dhlldv framework an overview of slurry transport models · 2016-11-25 · slurry transport models....

71
Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore & Dredging Engineering & Marine Technology & Associate Professor of Dredging Engineering © S.A.M DHLLDV Framework An Overview Of Slurry Transport Models

Upload: others

Post on 25-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Delft University of Technology

Dr.ir. Sape A. Miedema

Head of Studies

MSc Offshore & Dredging Engineering

& Marine Technology

&

Associate Professor of

Dredging Engineering

© S.A.M

DHLLDV Framework

An Overview Of

Slurry Transport

Models

Page 2: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Delft University of Technology

Dr.ir. Sape A. Miedema

Head of Studies

MSc Offshore & Dredging Engineering

& Marine Technology

&

Associate Professor of

Dredging Engineering

© S.A.M

DHLLDV Framework

An Overview Of

Slurry Transport

Models

Page 3: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Delft University of Technology – Offshore & Dredging Engineering

Dredging A Way Of Life

© S.A.M

Page 4: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

© S.A.M

Page 5: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Goals & Targets

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering

Page 6: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Pump/Pipeline System

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

• Total pressure/power required

• Limit (Stationary) Deposit Velocity

• Cavitation limit of each pump

• Deposition/plugging the pipeline

Page 7: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Pressure/Flow Graph (Q-H Graph)

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

Pre

ss

ure

or

He

ad

H (

kP

a)

Flow Q (m3/sec)

Pump & Pipe Resistance Chart Water Q-H Curve

Mixture Q-H Curve

Water Resistance

Mixture ResistanceELM

Mixture ResistanceDHLLDV

Mixture ResistanceJufin Lopatin

Mixture ResistanceWilson

Design Point &Working PointWater-WaterWorking PointWater-Mixture

Working PointMixture-Mixture

Working PointMixture-Water

• Working points/working area in a stationary situation

Page 8: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Determining Slurry Transport

Behavior

Based On Known Parameters

Like:

Liquid Properties,

Pipe Diameter,

Particle Diameter,

Volumetric Concentration

As A Function Of The Flow Or

Line Speed

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering

Goals & Targets

Page 9: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Elephant of Wilson

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Page 10: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

1. Small versus large pipe diameter

2. Small versus large particle diameter

3. Low versus high concentration

4. Low versus high line speed

5. Spatial versus delivered concentration

6. Uniform versus graded sands/gravels

1. Carrier liquid properties

2. Solids properties

For sands/gravels in water 64 combinations

possible

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering

Possibilities

Page 11: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Solids Effect

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering

Page 12: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Solids Effect

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3 4 5 6 7 8 9 10

Hyd

rau

lic

gra

die

nt

i m, i l

(m w

ate

r/m

)

Line speed vls (m/sec)

Hydraulic gradient im, il vs. Line speed vls

Liquid il curve

Fixed Bed Cvs=c.

Sliding Bed Cvs=c.Lower Limit

Sliding Bed Cvs=c.Mean

Sliding Bed Cvs=c.Upper Limit

Heterogeneous FlowCvs=c.

Equivalent LiquidModel

Homogeneous FlowCvs=Cvt=c.

Resulting im curveCvs=c.

Resulting im curveCvt=c.

Limit Deposit VelocityCvs=c.

Limit Deposit VelocityCvt=c.

Limit Deposit Velocity

© S.A.M. Dp=0.1524 m, d=1.500 mm, Rsd=1.585, Cv=0.300, μ=0.420

i m-i

l

i m-i

l

i m-i

l

i m-i

l

i m-i

l

2

l lsl

l

l p

vpi

g L 2 g D

m l

r h g

s d v

i iE

R C

Hydraulic Gradient

Relative Excess H.G.

Page 13: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Data from Yagi et al., im-v

ls

Delft University of Technology – Offshore & Dredging Engineering

Data looks unorganized depending on the volumetric

concentration of the solids.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3 4 5 6

Hyd

rau

lic

gra

die

nt

i m, i l

(m w

ate

r/m

)

Line speed vls (m/sec)

Hydraulic gradient im, il vs. Line speed vls

Liquid il curve

Sliding Bed Cvs=c.

Equivalent Liquid Model

Homogeneous FlowCvs=Cvt=c.

Resulting im curveCvs=c.

Resulting im curveCvt=c.

Limit Deposit VelocityCvs=c.

