development of a novel mini peptide-based …

43
DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED BIORECEPTOR FOR HALOALKANE DETECTION NURUL HAZWANI BINTI DAUD FBSB 2018 61

Upload: others

Post on 25-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED BIORECEPTOR

FOR HALOALKANE DETECTION

NURUL HAZWANI BINTI DAUD

FBSB 2018 61

Page 2: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

i

DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED BIORECEPTOR

FOR HALOALKANE DETECTION

By

NURUL HAZWANI BINTI DAUD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

October 2018

Page 3: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

ii

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons,

photographs, and all other artwork, is copyright material of Universiti Putra Malaysia

unless otherwise stated. Use may be made of any material contained within the thesis

for non-commercial purposes from the copyright holder. Commercial use of material

may only be made with the express, prior, written permission of Universiti Putra

Malaysia.

Copyright © Universiti Putra Malaysia

Page 4: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment

of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED BIORECEPTOR

FOR HALOALKANE DETECTION

By

NURUL HAZWANI BINTI DAUD

October 2018

Chairman : Professor Dato’ Abu Bakar bin Salleh, PhD

Faculty : Biotechnology and Biomolecular Sciences

Haloalkanes are the reactants in pharmaceutical manufacturing, which can be found

in the final active pharmaceutical ingredients (APIs) and in the waste as impurities.

Due to their toxicity effect to organisms’ health, the concern towards haloalkanes is

increased. The conventional detection method is time-consuming, costly, lab-based,

difficult to operate and not practical for continuous monitoring. Thus, this increases

the demand for a simple and rapid device for direct detection of the compounds.

Haloalkane dehalogenase (HLD) can be used as the specific bioreceptor to detect the

presence of haloalkanes. But, the uses of native HLD are less efficient at extreme

condition. Therefore, this study aims to develop a mini protein of HLD as an

alternative bioreceptor focusing on sensitivity and stability. A novel mini peptide-

based bioreceptor based on HLD from Xanthobacter autotrophicus (PDB ID: 2DHC)

as template was developed for haloalkane biosensor. Yet Another Scientific Artificial

Reality Application (YASARA) software was utilized to create the mini proteins by

downsizing approach. Residues were removed gradually to obtain the mini protein

while retaining the three active site residues; Asp-124 (nucleophile), His-289 (base),

Asp-260 (acid) and two halide stabilizing residues; Trp-125, Trp-175. Five mini

proteins comprising 283 amino acids or less, with the highest binding energy (enzyme-

substrate complex) and distance of less than 4 Å between Asp-124 and three

haloalkanes were chosen as the best validated designs. The recombinant mini proteins

were constructed using pET vector and Escherichia coli BL21 (DE3) as the expression

vector and host, respectively. The smallest mini protein, with 86 amino acids (model

5) was chosen for His-tag affinity purification and subsequent analysis as it could be

expressed in soluble form. No catalytic activity was detected with haloalkane

substrate. Isothermal titration calorimetry (ITC) showed there was binding interaction

between the mini protein and haloalkane. Thermal stability study with circular

dichroism (CD) had proven the mini protein possessed higher Tm value at 83.73 °C

than the native HLD at 43.97 °C. Optical sensor with tapered multimode glass fiber

(TMMF) was fabricated. Protein was immobilized on TMMF with the action of

Page 5: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

ii

aminopropyl triethoxysilane (APTES) and glutaraldehyde (GA). The interaction of

haloalkane and the immobilized mini protein showed an increment of the UV

absorption at 325 nm. Optical sensor proved that the mini protein could act as a

potential bioreceptor. However, it demonstrated low sensitivity for haloalkane at

0.0002 µM-1 (R2: 0.9832) with limit of detection (LOD) at 80 µM and low stability.

Thus, screen-printed carbon electrodes (SPEs) was used to look for the interaction via

electrochemical sensor, to enhance the sensitivity and stability. To improve the

stability, mini protein structure was mutated with cysteine at residues 49 and 78 to

form a disulfide bridge. Bare SPE was modified with gold nanowires coated on the

working electrode surface, followed by self-assembly of L-cysteine (Cys) and GA for

protein immobilization. The interaction of the mutated mini protein immobilized on

SPEs was studied and compared to native HLD immobilized SPEs as positive control.

Electrocatalytic oxidation of haloalkane was examined with cyclic voltammetry (CV)

and differential pulse voltammetry (DPV) at working potential 0.03 V and -0.1 V,

respectively. Electrochemical impedance spectroscopy (EIS) was also performed to

detect the binding interaction of haloalkane with the fabricated mutated mini protein.

