξ‖l∞ = supn∈N0

|ξn|.

De�nitionA Banach space (l , ‖.‖l) of complex sequences is admissible if

� ∀ξ ∈ l∞, η ∈ l , ηξ ∈ l and ‖ηξ‖l ≤ ‖ξ‖l∞‖η‖l� ek := (δk,n)n∈N0

∈ l and ‖ek‖l = 1

Examples

� l1 := {ξ ∈ CN0 :∑

n∈N |ξn| <∞} with the norm‖ξ‖l1 =

∑n∈N |ξn|

Nothing

Page 40: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Admissible spaces

Notationl∞ ≡ space of bounded sequences with the norm‖ξ‖l∞ = supn∈N0

|ξn|.

De�nitionA Banach space (l , ‖.‖l) of complex sequences is admissible if

� ∀ξ ∈ l∞, η ∈ l , ηξ ∈ l and ‖ηξ‖l ≤ ‖ξ‖l∞‖η‖l� ek := (δk,n)n∈N0

∈ l and ‖ek‖l = 1

Examples

� l1 := {ξ ∈ CN0 :∑

n∈N |ξn| <∞} with the norm‖ξ‖l1 =

∑n∈N |ξn|

Nothing

Page 41: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Admissible spaces

Notationl∞ ≡ space of bounded sequences with the norm‖ξ‖l∞ = supn∈N |ξn|.

De�nitionA Banach space (l , ‖.‖l) of complex sequences is admissible if

� ∀ξ ∈ l∞, η ∈ l , ηξ ∈ l and ‖ηξ‖l ≤ ‖ξ‖l∞‖η‖l� ek := (δk,n)n∈N ∈ l and ‖ek‖l = 1

Examples

� lp := {ξ ∈ CN0 :∑

n∈N |ξn|p <∞} with the norm

‖ξ‖lp =(∑

n∈N |ξn|p)1/p

if p ≥ 1

� (l∞, ‖.‖l∞) and (c0, ‖.‖l∞)

Page 42: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Admissible spaces

Notationl∞ ≡ space of bounded sequences with the norm‖ξ‖l∞ = supn∈N |ξn|.

De�nitionA Banach space (l , ‖.‖l) of complex sequences is admissible if

� ∀ξ ∈ l∞, η ∈ l , ηξ ∈ l and ‖ηξ‖l ≤ ‖ξ‖l∞‖η‖l� ek := (δk,n)n∈N ∈ l and ‖ek‖l = 1

Examples

� lp := {ξ ∈ CN0 :∑

n∈N |ξn|p <∞} with the norm

‖ξ‖lp =(∑

n∈N |ξn|p)1/p

if p ≥ 1

� (l∞, ‖.‖l∞) and (c0, ‖.‖l∞)

Page 43: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Köthe sets and Köthe spaces

De�nitionA ⊂ CN0 is a Köthe set if

� ∀α ∈ A, n ∈ N0, αn ≥ 0,

� ∀n ∈ N0, ∃α ∈ A such that αn > 0,

� ∀α, β ∈ A, ∃γ ∈ A such that sup{αn, βn} ≤ γn

De�nitionKöthe sequence space :

λl(A) := {ξ ∈ CN0 : ∀α ∈ A, αξ ∈ l}

with the topology de�ned by the semi-norms plα : ξ 7→ ‖αξ‖l .

Page 44: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Köthe sets and Köthe spaces

De�nitionA ⊂ CN0 is a Köthe set if

� ∀α ∈ A, n ∈ N0, αn ≥ 0,

� ∀n ∈ N0, ∃α ∈ A such that αn > 0,

� ∀α, β ∈ A, ∃γ ∈ A such that sup{αn, βn} ≤ γn

De�nitionKöthe sequence space :

λl(A) := {ξ ∈ CN0 : ∀α ∈ A, αξ ∈ l}

with the topology de�ned by the semi-norms plα : ξ 7→ ‖αξ‖l .