Limit Deposit Velocity

Cvt=0.225-0.275

Cvt=0.175-0.225

Cvt=0.125-0.175

Cvt=0.075-0.125

Cvt=0.025-0.075

© S.A.M. Dp=0.1552 m, d=0.910 mm, Rsd=1.585, Cv=0.150, μsf=0.550

Page 14: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Data from Yagi et al., Erhg

-il

© S.A.M

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Rela

tive

ex

ce

ss

hyd

rau

lic

gra

die

nt

Erh

g(-

)

Hydraulic gradient il (-)

Relative excess hydraulic gradient Erhg vs. Hydraulic gradient il

Fixed Bed Cvs=c.

Sliding Bed Cvs=c.Mean

Heterogeneous FlowCvs=c.

Homogeneous FlowCvs=Cvt=c.

Resulting Erhg curveCvs=c.

Fixed Bed, Sliding Bed& Het. Flow Cvt=c.

Fixed Bed, Sliding Bed& Sliding Flow Cvt=c.

Limit Deposit Velocity

Ratio Potential/KineticEnergy

Cvs=0.225-0.275

Cvs=0.175-0.225

Cvs=0.125-0.175

Cvs=0.075-0.125

Cvs=0.025-0.075

© S.A.M. Dp=0.1552 m, d=0.91 mm, Rsd=1.59, Cv=0.150, μsf=0.800

Delft University of Technology – Offshore & Dredging Engineering

Data looks more organized not depending on the

volumetric concentration of the solids.

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Rela

tive

ex

ce

ss

hyd

rau

lic

gra

die

nt

Erh

g(-

)

Hydraulic gradient il (-)

Relative excess hydraulic gradient Erhg vs. Hydraulic gradient il

Sliding Bed Cvs=c.

Equivalent Liquid Model

Homogeneous FlowCvs=Cvt=c.

Resulting Erhg curveCvs=c.

Resulting Erhg curveCvt=c.

Limit Deposit Velocity

Ratio Potential/KineticEnergy

Heterogeneous Flowwith Near Wall Lift

Homogeneous FlowMobilized

Cvt=0.225-0.275

Cvt=0.175-0.225

Cvt=0.125-0.175

Cvt=0.075-0.125

Cvt=0.025-0.075

© S.A.M. Dp=0.1552 m, d=0.910 mm, Rsd=1.585, Cv=0.150, μsf=0.550

Page 15: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Spatial versus Transport Concentration

& the Slip Velocity

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Spatial Volumetric Concentration is volume based.

Transport Volumetric Concentration is volume flow

based.

s l

v t v s v t v s

ls

vC 1 C C C

v

ls

v s v t

ls s l

vC C

v v

l sm l m l

r h g

ls s l s d v ss l

s d v s

ls

vi i i iE

v v R CvR 1 C

v

Relative Excess Hydraulic Gradient Erhg,

Cvt=constant.

The slip velocity here is the velocity difference

between the line speed and the particle velocity.

Page 16: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Flow Regimes History

Chapter 1

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering

Page 17: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Regimes History

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Page 18: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The 5 Main Flow Regimes

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

The 5 main flow regimes are identified based on their

dominating behavior regarding energy dissipation.

1. The fixed bed regime is identified based on shear

stresses at the liquid-fixed bed interface (sheet flow).

2. The sliding bed regime is identified based on sliding

friction energy losses.

3. The heterogeneous flow regime is identified based on

potential and kinetic energy losses.

4. The homogeneous flow regime is identified based on

energy losses in turbulent eddies and viscous friction.

5. The sliding flow regime is identified based on sliding

friction, potential and kinetic energy losses.

At flow regime transitions, a mix of two flow regimes

will be present.

Page 19: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Solids Effect Graph

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering

Page 20: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

How To Read The Graph? (Dp=6 inch)

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

2

l lsl

l

l p

vpi

g L 2 g D

m l

r h g

s d v

i iE

R C

Hydraulic Gradient

Relative Excess H.G.

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Rela

tive

ex

ce

ss

hyd

rau

lic

gra

die

nt

Erh

g(-

)

Hydraulic gradient il (-)

Relative excess hydraulic gradient Erhg vs. Hydraulic gradient ilFixed Bed Cvs=c.

