development of an integrated bioprocess for …

1
NK92 cells exhibit cytotoxicity against a variety of cancer cell lines, including leukemia’s, lymphoma’s and malignant melanoma’s. This acAvity has lead to several small clinical trials as an anAcancer immunotherapy, and larger mulAcentre Phase II trials are planned. Our GOAL is to enable largescale manufacture of clinical grade NK92 cells, and to reduce manufacturing costs. ProducAon using perfusion culture in sArredtank bioreactors (STR) would enable a straightforward high producAvity process that is readily scaled for commercial manufacture. Xvivo%10 Culture Bags Human AB serum 32% 19% 25% 5 x 10 9 cells/m 2 .dose 3 x 10 10 cells/cycle.paAent [NK92] max ≈1 x 10 6 cells/mL 10 Gy Current manufacturing strategy Ricardo P. Bap1sta , Midori E. Buechli, Lesley Y. Chan, Shahryar KhaAak, Peter W. Zandstra and Nicholas E. Timmins Centre for Commercializa1on of Regenera1ve Medicine, Toronto, Canada We successfully translated NK92 culture to STR, achieving significantly higher cell densiAes. Scaleup to 1L cultures is currently in progress, as well as expansion using serumfree medium formulaAon. Flowcytometry and realAme imaging based assays are effecAve alternaAves to 51 Crrelease potency assay. The BiostaAon CT (Nikon) image based approach enables acquisiAon of kineAc data and observaAon of cellcell interacAons. BACKGROUND AND MOTIVATION DEVELOPMENT OF AN INTEGRATED BIOPROCESS FOR PRODUCTION OF NK-92 CELLS FOR IMMUNOTHERAPY Significance and ongoing work MEDIUM SCREENING QCPHENOTYPE AND POTENCY 0.0E+00 2.5E+05 5.0E+05 7.5E+05 1.0E+06 1.3E+06 1.5E+06 VCD (cells/mL) Xvivo S1 S9 DMEM VCD max cell/mL Medium and consumables ($/cycle) ~1 x10 6 $11,400 TRANSLATION TO STR AND PROCESS INTENSIFICATION 0 1 2 3 4 5 6 7 0 20 40 60 80 100 0.0E+00 5.0E+05 1.0E+06 1.5E+06 2.0E+06 Viability (%) VCD (cells/mL) 0 1 2 3 4 5 6 7 0 20 40 60 80 100 0.0E+00 5.0E+05 1.0E+06 1.5E+06 2.0E+06 Viability (%) VCD (cells/mL) 2.5% HS 2.5% BIT Figure 4. Effect of feedingregime and culture system in NK92 cell expansion. (A) Growth curves were obtained in 100 mL of sArred suspension culture (DasGip cellfermpro). A 7.0fold increase in cell numbers was observed when (B) a perfusionlike feedingregime (1.0V) was adopted in the STR. (C) Metabolite analysis indicate that accumulaAon of lactate levels above 25 mM are inhibitory to cell growth. 0 20 40 60 80 100 0.0E+00 1.5E+06 3.0E+06 4.5E+06 6.0E+06 0 1 2 3 4 5 6 Viability (%) VCD (cell/mL) Time (d) Batch 1.0V 1100 750 450 300 0.0 0.5 1.0 1.5 2.0 2 3 4 5 6 7 RPM Fold Expansion Inoculum Density (x10 5 cells/mL) 1100 750 450 300 0 20 40 60 80 100 2 3 4 5 6 7 RPM Viability (%) Inoculum Density (x10 5 cells/mL) 0 1 2 3 4 0 2 4 6 8 D (/d) Time (d) Batch 1.0V 0 10 20 30 40 0 2 4 6 8 Lac (mM) Time (d) BASAL FORMULATION SERUMREPLACEMENT CARBON SOURCE INOCULUM DENSITY FEDBATCH CULTURE Figure 1. Effect of basal medium formula1on, serumreplacement cocktail, and carbon source in NK92 cell expansion. Several commercial basal formulaAons were able to support cell growth with viabiliAes (>80%) comparable to those observed in Xvivo (control) (n=3). A serumreplacement cocktail comprising BSA, rhInsulin and rhTransferrin was able to sustain cell expansion in staAc culture (n=3). Carbon source (S) was screened for cell growth and low secreAon of lactate (n=2). All cultures were seeded at approx. 