An electrochemical sensor with DPV analysis presented a more sensitive (0.2118 µM-

1, R2: 09741) detection with low LOD at 6 µM. The sensor also demonstrated good

repeatability (RSD 4.3%) and reproducibility (RSD 5%) for haloalkane detection. The

mutated mini protein based sensor with modified SPEs provided higher sensitivity and

better detection of haloalkane than the native HLD. It can be a potential tool in

haloalkane detection for immediate application.

Page 6: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN SATU BIORESEPTOR BERASASKAN PEPTIDA YANG

NOVEL UNTUK MENGESAN HALOALKANA

Oleh

NURUL HAZWANI BINTI DAUD

Oktober 2018

Pengerusi : Profesor Dato’ Abu Bakar bin Salleh, PhD

Fakulti : Bioteknologi dan Sains Biomolekul

Haloalkana adalah reaktan dalam pembuatan farmaseutikal, yang boleh didapati di

dalam bahan farmaseutikal aktif akhir (API) dan sisa buangan sebagai kekotoran.

Disebabkan oleh kesan toksiknya terhadap kesihatan organisma, kebimbangan

terhadap haloalkana semakin meningkat. Kaedah pengesanan konvensional adalah

memakan masa, mahal, berdasarkan makmal, sukar untuk dikendalikan dan tidak

praktikal untuk pemantauan berterusan. Oleh itu, ini meningkatkan permintaan untuk

peranti yang mudah dan cepat untuk mengesan sebatian secara langsung. Haloalkana

dehalogenase (HLD) boleh digunakan sebagai bioreseptor yang spesifik untuk

mengesan kehadiran haloalkana. Tetapi, penggunaan HLD asli kurang cekap pada

keadaan yang melampau. Oleh itu, kajian ini bertujuan untuk membangunkan protein

mini HLD sebagai bioreseptor alternatif yang tertumpu kepada kepekaan dan

kestabilan. Bioreseptor yang novel berasaskan mini peptida telah dibangunkan untuk

biosensor haloalkana berpandukan kepada HLD daripada Xanthobacter autotrophicus

(PDB ID: 2DHC) sebagai acuan. Sensor ini memberi tumpuan kepada kepekaan dan

kestabilan. Perisian YASARA telah digunakan untuk mencipta protein mini dengan

pendekatan pengurangan saiz. Residu dikeluarkan secara beransur-ansur untuk

mendapatkan protein mini sambil mengekalkan tiga residu tapak aktif; Asp-124

(nukleofile), His-289 (asas), Asp-260 (asid) dan dua residu penstabil halida; Trp-125,

Trp-175. Lima protein mini terdiri daripada 283 asid amino atau kurang, dengan

tenaga mengikat tertinggi (kompleks enzim-substrat) dan jarak kurang dari 4 Å antara

Asp-124 dan tiga haloalkana dipilih sebagai reka bentuk yang terbaik untuk disahkan.

Protein rekombinan mini dibina menggunakan vektor pET dan Escherichia coli BL21

(DE3) masing-masing sebagai vektor ekspresi dan hos. Protein mini terkecil dengan

86 asid amino (model 5) telah dipilih untuk proses penulenan dan analisis seterusnya

kerana dapat mengekspresskan protein yang larut. Tiada katalitik aktiviti dikesan

dengan substrat haloalkana. Isotermal kalorimetri penitratan (ITC) menunjukkan

terdapat interaksi mengikat diantara protein mini dan haloalkana. Kajian kestabilan

termal dengan dichroism bulat (CD) telah membuktikan bahawa protein mini

Page 7: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

iv

mempunyai nilai Tm yang lebih tinggi pada 83.73 ° C berbanding HLD asli pada 43.97

° C. Optik sensor dengan gentian kaca pelbagai mode tirus (TMMF) telah dibina.

Protein telah dipegunkan di atas TMMF oleh aminopropyl triethoxysilane (APTES)

dan glutaraldehid (GA). Interaksi haloalkana dan protein mini yang pegun

menunjukkan peningkatan penyerapan UV pada 325 nm. Sensor membuktikan

bahawa protein mini yang direka berpotensi sebagai bioreseptor.

Walaubagaimanapun, ia menunjukkan kepekaan yang rendah untuk mengesan

haloalkana pada 0.0002 µM-1 (R2: 0.9832) dengan had pengesanan (LOD) pada 80

µM dan kestabilan yang rendah. Oleh itu, elektrod karbon bercetak skrin (SPE)

digunakan untuk mencari interaksi melalui sensor elektrokimia, untuk meningkatkan

kepekaan dan kestabilan. Untuk meningkatkan kestabilan, struktur protein mini telah

dimutasi dengan cysteine pada residu 49 dan 78 untuk membentuk satu jambatan

disulfida. SPE kosong telah diubahsuai dengan nanowayar emas yang dilapisi pada

permukaan elektrod kerja, diikuti oleh penyusunan secara sendiri L-cysteine (Cys) dan

GA untuk pemegunan protein. Interaksi protein mini bermutasi di SPE telah dikaji dan

dibandingkan dengan HLD asli yang pegun pada SPE sebagai kawalan positif.