Sliding Bed Cvs=c.Lower LimitSliding Bed Cvs=c.MeanSliding Bed Cvs=c.Upper LimitHeterogeneous FlowCvs=c.Equivalent LiquidModelHomogeneous FlowCvs=Cvt=c.Resulting Erhg curveCvs=c.Resulting Erhg curveCvt=c.Limit Deposit VelocityCvs=c.Limit Deposit VelocityCvt=c.Limit Deposit Velocity

Ratio Potential/KineticEnergyHeterogeneous Flowwith Near Wall LiftHomogeneous FlowMobilized

© S.A.M. Dp=0.1524 m, d=0.500 mm, Rsd=1.585, Cv=0.175, μsf=0.416

Cvs

d

Dp

d

Dp

d

Cvt

Page 21: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Different Models Fine Sand

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

4 possible models: Black heterogeneous, blue pseudo homogeneous,

light brown pseudo homogeneous & red homogeneous.

Page 22: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Different Models Coarse Sand & Gravel

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

5 possible models: Orange SB/He, black He, blue pseudo Ho, light

brown pseudo Ho & red Ho.

Page 23: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Existing Models

Chapter 6

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering

Page 24: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Zandi & Govatos, Yagi et al. & Babcock

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

0.01 0.10 1.00 10.00 100.00 1000.00

Φ=

(im

-il)/(

i l·C

vt)

(-)

ψ=vls2/(g·Dp·Rsd)·√CD (-)

Zandi-Govatos (1967) on Durand coordinates

Zandi-Govatos A

Zandi-Govatos B

Durand & Condolios

Equivalent Liquid Sand

Lower Limit

Limit Deposit Velocity

N=0-40

N=40-310

N=310-1550

N=1550-3100

© S.A.M.

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

0.01 0.10 1.00 10.00 100.00 1,000.00

(im

-il)/(

Cvt·i l)

vls2·√Cx/(g·Dp·Rsd)

Durand Gradient vs. the Durand Coordinate, Yagi et al. (1972)

DurandEquation

Yagi Sand

Yagi Gravel

Yagi SandCvt Data

© S.A.M.

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

0.01 0.10 1.00 10.00 100.00 1,000.00

(im

-il)/(

Cvt·i l)

vls2·√Cx/(g·Dp·Rsd)

Durand Gradient vs. the Durand Coordinate, Yagi et al. (1972)

DurandEquation

Yagi Sand

Yagi Gravel

Yagi GravelCvt Data

© S.A.M.

0.1

1.0

10.0

100.0

1 10 100

(im

-il)/(

Cv·i

l)

vls2·√Cx/(g·Dp·Rsd)

Durand Gradient vs. the Durand Coordinate, Babcock (1970)

30/45 Sand vls=5.750 fps

20/30 Sand vls=11.10 fps

20/30 Sand vls=12.72 fps

6/8 Steel Shot

Arkosic Sand

Garnet Sand

80/100 Sand

80/100 Sand, Cv>0.2

80/100 Sand, Cv<0.2

s=2.76: Limestone

s=1.98: Mine Refuse

s=1.32: Coal

s=2.14: 1"x0.5" Slag

s=2.14: 1"x4 mesh Slag

Durand Equation

Newitt Sliding Bed: y=66·√Cx/x, gravelBabcock Sliding Bed: y=60.6·√Cx/x, gravel

Page 25: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

22 Models im-v

lsgraph

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

For small pipe diameters the models are still “close”. For

large diameter pipes the difference is much much more.

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5

Hyd

rau

lic

gra

die

nt

i m, i l

(m w

ate

r/m

)

Line speed vls (m/sec)

Hydraulic gradient im, il vs. Line speed vls, All Liquid il curve

Sliding Bed Cvs=c

Equivalent Liquid Model

Homogeneous Flow

Turian & Yuan Regime 0

Turian & Yuan Regime 1

Turian & Yuan Regime 2

Turian & Yuan Regime 3

Durand & Condolios

Newitt et al.

Newitt et al. Bed

Jufin & Lopatin

Fuhrboter

Zandi & Govatos Het.

Zandi & Govatos Hom.

Wilson et al. - 1.0

Wilson et al. - 1.7

Wilson et al. Bed

SRC Original Cvs=c.

SRC Weight Cvs=c.

DHLLDV Cvs=c.

DHLLDV Cvt=c.© S.A.M. Dp=0.1016 m, d=0.500 mm, Rsd=1.585, Cv=0.175, μsf=0.416

Page 26: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

22 Models Erhg

-ilgraph

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

This graph organizes the models better, but there is still a

lot of difference between the models.

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Rela

tive

ex

ce

ss

hyd

rau

lic

gra

die

nt

Erh

g(-

)

Hydraulic gradient il (-)

Relative excess hydraulic gradient Erhg vs. Hydraulic gradient il

Sliding Bed Cvs=c.