5 x 10 5 cells/mL and carried out in a 6well plate format for a minimum period of 6 days. Every 2 days, cells were diluted (passaged) to a viable cell density (VCD) of 5 x 10 5 cells/mL by replacing sufficient culture volume with fresh media. All medium formulaAons were supplemented with 450 U/mL of IL2 and L Gln. Scale bars = 200 μm. PROCESS INTENSIFICATION LACTATE 0 20 40 60 80 100 0.0E+00 1.0E+08 2.0E+08 3.0E+08 4.0E+08 5.0E+08 6.0E+08 0 2 4 6 7 Viability (%) Total viable cells Time (d) XVivo DMEM STATIC 1 10 0 2 4 6 8 Log Fold Expansion Time (d) XVivoSTR XVivoStaAc DMEMSTR DMEMStaAc Xvivo + 2.5% BIT Culture system VCD max x10 6 cells/mL μ (d 1 ) t d (d) Fold expansion qLac (pmol/cell.d) Xvivo – Sta1c (n=5) 1.1±0.1 0.24±0.09 3.0±1.1 6.1±0.8 7.1±1.3 Xvivo – STR (n=4) 1.6±0.2 0.33±0.08 2.3±0.7 11.3±1.6 7.9±2.5 DMEM – Sta1c (n=3) 1.1±0.2 0.29±0.04 2.5±0.4 6.8±0.5 8.2±1.3 DMEM – STR (n=3) 1.7±0.9 0.32±0.16 2.8±1.6 12.3±6.7 9.1±1.9 NK92 PHENOTYPE 2.5% HS Figure 2. Effect of inoculum density and agita1on rate in NK92 cell expansion in STR. (A) Fold expansion and (B) cell viability across different seeding densiAes and 4 agitaAon rates) using the ambr bioreactor system (TAP Biosystems). The greatest increase in viable cell number was observed when cells were seeded at 5 x 10 5 cells/mL and sArred at 300450 rpm. Figure 3. Effect of basal medium and culture system in NK92 cell expansion. (A,B) Growth curves were obtained in staAc (T75 flask) and sArred suspension (DasGip cellfermpro) culture. Medium comprised Xvivo10 (Lonza) or DMEM (LifeTech) supplemented with human AB serum and Lglutamine, and cultures were iniAated at a cell density of approx. 5 x 10 5 cells/ mL. Culture volume was doubled every 2 days by addiAon of fresh media, up to a final volume 200 mL. (C) Specific growth rate (μ) was higher in STR compared to staAc culture in both medium formulaAons. (D) While NK92’s grow as loose clumps in staAc culture, STR culture yielded a singlecell suspension in Xvivo and smaller aggregates in DMEM. Scale bars = 100μm. STR Xvivo DMEM DAY 6 0 20 40 60 80 100 0 6 CD45 + /CD56 + /CD3 /Perf. + (%) Time (d) XivoSTR XvivoStaAc DMEMSTR DMEMStaAc Figure 5. Effect of culture system and basal medium on NK92 phenotype. (A) Monitoring of NK92 phenotype shows maintenance of a CD45 + /CD56 + / CD3 /Perforin + parent at both basal formulaAons and culture systems. (B) A method for costaining of intracellular and cell surface markers was developed based on the protocol of Wang et al. 2013 (PMID: 23168618). Figure 6. Comparison of flowcytometry with real1me imaging for the assessment of NK92 cell cytotoxicity. (A) CTOlabeled K562 cells (Target) were incubated with NK92 cells (Effector) at different raAos, and stained with calcein before analysis. (B) Lysis of K562 cells by acAon of NK92’s was quanAfied by the increase of CTO + /Calcein populaAon. (C) Assay was developed based on the protocol of Thakur et al. 2012 (PMID: 22187077). (D) Target cells were labelled with Calcein and incubated with effector cells in the BiostaAon CT (Nikon), an integrated cell culture observaAon system. (E,F) Decay in fluorescence intensity (F.I.) as result of K562 lysis was analysed with CLQuant sosware (Nikon). %K562 lysis measured using BioStaAon CT (Nikon), was comparable to that obtained by flowcytometry (42%). NK92 POTENCY 0 4 8 12 Xvivo S9 S10 Glucose qLac (pmol/cell.day) VCD max cell/mL Medium and consumables ($/cycle) Cost reduc1on ~1.5 x10 6 $6,185 45,7 % 0 0.2 0.4 0.6 0.8 1 1.2 0 1 2 3 4 5 Total F.I. t (h) Control E:T(1:10) t=4h t=4h (control) K562 t=0h RealTime Imaging by BioSta1on CT (Nikon) FlowCytometry % K562 lysis 66±2.9 % K562 spontaneous lysis 24±11 K562 t=0h t=4h t=4h (control) 0 20 40 60 80 100 0.1 1 5 10 K562 lysis (%) E:T t=4h Cost break down $114,000 /treatment % K562 lysis 44±4.3 % K562 spontaneous lysis 4±0.6 NIKON CORPORATION Instruments Company A B A B D C A B C A 95.3% CD3 CD45/CD56 PERFORIN CD3 /CD45 + /CD56 + /PERF. + B A B C D E F

