diagrammatic monte carlo methods for fermions · • recent advances im methodology •...

20
Diagrammatic Monte Carlo methods for Fermions Philipp Werner Department of Physics, Columbia University PRL 97, 076405 (2006) PRB 74, 155107 (2006) PRB 75, 085108 (2007) PRB 76, 235123 (2007) PRL 99, 126405 (2007) PRL 99, 146404 (2007) Support: NSF-DMR-0705847 Urbana, June 08 – p.1

Upload: others

Post on 27-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

Diagrammatic Monte Carlomethods for Fermions

Philipp Werner

Department of Physics, Columbia University

PRL 97, 076405 (2006) PRB 74, 155107 (2006) PRB 75, 085108 (20 07)

PRB 76, 235123 (2007) PRL 99, 126405 (2007) PRL 99, 146404 (20 07)

Support: NSF-DMR-0705847Urbana, June 08 – p.1

Page 2: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

Outline• Motivation

• Dynamical mean field theory for fermionic lattice models⇒ impurity models

• Recent advances im methodology• Diagrammatic Monte Carlo approach

⇒ weak-coupling expansion⇒ expansion in hybridization

• Application• Metal-insulator transition in the Hubbard model

• "Spin glass" transition in a 3-orbital model

• Collaborators• A. J. Millis, E. Gull, M. Troyer

Urbana, June 08 – p.2

Page 3: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

Introduction

Theoretical Physics Experimental Physics

Computational Physics

Computer science

template<class model,

class lattice>class simulation. . .;

Algorithms Hardware

Urbana, June 08 – p.3

Page 4: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

Introduction

Theoretical Physics

Hubbard model

Experimental Physics

correlation drivenmetal-insulator transition

Computational Physics

H = U∑

i ni↑ni↓ − t∑

〈i,j〉,σ c†i,σcj,σ

U

t

not analytically solvable

McWhan et al., (1973) Urbana, June 08 – p.3

Page 5: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

IntroductionSimulation of correlated lattice models

HHubbard = U∑

i ni↑ni↓ − t∑

〈i,j〉,σ c†i,σcj,σ U

t

• Exact diagonalization: up to 20 sites

• Monte Carlo: fermion sign problem

⇒ Simulation of 2D, 3D lattice models not possible

⇒ Need new methods / approximate descriptions

e. g. Dynamical Mean Field Theory (DMFT)

Urbana, June 08 – p.4

Page 6: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

MotivationDynamical mean field theory Metzner & Vollhardt (1989), Georges & Kotliar (1992)

• Lattice model

Hlatt = U∑

i ni↑ni↓ − t∑

〈i,j〉,σ c†i,σcj,σ

t

• Quantum impurity model

Himp = Un↑n↓ −∑

k,σ(tkc†σa

bathk,σ + h.c.) +Hbath

tk

Urbana, June 08 – p.5

Page 7: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

MotivationDynamical mean field theory Metzner & Vollhardt (1989), Georges & Kotliar (1992)

• Lattice model

Hlatt = U∑

i ni↑ni↓ − t∑

〈i,j〉,σ c†i,σcj,σ

t

• Effective action (hybridization function F (τ))

S = U∫dτn↑(τ)n↓(τ) −

σ

∫dτdτ ′cσ(τ)Fσ(τ − τ ′)c†σ(τ ′)

τ τF( − ’)

• Self-consistency conditionGloc

latt(τ) = Gimp(τ)Urbana, June 08 – p.5

Page 8: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

MotivationDynamical mean field theory Metzner & Vollhardt (1989), Georges & Kotliar (1992)

• Self-consistency loop couples the impurity to the lattice

Lattice model Impurity model

tτ τF( − ’)

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ Simp[F (τ)]

⇑ Gloclatt = Gimp ⇓

Hilbert transform impurity solver

⇑ Σlatt = Σimp ⇓⇐ ⇐ ⇐ ⇐ ⇐ ⇐ Gimp(τ)

• Computationally expensive step: solution of the impurity problemUrbana, June 08 – p.6

Page 9: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

Example: Hubbard modelCorrelation driven metal-insulator (Mott) transition

• Phasediagram for V2O3 paramagnetic DMFT solutionMcWhan et al., (1973) 1-band Hubbard model

Georges & Krauth (1993), Blumer (2002)