Equivalent Liquid Model

Homogeneous Flow

Limit Deposit Velocity

Turian & Yuan Regime 0

Turian & Yuan Regime 1

Turian & Yuan Regime 2

Turian & Yuan Regime 3

Durand & Condolios

Newitt et al.

Newitt et al. Bed

Jufin & Lopatin

Fuhrboter

Zandi & Govatos Het.

Zandi & Govatos Hom.

Wilson et al. - 1.0

Wilson et al. - 1.7

Wilson et al. Bed

SRC Original Cvs=c.

SRC Weight Cvs=c.

DHLLDV Cvs=c.

DHLLDV Cvt=c.© S.A.M. Dp=0.1016 m, d=0.500 mm, Rsd=1.585, Cv=0.175, μsf=0.416

Page 27: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Types of Models

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

• There are many empirical models, mainly for

heterogeneous flow, some for sliding bed and

homogeneous flow.

• Most empirical models add one term to the Darcy-

Weisbach equation, often based on Froude numbers.

• There is the equivalent liquid model (ELM) for

homogeneous flow.

• There are some 2 layer and 3 layer models for

transport with a stationary or sliding bed or sheet flow,

Wilson, Doron & Barnea, SRC Model, Matousek.

• The 2 layer and 3 layer models are closed with

empirical equations for the bed shear stress and the

concentration distribution.

Page 28: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Stationary/Fixed Bed Regime

Chapter 7.3 & 8.3

Wilson et al.

Doron & Barnea

SRC Model

Matousek Model

DHLLDV Framework

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering

Page 29: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Definitions

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Page 30: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Equilibrium of Forces

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

1 , l 1 1 2 , l 1 2 1 , l 1 2 , l

2 1

1 1

O L O L F Fp p p

A A

Page 31: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Kazanskij (1980), Cvs=0.17

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Rela

tive

ex

ce

ss

hyd

rau

lic

gra

die

nt

Erh

g(-

)

Hydraulic gradient il (-)

Relative excess hydraulic gradient Erhg vs. Hydraulic gradient il

Sliding Bed Cvs=c.

Equivalent Liquid Model

Homogeneous FlowCvs=Cvt=c.

Resulting Erhg curveCvs=c.

Resulting Erhg curveCvt=c.

Limit Deposit Velocity

Ratio Potential/KineticEnergy

Heterogeneous Flowwith Near Wall Lift

Homogeneous FlowMobilized

Cv=0.170

Cv=0.134

Cv=0.076

Cv=0.036

© S.A.M. Dp=0.5000 m, d=1.500 mm, Rsd=1.585, Cv=0.170, μsf=0.416

Page 32: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Sliding Bed Regime

Chapter 7.4 & 8.4

Wilson et al.

Doron & Barnea

SRC Model

Matousek Model

DHLLDV Framework

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering

Page 33: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Definitions

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Page 34: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Equilibrium of Forces

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Page 35: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Models 1

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

• For the wall friction the standard Darcy Weisbach

friction coefficient is used (Moody diagram).

• The Newitt et al. Model is empirical and based on

experimental data. Newitt et al. were the first to use the

solids effect graph.

• The Wilson 2LM is based on a bed and water above.

The bed friction is the Darcy Weisbach friction

coefficient with the particle diameter as the roughness

multiplied with a factor. Televantos found a factor 2,

but Wilson also used different factors over the years

like 2.6. For the normal stress between the bed and the

wall Wilson uses a hydrostatic stress distribution,

resulting in a higher friction force compared to the

submerged weight times the sliding friction coefficient.

Page 36: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Models 2

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

• The Wilson model is based on constant spatial

concentration. Constant delivered concentration curves

are constructed by interpolation.

• Doron & Barnea (2LM) basically use the Wilson

model, but extended it with suspension above the bed,

based on the standard advection diffusion equation. For

the constant delivered concentration case this always

results in a sliding bed, also at very low line speeds. So

they extended their model to a 3LM giving it the

possibility to have a fixed bed at very low line speeds.

• The SRC model is based on the Wilson model for

constant spatial concentration, but with suspension

above the bed. The fraction in suspension and the

fraction in the bed are based on an exponential power.

Page 37: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Models 3

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

• This power contains the ratio of the terminal settling

velocity to the line speed. The suspended fraction

forms an adjusted carrier liquid, resulting in adjusted

liquid properties and an adjusted submerged weight of

the bed. This way there is a smooth transition of fully

stratified flow to heterogeneous flow to homogeneous

flow.