Page 45: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Köthe spaces

Remarkλl(A) is a Hausdor� complete locally convex space ; it is a Fréchetspace when A is countable

Examples/applications

� If O ={

(e−n/k)n∈N0: k ∈ N

}, then O(D(0, 1)) ∼= λl1(O)

� If O ′ ={

(enk)n∈N0: k ∈ N0

}, then O(C) ∼= λl1(O ′)

The idea : Taylor's development f (z) =∑+∞

n=0

f (n)(0)n! zn

Page 46: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Köthe spaces

Remarkλl(A) is a Hausdor� complete locally convex space ; it is a Fréchetspace when A is countable

Examples/applications

� If O ={

(e−n/k)n∈N0: k ∈ N

}, then O(D(0, 1)) ∼= λl1(O)

� If O ′ ={

(enk)n∈N0: k ∈ N0

}, then O(C) ∼= λl1(O ′)

The idea : Taylor's development f (z) =∑+∞

n=0

f (n)(0)n! zn

Page 47: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Regular Köthe spaces

A particular case

λl(A) is regular if

� ∀k , n ∈ N0, ak(n) > 0

� ∀k , n ∈ N0, ak(n) ≤ ak+1(n),

� ∀k ∈ N0, the sequence

(ak(n)

ak+1(n)

)n∈N0

is decreasing.

Then...

Theorem∆(λl(A)) ={ξ ∈ CN0 : ∀k ∈ N∃m ∈ N such that

(ak (n)

ak+m(n)ξn

)n∈N0

∈ c0

}

Page 48: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Regular Köthe spaces

A particular case

λl(A) is regular if

� ∀k , n ∈ N0, ak(n) > 0

� ∀k , n ∈ N0, ak(n) ≤ ak+1(n),

� ∀k ∈ N0, the sequence

(ak(n)

ak+1(n)

)n∈N0

is decreasing.

Then...

Theorem∆(λl(A)) ={ξ ∈ CN0 : ∀k ∈ N ∃m ∈ N such that

(ak (n)

ak+m(n)ξn

)n∈N0

∈ c0

}

Page 49: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Köthe spaces

CorollariesAfter some developments,

� ∆(O(D(0, 1))) =⋂

k∈N{ξ ∈ CN0 : (ξne

−n/k)n∈N0∈ l∞

}� ∆(O(C)) =

⋃k∈N0

{ξ ∈ CN0 :

(ξne−kn)

n∈N0∈ l∞

}

So (en)n∈N0∈ ∆(O(C)) \∆(O(D(0, 1)))

=⇒ O(D(0, 1)) � O(C)!

Page 50: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Köthe spaces

CorollariesAfter some developments,

� ∆(O(D(0, 1))) =⋂

k∈N{ξ ∈ CN0 : (ξne

−n/k)n∈N0∈ l∞

}� ∆(O(C)) =

⋃k∈N0

{ξ ∈ CN0 :

(ξne−kn)

n∈N0∈ l∞

}So (en)n∈N0

∈ ∆(O(C)) \∆(O(D(0, 1)))

=⇒ O(D(0, 1)) � O(C)!

Page 51: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Köthe spaces

CorollariesAfter some developments,

� ∆(O(D(0, 1))) =⋂

k∈N{ξ ∈ CN0 : (ξne

−n/k)n∈N0∈ l∞

}� ∆(O(C)) =

⋃k∈N0

{ξ ∈ CN0 :

(ξne−kn)

n∈N0∈ l∞

}So (en)n∈N0

∈ ∆(O(C)) \∆(O(D(0, 1)))

=⇒ O(D(0, 1)) � O(C)!

Page 52: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

IntroductionTopological invariants

Diametral DimensionKolmogorov's diametersDiametral DimensionA very important example : Köthe spacesIn functionnal AnalysisSν spaces

Bibliography

Page 53: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Schwartz and nuclear spaces

Let E be a locally convex space.

TheoremTFAE :

� E is Schwartz

� l∞ ⊂ ∆(E )

� c0 ( ∆(E )

TheoremTFAE :

� E is nuclear

� ∀p > 0, ((n + 1)p)n∈N0∈ ∆(E )

� ∃p > 0 such that ((n + 1)p)n∈N0∈ ∆(E )

Page 54: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Schwartz and nuclear spaces

Let E be a locally convex space.