4t/U

insulatorMott

T/4t

0.75 1

0.01

metal

• More realistic multi-band simulation requires powerful impurity solversUrbana, June 08 – p.7

Page 10: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

Diagrammatic Monte CarloWeak coupling vs. strong coupling approach

• Diagrammatic QMC = stochastic sampling of Feynman diagrams

• Hubbard model: Z = TrTτe−S with action

S = −∑

σ

∫ β

0dτdτ ′cσ(τ)Fσ(τ − τ ′)c†σ(τ ′)

︸ ︷︷ ︸

SF

+U∫ β

0dτn↑n↓

︸ ︷︷ ︸

SU

• Weak-coupling expansionRombouts et al., PRL (1999); Rubtsov et al., PRB (2005); Gull et al., EPL (2008)

Treat quadratic part (SF ) exactly, expand Z in powers of SU

• Hybridization expansionWerner et al., PRL (2006); Werner & Millis, PRB (2006); Haule, PRB (2007);Werner & Millis, PRL (2007)

Treat local part (SU ) exactly, expand Z in powers of SF

Urbana, June 08 – p.8

Page 11: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

Diagrammatic Monte CarloExpansion in U + auxiliary field decompositionRombouts et al., PRL (1999), Gull et al., EPL (2008)

• Expand Z in powers of K/β − U(n↑n↓ − (n↑ + n↓)/2)

4τ1 2 30 βτ τ τ

• Decouple "interaction vertices" using Rombouts et al., PRL (1999)

K/β − U(n↑n↓ − (n↑ + n↓)/2) = (K/2β)∑

s=−1,1

eγs(n↑−n↓)

cosh(γ) = 1 + (βU/2K)

β0Urbana, June 08 – p.9

Page 12: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

Diagrammatic Monte CarloExpansion in U + auxiliary field decompositionRombouts et al., PRL (1999), Gull et al., EPL (2008)

• Weight of the configuration (Γσ = diag(γσs1, ...), (G0)ij = g0(τi − τj))

w(si, τi) =(Kdτ

)n ∏

σ

det(

eΓσ −G0σ(eΓσ − I))

• Local updates: insertion/removal of an auxiliary spin

0

0 β

β

• Advantage: less spins than Hirsch-Fye method⇒ faster updates, shorter autocorrelation (thermalization) times

Urbana, June 08 – p.10

Page 13: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

Diagrammatic Monte CarloExpansion in the impurity-bath hybridization F Werner et al., PRL (2006)

• Non-interacting model: Z = TrTτ exp[ ∫ β

0dτdτ ′c(τ)F (τ − τ ′)c†(τ ′)

]

• Expand exponential in powers of F

empty orbital

1sτ1

e τ2eτ2

s

β

β

β

τ τ1e s

1F( − )

occupied orbital

τ τ2eτ1

s τ1eτ2

s ττ 33se

τ1s τ1

e

β0+

+

+

+ ...

0

0

0

• Some diagrams have negative weight

⇒ sampling individual diagrams leads to a severe sign problem

Urbana, June 08 – p.11

Page 14: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

Diagrammatic Monte CarloExpansion in the impurity-bath hybridization F Werner et al., PRL (2006)

• Collect the diagrams with the samec(τs

i ), c†(τei ) into a determinant

detF(F)m,n = F (τe

m − τsn)

→ resums huge numbers of diagrams(100! = 10158)

→ eliminates the sign problem

• Z = sum of all operator sequences

τ τ1 1e sF( − )

τ τ τ τ τ τ1 1 2 2 3 3s s se e e0 β

c c c c c c

Urbana, June 08 – p.12

Page 15: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

Diagrammatic Monte CarloGeneralizations

• Arbitrary interactions: Uαβγδc†αcβc†γcδ, ~S · c†α~σα,βcβ, ~S · ~L, . . .