• Matousek uses a completely different method. Based

on the delivered concentration, the Shields parameter is

determined with the reversed Meyer Peter Muller

equation. Once the Shields parameter is known, the

bed friction coefficient can be determined from the

equivalent bed roughness. The method is based on

sheet flow as a transport mechanism.

Page 38: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Models 4

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

• The DHLLDV Framework uses the Wilson approach,

however with the weight approach for the sliding

friction. So the sliding friction force equals the

submerged weight times the sliding friction coefficient.

Above the bed sheet flow is assumed according to

Wilson & Pugh. The method is spatial concentration

based. The delivered concentration follows from the

transport in the sheet flow layer and the transport in the

sliding bed. The method results in a solids effect

almost equal to the sliding friction coefficient.

Page 39: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Submerged Weight Approach

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

s f s f l s d v b p

s in c o s

F g L R C A

Page 40: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Limit of Stationary Deposit Velocity

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0 1 2 3 4 5 6 7

Hyd

rau

lic

gra

die

nt

i m(m

.w.c

./m

pip

e)

Line speed vls (m/sec)

Hydraulic gradient im vs. line speed vls, Cvr=Cvs/Cvb

LSDV HydrostaticTelevantos

Liquid

© S.A.M.© S.A.M.© S.A.M. Dp=0.7620 m, d=0.50 mm, Rsd=1.585, μsf=0.415, Cvb=0.55

Increasing Cvr

2 ,s f 2 , l 1 2 ,s f 2F F F p A

Page 41: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Erhg

Value is almost μsf

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.0 0.5 1.0 1.5 2.0 2.5

Erh

g=

(im

-il)/(

Rsd·C

vs)

(-)

Relative line speed vr=vls/vsm (-)

Erhg value vs. relative line speed vr, Cvr=Cvs/Cvb

LSDV

Cvr=0.05

Cvr=0.10

Cvr=0.20

Cvr=0.30

Cvr=0.40

Cvr=0.50

Cvr=0.60

Cvr=0.70

Cvr=0.80

Cvr=0.90

Cvr=0.95

© S.A.M. Dp=0.7620 m, d=1.00 mm, Rsd=1.59, μsf=0.415, Cvb=0.55

2LM-M-W

Stationary Deposit

m l

r h g s f m l s f s d v s

s d v s

i iE a n d i i R C

R C

Page 42: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Resulting Hydraulic Gradient Graph, Cvt

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12

Hyd

rau

lic

gra

die

nt

i m(m

.w.c

./m

pip

e)

Line speed vls (m/sec)

Hydraulic gradient im vs. line speed vls, Cvr=Cvt/Cvb

LSDV

Cvr=0.00

Cvr=0.05

Cvr=0.10

Cvr=0.20

Cvr=0.30

Cvr=0.40

Cvr=0.50

Cvr=0.60

Cvr=0.70

Cvr=0.80

Cvr=0.90

Cvr=0.95

© S.A.M.© S.A.M.© S.A.M. Dp=0.7620 m, d=1.00 mm, Rsd=1.59, μsf=0.415, Cvb=0.55

Stationary Deposit

3LM-M-W

Page 43: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Wiedenroth (1967), Medium Sand

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Rela

tive

ex

ce

ss

hyd

rau

lic

gra

die

nt

Erh

g(-

)

Hydraulic gradient il (-)

Relative excess hydraulic gradient Erhg vs. Hydraulic gradient il

Sliding Bed Cvs=c.

Equivalent LiquidModel

Homogeneous FlowCvs=Cvt=c.

Limit Deposit Velocity

Graded Sand Cvs=c.

Graded Sand Cvt=c.

Cv=0.300

Cv=0.250

Cv=0.200

Cv=0.150

Cv=0.100

Cv=0.050

© S.A.M. Dp=0.1250 m, d=0.900 mm, Rsd=1.585, Cv=0.200, μsf=0.250

Page 44: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Wiedenroth (1967), Coarse Sand

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Rela

tive

ex

ce

ss

hyd

rau

lic

gra

die

nt

Erh

g(-

)

Hydraulic gradient il (-)

Relative excess hydraulic gradient Erhg vs. Hydraulic gradient il

Sliding Bed Cvs=c.

Equivalent LiquidModel

Homogeneous FlowCvs=Cvt=c.

Limit Deposit Velocity

Graded Sand Cvs=c.

Graded Sand Cvt=c.

Cv=0.300

Cv=0.250

Cv=0.200

Cv=0.150

Cv=0.100

Cv=0.050

© S.A.M. Dp=0.1250 m, d=2.200 mm, Rsd=1.585, Cv=0.150, μsf=0.250

Page 45: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Heterogeneous Flow Regime

Chapter 7.5 & 8.5

Durand & Condolios

Newitt et al.