Upload: others

Post on 15-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DEVELOPMENT OF AN INTEGRATED BIOPROCESS FOR …

§  NK-­‐92   cells   exhibit   cytotoxicity   against   a   variety   of   cancer   cell   lines,   including  leukemia’s,   lymphoma’s  and  malignant  melanoma’s.  This  acAvity  has   lead  to  several  small  clinical  trials  as  an  anA-­‐cancer  immunotherapy,  and  larger  mulA-­‐centre  Phase  II  trials    are  planned.  

 

 §  Our  GOAL   is   to   enable   large-­‐scale  manufacture  of   clinical   grade  NK-­‐92   cells,   and   to  

reduce   manufacturing   costs.   ProducAon   using   perfusion   culture   in   sArred-­‐tank  bioreactors   (STR)   would   enable   a   straight-­‐forward   high   producAvity   process   that   is  readily  scaled  for  commercial  manufacture.    

Xvivo%10(

Culture(Bags(

Human(AB(serum(

32%  

19%  25%  

5  x  109      cells/m2.dose  

3  x  1010    cells/cycle.paAent   [NK-­‐92]max≈1  x  106  cells/mL  

10  Gy  

Current  manufacturing  strategy  

Ricardo  P.  Bap1sta,  Midori  E.  Buechli,  Lesley  Y.  Chan,  Shahryar  KhaAak,  Peter  W.  Zandstra  and  Nicholas  E.  Timmins    

Centre  for  Commercializa1on  of  Regenera1ve  Medicine,  Toronto,  Canada  

§  We  successfully   translated  NK-­‐92  culture   to  STR,  achieving   significantly  higher   cell  densiAes.   Scale-­‐up   to  1-­‐L   cultures   is   currently   in  progress,  as  well  as  expansion  using  serum-­‐free  medium  formulaAon.    

 §  Flow-­‐cytometry  and  real-­‐Ame  imaging  based  assays  are  effecAve  alternaAves  to  51Cr-­‐release  potency  assay.  The  BiostaAon  CT  (Nikon)  

image  based  approach  enables  acquisiAon  of  kineAc  data  and  observaAon  of  cell-­‐cell  interacAons.      

BACKGROUND  AND  MOTIVATION  

DEVELOPMENT OF AN INTEGRATED BIOPROCESS FOR PRODUCTION OF NK-92 CELLS FOR IMMUNOTHERAPY

Significance  and  on-­‐going  work  

MEDIUM  SCREENING  

QC-­‐PHENOTYPE  AND  POTENCY  

0.0E+00  

2.5E+05  

5.0E+05  

7.5E+05  

1.0E+06  

1.3E+06  

1.5E+06  

VCD  (cells/m

L)  

Xvivo   S1   S9  DMEM  

VCDmax  cell/mL  

Medium  and  consumables  ($/cycle)  

~1  x106   $11,400  

TRANSLATION  TO  STR  AND  PROCESS  INTENSIFICATION  

0   1   2   3   4   5   6   7  

0  

20  

40  

60  

80  

100  

0.0E+00  

5.0E+05  

1.0E+06  

1.5E+06  

2.0E+06  

Viab

ility  (%

)  

VCD  (cells/m

L)  

0   1   2   3   4   5   6   7  

0  

20  

40  

60  

80  

100  

0.0E+00  

5.0E+05  

1.0E+06  

1.5E+06  

2.0E+06  

Viab

ility  (%

)  

VCD  (cells/m

L)  

2.5%  HS   2.5%  BIT  

Figure  4.  Effect  of  feeding-­‐regime  and  culture  system  in  NK-­‐92  cell  expansion.  (A)  Growth  curves  were  obtained  in  100  mL  of  sArred  suspension  culture  (DasGip  cellferm-­‐pro).  A  7.0-­‐fold  increase  in  cell  numbers  was  observed  when   (B)  a  perfusion-­‐like   feeding-­‐regime   (1.0V)  was  adopted   in   the  STR.   (C)  Metabolite  analysis   indicate   that  accumulaAon  of   lactate   levels  above  25  mM  are  inhibitory  to  cell  growth.    