Werner & Millis, PRB (2006); Haule, PRB (2007)

β0

w = Tr[

e−Hlocτ1ψ†↑e

−Hloc(τ2−τ1)ψ†↓e

−Hloc(τ3−τ2)ψ↑ . . .]

detF↑detF↓

⊕ local problem treated exactly

⇒ flexible

⇒ histogram of relevant states

scales exponentially with

# sites, orbitals 0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

wei

ght

basis state

triplet Mott insulatorMetal

orbitally polarized insulator

Urbana, June 08 – p.13

Page 16: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

EfficiencyScaling of the average perturbation order 〈k〉 Gull et al, PRB (2007)

• Computational effort grows O(k3)

with size k of determinants

• Weak coupling expansion:〈k〉 ∼ U

• Hybridization expansion:〈k〉 decreases with increasing U

0

20

40

60

80

100

0 1 2 3 4 5 6 7

pert

urba

tion

orde

r <

k>

U/t

metal Mottinsulator

weak coupling expansion

hybridization expansion

⇒ In the strong correlation regime, speed-ups of 104-105

Urbana, June 08 – p.14

Page 17: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

1-band Hubbard modelMetal-insulator transition on the 2D square lattice (bandwidth = 8t)Gull et al, EPL (2008)

• Single site DMFT: Hloc = Un↑n↓

⇒ "Mott" transition at Uc ≈ 12t

• 4 site DMFT:Hloc =

k,σ εkc†k,σck,σ +

i Un↑n↓

⇒ "Slater" transition at Uc ≈ 4t

collapse into plaquette singlet state

+

0 2 4 6 8 10 12U/t

0

0.2

0.4

0.6

0.8

1

Prob

abili

ty

Urbana, June 08 – p.15

Page 18: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

3-orbital modelNon-Fermi liquid behavior in multi-orbital models with Hund couplingWerner et al, arXiv:cond-mat/0806.2621

• Hloc =∑

α Unα,↑nα,↓ +∑

α 6=β,σ U′nα,σnβ,−σ +

α 6=β,σ(U ′ − J)nα,σnβ,σ

−∑

α 6=β J(ψ†α,↓ψ

†β,↑ψβ,↓ψα,↑ +ψ†

β,↑ψ†β,↓ψα,↑ψα,↓ +h.c.)−∑

α,σ µnα,σ

• Bethe lattice with bandwidth 4t, U ′ = U − 2J

• Phase diagram for J = U/6 (left) and self-energy at U/t = 8 (right)

0

2

4

6

8

10

12

14

16

-5 0 5 10 15 20 25 30 35 40

U/t

µ/t

0 1 2 3

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2

-Im

Σ/t

(ωn/t)0.5

n=2.62n=2.35n=1.99n=1.79n=1.60

Urbana, June 08 – p.16

Page 19: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

3-orbital modelNon-Fermi liquid behavior in multi-orbital models with Hund couplingWerner et al, arXiv:cond-mat/0806.2621

• Hloc =∑

α Unα,↑nα,↓ +∑

α 6=β,σ U′nα,σnβ,−σ +

α 6=β,σ(U ′ − J)nα,σnβ,σ

−∑

α 6=β J(ψ†α,↓ψ

†β,↑ψβ,↓ψα,↑ +ψ†

β,↑ψ†β,↓ψα,↑ψα,↓ +h.c.)−∑

α,σ µnα,σ

• Transition to a phase with frozen moments

• Broad quantum critical regime ⇒ ImΣ ∼ √ωn ⇒ σ(Ω) ∼ 1/

√Ω

0

2

4

6

8

10

12

14

16

-5 0 5 10 15 20 25 30 35 40

U/t

µ/t

0 1/6 2/6 3/6

n=2glass transition

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3

U/t

n

Fermi liquidfrozenmoment

βt=50βt=100

Mott insulator (βt=50)

Urbana, June 08 – p.17

Page 20: Diagrammatic Monte Carlo methods for Fermions · • Recent advances im methodology • Diagrammatic Monte Carlo approach ⇒ weak-coupling expansion ⇒ expansion in hybridization

Conclusions & Outlook• Diagrammatic MC simulation

of impurity models:

• Weak-coupling method for

large impurity clusters

• "Strong-coupling" method formulti-orbital models

0

20

40

60

80

100

0 1 2 3 4 5 6 7

pert

urba

tion

orde

r <

k>

U/t

metal Mottinsulator

weak coupling expansion

hybridization expansion

• On-going projects:

• LDA+DMFT simulation of transition metal oxides and actinidecompounds

• Adaptation of the diagrammatic approach to real-time dynamics(non-equilibrium systems)

• Job openings: PhD and postdoc position at ETH ZürichUrbana, June 08 – p.18