Jufin & Lopatin

Fuhrboter – Wilson et al.

DHLLDV Framework

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering

Page 46: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Existing Equations Depending on il

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

m l m l

m l v t

l v t l v t

i i p pp p 1 C w ith :

i C p C

3 / 22

3 / 2 ls

x

p s d

vK K C w ith : K 8 5

g D R

3

m l 1 p s d t v t 1

ls

1p p 1 K g D R v C K 1 1 0 0

v

Durand, Condolios & Gibert based on Froude numbers

Newitt et al. based on potential energy losses

3

1 / 6*m in

m l m in v t p

ls

vp p 1 2 v 5 .5 C D

v

Jufin & Lopatin empirical large diameters

Page 47: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Existing Equations Independent of il

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

k

m l l v s

ls

k m l k

m l v s r h g

ls s d v s s d ls

Sp p g L C

v

S i i Si i C E

v R C R v

M

s f 5 0

m l l s d v t

ls

M M

s f 5 0 s f 5 0

m l s d v t r h g

ls ls

vp p g R L C

2 v

v vi i R C E R

2 v 2 v

Fuhrboter medium diameters

Wilson heterogeneous empirical (Stratification Ratio)

Page 48: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

DHLLDV Framework

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Energy Dissipation by:

• Turbulence Viscous Dissipation (Darcy Weisbach)

• Potential Energy Losses (Hindered Settling Velocity)

• Kinetic Energy Losses (Collisions)

s ,p o t s ,k in

m l , v is c s ,p o t s ,k in l , v is c

l , v is c l , v is c

p pp p p p p 1

p p

2

t v s C2 s lm

l l ls l s d v s l s d v s

p ls t

v 1 C / vp 1 1v g R C g R C

L D 2 v v

2

s d p t v s C s l

m l v s 2

l tls ls

2 g R D v 1 C / v1p p 1 C

vv v

Slip

Page 49: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Verification & Validation, Durand et al.

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Durand & Condolios (1952)

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Rela

tive

ex

ce

ss

hyd

rau

lic

gra

die

nt

Erh

g(-

)

Hydraulic gradient il (-)

Relative excess hydraulic gradient Erhg vs. Hydraulic gradient il

Equivalent Liquid Model

Homogeneous

Sliding Bed Cvs=c.

d=0.20 mm, Cvt=c.

d=0.39 mm, Cvt=c.

d=0.89 mm, Cvt=c.

d=2.04 mm, Cvt=c.

d=4.20 mm, Cvt=c.

Limit Deposit Velocity

d=0.20 mm

d=0.39 mm

d=0.89 mm

d=2.04 mm

d=4.20 mm

© S.A.M. Dp=0.1524 m, Rsd=1.585, Cvt=0.050, μsf=0.416

Page 50: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Verification & Validation, Clift et al.

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Clift (1982)

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Rela

tive

ex

ce

ss

hyd

rau

lic

gra

die

nt

Erh

g(-

)

Hydraulic gradient il (-)

Relative excess hydraulic gradient Erhg vs. Hydraulic gradient il

Sliding Bed Cvs=c.

Equivalent Liquid Model

Homogeneous FlowCvs=Cvt=c.

Resulting Erhg curveCvs=c.

Resulting Erhg curveCvt=c.

Limit Deposit Velocity

Ratio Potential/KineticEnergy

Heterogeneous Flowwith Near Wall Lift

Homogeneous FlowMobilized

Cv=0.100

© S.A.M. Dp=0.4400 m, d=0.680 mm, Rsd=1.585, Cv=0.100, μsf=0.416

Page 51: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Homogeneous Flow Regime

Chapter 7.6 & 8.6

Equivalent Liquid Model

Newitt et al.

Wilson et al.

Talmon

DHLLDV Framework

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering

Page 52: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Equivalent Liquid Model (ELM)

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

2

m l m ls

p

L 1p v

D 2

2

l lsm m

m

l l p

l s d v s

m l

r h g l

s d v s

vpi

g L 2 g D

i 1 A R C

i iE A i

R C

Page 53: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Phenomena

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

• Very fine particles: The liquid properties have to

be adjusted. The ELM can be used with the

adjusted liquid properties.

• Fine particles: The ELM can be used with the

original liquid properties. At high line speeds the

lubrication effect will be mobilized.

• Medium/Coarse particles: The lubrication effect is

mobilized, due to a particle poor viscous sub-layer.