Pengoksidaan elektrokatalitik haloalkana telah diperiksa dengan voltammetrik kitaran

(CV) dan voltammetrik denyutan nadi (DPV) pada keupayaan kerja masing-masing

0.03 V dan -0.1 V. Spektroskopi impedans elektrokimia (EIS) juga dijalankan untuk

mengesan interaksi mengikat haloalkana dengan protein mini yang dimutasi. Sensor

elektrokimia dengan analisis DPV menunjukkan pengesanan yang lebih peka (0.2118

µM-1, R2: 09741) dengan LOD pada 6 μM. Sensor juga menunjukkan pengulangan

(RSD 4.3%) dan kebolehulangan (RSD 5%) yang baik untuk pengesanan haloalkana.

Sensor berasaskan protein mini yang dimutasi dengan SPE yang telah diubah suai

memberikan kepekaan yang lebih tinggi dan pengesanan haloalkana yang lebih baik

daripada HLD asli. Ia boleh menjadi alat yang berpotensi dalam mengesan haloalkana

untuk aplikasi segera.

Page 8: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

v

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation and gratitude to

my supervisor, Prof. Dato’ Dr. Abu Bakar Salleh for his supervision throughout this

project. I would like to thank him for his valuable advice, support and guidance.

Besides that, an appreciation also dedicated to my co-supervisor, Assoc. Prof. Dr.

Adam Leow Thean Chor, for his valuable feedback and Dr. Siti Nurbaya Oslan for her

valuable suggestions. I’m also would like to thank Dr. Muhammad Hafiz Abu Bakar

for his kind advice on optical sensor and comments on improving my thesis. Sincere

thanks to all EMTECH laboratory colleagues especially, Ang Thiau Fu, Jonathan,

Fatin Liyana, Diyanah and Shazwani.

A special thanks also goes to my beloved family. Thanks for the moral support

encouragement and understanding given to me especially by my beloved husband,

Muhammad Rizal Rosli throughout the entire period of my project. These words are

not enough to describe my gratitude and appreciation for everyone’s help. Thanks all!

Page 9: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

Page 10: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

vii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The

members of the Supervisory Committee were as follows:

Abu Bakar Salleh, PhD Professor

Faculty of Biotechnology and Biomolecular Sciences

Universiti Putra Malaysia

(Chairman)

Adam Leow Thean Chor, PhD

Associate Professor

Faculty of Biotechnology and Biomolecular Sciences

Universiti Putra Malaysia

(Member)

Siti Nurbaya Oslan, PhD Senior Lecturer

Faculty of Biotechnology and Biomolecular Sciences

Universiti Putra Malaysia

(Member)

ROBIAH BINTI YUNUS, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

Page 11: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

viii

Declaration by graduate student

I hereby confirm that:

this thesis is my original work;

quotations, illustrations and citations have been duly referenced;

this thesis has not been submitted previously or concurrently for any other degree

at any institutions;

intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia

(Research) Rules 2012;

written permission must be obtained from supervisor and the office of Deputy

Vice-Chancellor (Research and innovation) before thesis is published (in the form

of written, printed or in electronic form) including books, journals, modules,

proceedings, popular writings, seminar papers, manuscripts, posters, reports,

lecture notes, learning modules or any other materials as stated in the Universiti

Putra Malaysia (Research) Rules 2012;

there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia

(Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: Date:

Name and Matric No: Nurul Hazwani Binti Daud, GS38836

Page 12: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

ix

Declaration by Members of Supervisory Committee

This is to confirm that:

the research conducted and the writing of this thesis was under our supervision;

supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:

Name of Chairman

of Supervisory

Committee:

Professor Dr. Abu Bakar Salleh

Signature:

Name of Member

of Supervisory

Committee:

Associate Professor Dr. Adam Leow Thean Chor

Signature:

Name of Member

of Supervisory

Committee:

Dr. Siti Nurbaya Oslan

Page 13: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

x

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK iii

ACKNOWLEDGEMENTS v

APPROVAL vi

DECLARATION viii

LIST OF TABLES xiv

LIST OF FIGURES xv

LIST OF ABBREVIATIONS xx

CHAPTER

1 INTRODUCTION 1 1.1 Background of the study 1 1.2 Problem statements 2 1.3 Significance of the study 3 1.4 Objectives 3

2 LITERATURE REVIEW 4 2.1 Genotoxic impurities (GTIs) in pharmaceutical manufacturing 4

2.1.1 Alkyl halides 5 2.1.2 Organic solvent 6 2.1.3 Environmental pollution from pharmaceutical waste 6

2.2 Enzymatic biosensor for haloalkane detection 7 2.2.1 Biosensor 7

2.2.2 Biosensor properties 8 2.2.3 Bioreceptor elements 8

2.2.3.1 Haloalkane dehalogenases (HLDs) enzyme 8 2.2.3.2 Structural study of HLDs enzyme 9 2.2.3.3 Active site of HLDs enzyme 10 2.2.3.4 Catalytic mechanism of HLDs 12