0  

20  

40  

60  

80  

100  

0.0E+00  

1.5E+06  

3.0E+06  

4.5E+06  

6.0E+06  

0   1   2   3   4   5   6  

Viab

ility  (%

)  

VCD  (cell/mL)  

Time  (d)  

Batch  

1.0V  

1100  750  450  300  

0.0  

0.5  

1.0  

1.5  

2.0  

2   3   4   5   6   7  

RPM  

Fold  Expan

sion

 

Inoculum  Density  (x105  cells/mL)  

1100  750  450  300  

0  

20  

40  

60  

80  

100  

2   3   4   5   6   7  

RPM  

Viab

ility  (%

)  

Inoculum  Density  (x105  cells/mL)  

0  

1  

2  

3  

4  

0   2   4   6   8  

D  (/d)  

Time  (d)  

Batch  1.0V  

0  

10  

20  

30  

40  

0   2   4   6   8  

Lac  (m

M)  

Time  (d)  

BASAL  FORMULATION   SERUM-­‐REPLACEMENT   CARBON  SOURCE  

INOCULUM  DENSITY   FED-­‐BATCH  CULTURE  

Figure  1.  Effect  of  basal  medium  formula1on,  serum-­‐replacement  cocktail,  and  carbon  source  in  NK-­‐92  cell  expansion.              Several   commercial   basal   formulaAons  were   able   to   support   cell   growth  with   viabiliAes   (>80%)   comparable   to   those  observed  in  Xvivo  (control)  (n=3).  A  serum-­‐replacement  cocktail  comprising  BSA,  rh-­‐Insulin  and  rh-­‐Transferrin  was  able  to   sustain   cell   expansion   in   staAc   culture   (n=3).   Carbon   source   (S)  was   screened   for   cell   growth  and   low   secreAon  of  lactate  (n=2).  All  cultures  were  seeded  at  approx.  5  x  105  cells/mL  and  carried  out  in  a  6-­‐well  plate  format  for  a  minimum  period  of  6  days.  Every  2  days,  cells  were  diluted  (passaged)  to  a  viable  cell  density  (VCD)  of  5  x  105  cells/mL  by  replacing  sufficient  culture  volume  with  fresh  media.  All  medium  formulaAons  were  supplemented  with  450  U/mL  of  IL-­‐2  and  L-­‐Gln.  Scale  bars  =  200  µm.    

PROCESS  INTENSIFICATION  

LACTATE  

0  

20  

40  

60  

80  

100  

0.0E+00  

1.0E+08  

2.0E+08  

3.0E+08  

4.0E+08  

5.0E+08  

6.0E+08  

0   2   4   6   7  

Viab

ility  (%

)  

Total  viable  cells  

Time  (d)  

XVivo  

DMEM  

STAT

IC    

1  

10  

0   2   4   6   8  

Log  Fold  Expan

sion

 

Time  (d)  

XVivo-­‐STR  XVivo-­‐StaAc  DMEM-­‐STR  DMEM-­‐StaAc  

Xvivo  +  2.5%  BIT  

Culture  system   VCDmax  x106  cells/mL  

µ    (d-­‐1)  

td  (d)  

Fold  expansion  

qLac  (pmol/cell.d)  

Xvivo  –  Sta1c  (n=5)   1.1±0.1   0.24±0.09   3.0±1.1   6.1±0.8   7.1±1.3  

Xvivo  –  STR  (n=4)   1.6±0.2   0.33±0.08   2.3±0.7   11.3±1.6   7.9±2.5  

DMEM  –  Sta1c  (n=3)   1.1±0.2   0.29±0.04   2.5±0.4   6.8±0.5   8.2±1.3  

DMEM  –  STR  (n=3)   1.7±0.9   0.32±0.16   2.8±1.6   12.3±6.7   9.1±1.9  

NK-­‐92  PHENOTYPE  

2.5%  HS  

Figure  2.  Effect  of   inoculum  density  and  agita1on   rate  in  NK-­‐92  cell  expansion   in  STR.   (A)  Fold  expansion  and  (B)  cell  viability  across  different  seeding  densiAes  and  4  agitaAon   rates)   using   the   ambr   bioreactor   system   (TAP  Biosystems).  The  greatest  increase  in  viable  cell  number  was  observed  when  cells  were  seeded  at  5  x  105  cells/mL  and  sArred  at  300-­‐450  rpm.    