This gives a reduction of the solids effect in the

ELM.

Page 54: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Very Fine Particles

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

v s ,x

l l p l l p

l im 0 .4

s ls , ld v s p

v s s d

x l l

v s v s

v s

v s , x v s ,r v s

v s v s

1 6 .6 C2

x l v s , x v s , x

x

x

x

S tk 9 D S tk 9 D

d = X = 1v 7 .5 D

X C R

1 C C X

X CC a n d C 1 X C

1 C C X

1 2 .5 C 1 0 .0 5 C 0 .0 0 2 7 3 e

s x

s d , x

x

a n d R

Page 55: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Models

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

• Newitt et al. use a factor A=0.6 in the ELM.

• Wilson et al. Use different factors for A in the ELM.

• Talmon determined A based on a particle free viscous

sublayer in 2D channel flow.

• The DHLLDV Framework determined A based on a

concentration distribution in a circular pipe. This way

the viscous sublayer is particle poor, but not

completely particle free. The result is an equation for

A, depending on the concentration.

• The DHLLDV Framework also assumes that particles

fitting in the viscous sublayer do not result in a

particle free viscous sublayer and thus have A=1. The

larger the particles the more the particle free sublayer

is mobilised.

Page 56: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Fine Particles

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

v

v

2

C m l

s d v s

l vm l

r h g l 2s d v s

C m l

s d v s

l

vm l

r h g l E

s d v s

A

1 R C ln 18i i

E i 1 1 1R C dA

R C ln 18

i iE i 1 1 1

R C d

v

m l l s d v s E

v

m l l s d v s l s d v s

v

m l l s d v s E l s d v s E

i i i R C 1 1 1d

= m a x = 1 i i i R C i 1 R C E L Md

0 i i i R C i 1 R Cd

Page 57: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Medium/Coarse Particles

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

v

v

v

v

2

C m l

s d v s

l

r h g l E l2

C m l

s d v s

l

2

C m l

s d v s

l

m l l 2

C m l

l

C

s d v s

m l l

A

1 R C ln 18

E i i

A

R C ln 18

A

1 R C ln 18

i i i

A

ln 18

A

1 R C

p p p

v

v

2

m l

l

2

C m l

l

ln 18

A

ln 18

Page 58: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Lubrication Factor αE

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

λm

/λl&

αE

(-)

Volumetric concentration Cv (-)

λm/λl & αE vs. Volumetric concentration Cv

λm/λl: Law of the Wall (no damping)

λm/λl: Nikuradse (no damping)

λm/λl: Prandtl (damping)

λm/λl: Average

αE: Law of the Wall (no damping)

αE: Nikuradse (no damping)

αE: Prandtl (damping)

αE: Average

© S.A.M.

Page 59: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Very Fine Particles

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Hyd

rau

lic

gra

die

nt

i m, i l

(m w

ate

r/m

)

Line speed vls (m/sec)

Hydraulic gradient im, il vs. Line speed vls

Liquid il curve

Sliding Bed Cvs=c.

Equivalent Liquid Model

Homogeneous FlowCvs=Cvt=c.

Resulting im curveCvs=c.

Resulting im curveCvt=c.

Limit Deposit VelocityCvs=c.

Limit Deposit Velocity

Cv=0.240

© S.A.M. Dp=0.1075 m, d=0.040 mm, Rsd=3.999, Cv=0.240, μsf=0.416

Thomas (1976)

Page 60: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Very Fine Particles, with Thomas (1965)

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Thomas (1976) Adjusted Liquid Properties

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Hyd

rau

lic

gra

die

nt

i m, i l

(m w

ate

r/m

)

Line speed vls (m/sec)

Hydraulic gradient im, il vs. Line speed vls

Liquid il curve

Sliding Bed Cvs=c.

Equivalent LiquidModel

Homogeneous FlowCvs=Cvt=c.

Uniform Sand Cvs=c.

Uniform Sand Cvt=c.

Limit Deposit VelocityCvs=c.

Limit Deposit Velocity

Cv=0.240

© S.A.M. Dp=0.1075 m, d=0.040 mm, Rsd=3.999, Cv=0.240, μsf=0.416

Page 61: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Fine Particles

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Whitlock (2004)

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Rela

tive

ex

ce

ss

hyd

rau

lic

gra

die

nt

Erh

g(-

)

Hydraulic gradient il (-)

Relative excess hydraulic gradient Erhg vs. Hydraulic gradient il

Sliding Bed Cvs=c.Mean

Equivalent Liquid Model

Homogeneous FlowCvs=Cvt=c.