TheoremTFAE :

� E is Schwartz

� l∞ ⊂ ∆(E )

� c0 ( ∆(E )

TheoremTFAE :

� E is nuclear

� ∀p > 0, ((n + 1)p)n∈N0∈ ∆(E )

� ∃p > 0 such that ((n + 1)p)n∈N0∈ ∆(E )

Page 55: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Schwartz and nuclear spaces

Let E be a locally convex space.

TheoremTFAE :

� E is Schwartz

� l∞ ⊂ ∆(E )

� c0 ( ∆(E )

TheoremTFAE :

� E is nuclear

� ∀p > 0, ((n + 1)p)n∈N0∈ ∆(E )

� ∃p > 0 such that ((n + 1)p)n∈N0∈ ∆(E )

Page 56: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

IntroductionTopological invariants

Diametral DimensionKolmogorov's diametersDiametral DimensionA very important example : Köthe spacesIn functionnal AnalysisSν spaces

Bibliography

Page 57: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Sν spaces and Diametral Dimension

It can be shown that

∆(Sν) =

{ξ ∈ CN0 : lim

n→+∞(ξn(n + 1)−s) = 0 ∀s > 0

}=

{ξ ∈ CN0 : lim

n→+∞(ξn(n + 1)−1/m) = 0 ∀m ∈ N0

}

Corollaries

� l∞ ⊂ ∆(Sν) =⇒ Sν spaces are Schwartz

� ((n + 1)2)n /∈ ∆(Sν) =⇒ Sν spaces are not nuclear

Question : are Sν spaces isomorphic ?

Page 58: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Sν spaces and Diametral Dimension

It can be shown that

∆(Sν) =

{ξ ∈ CN0 : lim

n→+∞(ξn(n + 1)−s) = 0 ∀s > 0

}=

{ξ ∈ CN0 : lim

n→+∞(ξn(n + 1)−1/m) = 0 ∀m ∈ N0

}

Corollaries

� l∞ ⊂ ∆(Sν) =⇒ Sν spaces are Schwartz

� ((n + 1)2)n /∈ ∆(Sν) =⇒ Sν spaces are not nuclear

Question : are Sν spaces isomorphic ?

Page 59: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Sν spaces and Diametral Dimension

It can be shown that

∆(Sν) =

{ξ ∈ CN0 : lim

n→+∞(ξn(n + 1)−s) = 0 ∀s > 0

}=

{ξ ∈ CN0 : lim

n→+∞(ξn(n + 1)−1/m) = 0 ∀m ∈ N0

}

Corollaries

� l∞ ⊂ ∆(Sν) =⇒ Sν spaces are Schwartz

� ((n + 1)2)n /∈ ∆(Sν) =⇒ Sν spaces are not nuclear

Question : are Sν spaces isomorphic ?

Page 60: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Sν spaces and Diametral Dimension

It can be shown that

∆(Sν) =

{ξ ∈ CN0 : lim

n→+∞(ξn(n + 1)−s) = 0 ∀s > 0

}=

{ξ ∈ CN0 : lim

n→+∞(ξn(n + 1)−1/m) = 0 ∀m ∈ N0

}

Corollaries

� l∞ ⊂ ∆(Sν) =⇒ Sν spaces are Schwartz

� ((n + 1)2)n /∈ ∆(Sν) =⇒ Sν spaces are not nuclear

Question : are Sν spaces isomorphic ?

Page 61: Diametral Dimension of topological vector spaces · Introduction Diametral DimensionBibliography Introduction opTological invariants Diametral Dimension Kolmogorov's diameters Diametral

Introduction Diametral Dimension Bibliography

Bibliography

J.-M. Aubry and F. Bastin, Diametral dimension of somepseudoconvex spaces, Studia Math. 197 (2010), 27-42

H. Jarchow, Locally Convex Spaces, Mathematische Leitfäden,Stuttgart, 1981

A. Pietsch, Nuclear Locally Convex Spaces, Springer-Verlag,Berlin, 1972

T. Terzioglu, Die diametrale Dimension von lokalkonvexenRaümen, Collect. Math. 20 (1969), 49-99

T. Terzioglu, Diametral Dimension and Köthe Spaces, TurkishJ. Math. 32 (2008), 213-218

V. Zahariuta, Linear topologic invariants and their applicationsto isomorphic classi�cation of generalized power spaces,Turkish J. Math. 20 (1996), 237-289