Figure  3.  Effect  of  basal  medium  and  culture  system  in  NK-­‐92  cell  expansion.  (A,B)  Growth  curves  were  obtained  in  staAc  (T-­‐75  flask)  and  sArred  suspension   (DasGip  cellferm-­‐pro)  culture.  Medium  comprised  Xvivo10   (Lonza)  or  DMEM  (LifeTech)  supplemented  with  human  AB  serum  and  L-­‐glutamine,  and  cultures  were  iniAated  at  a  cell  density  of  approx.  5  x  105  cells/mL.  Culture  volume  was  doubled  every  2  days  by  addiAon  of  fresh  media,  up  to  a  final  volume  200  mL.  (C)  Specific  growth  rate  (µ)  was  higher  in  STR  compared  to  staAc  culture  in  both  medium  formulaAons.  (D)  While  NK-­‐92’s  grow  as  loose  clumps  in  staAc  culture,  STR  culture  yielded  a  single-­‐cell  suspension  in  Xvivo  and  smaller  aggregates  in  DMEM.  Scale  bars  =  100µm.  

STR    

Xvivo     DMEM    DAY  6    

0  

20  

40  

60  

80  

100  

0   6  

CD45

+ /CD

56+ /CD

3-­‐/Perf.+  (%

)  

Time  (d)  

Xivo-­‐STR  

Xvivo-­‐StaAc  

DMEM-­‐STR  

DMEM-­‐StaAc  

Figure  5.  Effect  of  culture  system  and  basal  medium  on   NK-­‐92   phenotype.   (A)   Monitoring   of   NK-­‐92  phenotype   shows   maintenance   of   a   CD45+/CD56+/CD3-­‐/Perforin+  parent  at  both  basal  formulaAons  and  culture   systems.   (B)   A   method   for   co-­‐staining   of  intracellular  and  cell   surface  markers  was  developed  based   on   the   protocol   of   Wang   et   al.   2013   (PMID:  23168618).  

Figure  6.  Comparison  of  flow-­‐cytometry  with  real-­‐1me  imaging  for  the  assessment  of  NK-­‐92  cell  cytotoxicity.  (A)  CTO-­‐labeled  K562  cells  (Target)  were  incubated  with  NK-­‐92  cells  (Effector)  at  different  raAos,  and  stained  with  calcein  before  analysis.  (B)  Lysis  of  K562  cells  by  acAon  of  NK-­‐92’s  was  quanAfied  by  the  increase  of  CTO+/Calcein-­‐  populaAon.  (C)  Assay  was  developed  based  on  the  protocol  of  Thakur  et  al.  2012  (PMID:  22187077).  (D)  Target  cells  were  labelled  with  Calcein  and  incubated  with  effector  cells  in  the  BiostaAon  CT  (Nikon),  an  integrated  cell  culture  observaAon  system.  (E,F)  Decay  in  fluorescence  intensity  (F.I.)  as  result  of  K562  lysis  was  analysed  with  CL-­‐Quant  sosware  (Nikon).  %K562  lysis  measured  using  BioStaAon  CT  (Nikon),  was  comparable  to  that  obtained  by  flow-­‐cytometry  (42%).    

NK-­‐92  POTENCY  

0  

4  

8  

12  

Xvivo   S9   S10   Glucose    

qLac  (p

mol/cell.d

ay)  

VCDmax  cell/mL  

Medium  and  consumables  ($/cycle)  

Cost  reduc1on  

~1.5  x106   $6,185   45,7  %  

0  0.2  0.4  0.6  0.8  1  

1.2  

0   1   2   3   4   5  

Total  F.I.  

t  (h)  

Control  E:T(1:10)  

t=4h

 t=4h

 (con

trol)  

K562  t=

0h  

Real-­‐Time  Imaging    by  BioSta1on  CT  (Nikon)  Flow-­‐Cytometry  

%  K562  lysis  66±2.9    

%  K562  spontaneous  lysis  

24±11  

K562  t=

0h  

t=4h

 t=4h

 (con

trol)  

0  

20  

40  

60  

80  

100  

0.1   1   5   10  

K562  lysis  (%)  

E:T    

t=4h  

Cost  break  down  -­‐  $114,000  /treatment    

%  K562  lysis  44±4.3  

%  K562  spontaneous  lysis  

4±0.6  

NIKON CORPORATION Instruments Company

A  

B  

A  

B  

D  

C  

A   B   C  

A  

95.3%  

CD3  

CD45/CD56  

PERFORIN  

CD3-­‐/CD45+/CD56+/PERF.+  

B  

A   B  

C  

D   E  

F