Resulting Erhg curveCvs=c.

Resulting Erhg curveCvt=c.

Limit Deposit Velocity

Ratio Potential/KineticEnergy

d=0.400 mm, Cv=0.170

d=0.085 mm, Cv=0.237

© S.A.M. Dp=0.1016 m, d=0.085 mm, Rsd=1.585, Cv=0.237, μsf=0.416

Page 62: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Medium/Coarse Particles

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Blythe & Czarnotta (1995)

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Rela

tive

ex

ce

ss

hyd

rau

lic

gra

die

nt

Erh

g(-

)

Hydraulic gradient il (-)

Relative excess hydraulic gradient Erhg vs. Hydraulic gradient il

Sliding Bed Cvs=c.Mean

Equivalent Liquid Model

Homogeneous FlowCvs=Cvt=c.

Resulting Erhg curveCvs=c.

Resulting Erhg curveCvt=c.

Limit Deposit Velocity

Ratio Potential/KineticEnergy

Cv=0.285

Cv=0.235

Cv=0.185

Cv=0.135

Cv=0.085

© S.A.M. Dp=0.1000 m, d=0.280 mm, Rsd=1.585, Cv=0.175, μsf=0.416

Page 63: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Sliding Flow Regime

Chapter 7.7 & 8.8

SRC Model

DHLLDV Framework

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering

Page 64: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Phenomena

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

If the particle diameter to pipe diameter is larger than

about 0.015, the particles will not be suspended anymore,

but stay in a fast flowing sort of bed.

The behavior is a mix of the heterogeneous flow regime

and the sliding bed regime.

At d/Dp=0.015 the behavior is still heterogeneous, but

the larger the particle diameter the more it is sliding bed

behavior.

The higher the line speed the smaller the concentration of

the flowing particles at the bottom of the pipe.

Page 65: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Verification & Validation, Boothroyde

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Rela

tive

ex

ce

ss

hyd

rau

lic

gra

die

nt

Erh

g(-

)

Hydraulic gradient il (-)

Relative excess hydraulic gradient Erhg vs. Hydraulic gradient il

Sliding Bed Cvs=c.

Equivalent Liquid Model

Homogeneous FlowCvs=Cvt=c.

Resulting Erhg curveCvs=c.

Resulting Erhg curveCvt=c.

Limit Deposit Velocity

Ratio Potential/KineticEnergy

Heterogeneous Flowwith Near Wall Lift

Homogeneous FlowMobilized

Cv=0.202

Cv=0.180

Cv=0.138

Cv=0.093

Cv=0.046

© S.A.M. Dp=0.2000 m, d=10.000 mm, Rsd=1.732, Cv=0.100, μsf=0.470

Boothroyde et al. (1979)

Page 66: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Verification & Validation, Wiedenroth

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Wiedenroth (1967)

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Rela

tive

ex

ce

ss

hyd

rau

lic

gra

die

nt

Erh

g(-

)

Hydraulic gradient il (-)

Relative excess hydraulic gradient Erhg vs. Hydraulic gradient il

Sliding Bed Cvs=c.

Equivalent Liquid Model

Homogeneous FlowCvs=Cvt=c.

Resulting Erhg curveCvs=c.

Resulting Erhg curveCvt=c.

Limit Deposit Velocity

Ratio Potential/KineticEnergy

Heterogeneous Flowwith Near Wall Lift

Homogeneous FlowMobilized

Cv=0.200

Cv=0.150

Cv=0.100

Cv=0.050

© S.A.M. Dp=0.1250 m, d=5.950 mm, Rsd=1.585, Cv=0.150, μsf=0.416

Page 67: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Main Conclusion

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering

Page 68: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

Conclusions

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Models are valid for the parameters the experiments were

carried out with.

The correct flow regime has to be identified for each (sub)

model.

For heterogeneous flow the solids effect is independent of the

Darcy Weisbach component.

Models validated with a wide range of parameters are: Jufin &

Lopatin, Wilson et al., the SRC model and the DHLLDV

Framework.

These 4 models give similar results for medium and coarse

sands over a wide range of pipe diameters.

Page 69: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

© S.A.M

Page 70: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Elephant of Wilson is our best Friend

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Questions?

Page 71: DHLLDV Framework An Overview Of Slurry Transport Models · 2016-11-25 · Slurry Transport Models. Delft University of Technology Dr.ir. Sape A. Miedema Head of Studies MSc Offshore

The Elephant of Wilson is our best Friend

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Questions?