2.3 Design of novel peptides and enzyme mimics 13

2.3.1 Mini protein design 14

2.3.1.1 Protein design 14 2.3.1.2 Enzyme mimic 14

2.3.2 Computational protein design 15

2.3.2.1 Protein structure prediction 15 2.3.2.2 Molecular docking 16 2.3.2.3 Molecular dynamics simulations 17

2.4 Transducer or sensing method 17 2.4.1 Immobilization techniques of bioreceptor 18

2.4.1.1 Immobilization on the surface of silica fiber 19 2.4.1.2 Tapered multimode fiber (TMMF) 19

2.4.1.3 Immobilization matrix 20 2.4.1.4 Nanomaterials in sensor development 20 2.4.1.5 Nanowires 21

Page 14: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

xi

2.4.1.6 Screen-printed electrodes (SPEs) 22

2.4.2 Optical fiber sensor 23 2.4.3 Electrochemical sensor 24

2.4.3.1 Cyclic voltammetry (CV) 25 2.4.3.2 Differential pulse voltammetry (DPV) 25 2.4.3.3 Electrochemical impedance spectroscopy

(EIS) 26 2.5 Previous studies in haloalkane biosensors 27

3 COMPUTATIONAL DESIGN AND SYNTHESIS OF MINI

PROTEINS THAT MIMIC HALOALKANE DEHALOGENASE 30 3.1 Introduction 30 3.2 Materials and methods 30

3.2.1 Computational studies 30

3.2.1.1 Software and hardware 30 3.2.1.2 Template selection 31 3.2.1.3 Homology modeling of mini proteins 31 3.2.1.4 Model refinement and structure validity 31 3.2.1.5 Docking study 32 3.2.1.6 Molecular dynamics (MD) simulations 32

3.2.2 Experimental studies 32 3.2.2.1 Preparation of native and mini protein genes 32 3.2.2.2 Polymerase chain reaction (PCR) 33 3.2.2.3 Cloning of native gene into the pET-28b(+)

expression vector 34 3.2.2.4 Transformation of E. coli TOP10 with

constructed genes 34 3.2.2.5 Purification and verification of recombinant

plasmid pET-28b(+)/native HLD 34 3.2.2.6 Transformation of E. coli BL21(DE3) with

pET-28b(+)/native HLD recombinant

plasmid 35 3.2.2.7 Overexpression of the recombinant native

and mini proteins 35 3.2.2.8 Haloalkane dehalogenase assay 35 3.2.2.9 Determination of protein content 36 3.2.2.10 SDS-polyacrylamide gel electrophoresis 36 3.2.2.11 Western blot 37

3.2.2.12 Purification of proteins 37 3.2.2.13 Isothermal titration calorimetry (ITC)

analysis 38

3.2.2.14 Circular dichroism (CD) spectra analysis 38

3.3 Results and discussion 39

3.3.1 Structure and sequence analysis of native HLD 39 3.3.2 Homology modeling of mini proteins 40 3.3.3 Structure validation 44 3.3.4 Molecular docking 47 3.3.5 Molecular dynamics simulation 51

Page 15: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

xii

3.3.6 Molecular cloning of the native HLD and mini

proteins 54 3.3.7 Screening of positive transformants through plasmid

PCR and sequencing 58 3.3.8 Overexpression, activity and purification of

recombinant proteins 59 3.3.9 Binding analysis with isothermal titration calorimetry

(ITC) 67 3.3.10 Thermal stability study with circular dichroism (CD) 72

3.4 Conclusion 75

4 DEVELOPMENT OF BIOSENSOR THROUGH OPTICAL

BIOSENSING CAPABILITY FOR DETECTION OF

HALOALKANE 77

4.1 Introduction 77 4.2 Materials and methods 77

4.2.1 Enzyme preparation 77 4.2.2 Preparation of tapered multimode fiber (TMMF) 77 4.2.3 Tapered fiber cleaning and activation 78 4.2.4 Immobilization of proteins on the TMMF surface 79

4.2.4.1 Silanization of the TMMF with APTES and

activation of silaned-TMMF with GA 79 4.2.4.2 Coating the proteins on the TMMF surface 79

4.2.5 Experimental setup 79 4.2.6 Detection of haloalkane compound 80

4.2.6.1 Sensor sensitivity, viability and dynamic

response 80 4.2.6.2 Selectivity, repeatability and reproducibility 80

4.2.6.3 Storage stability 81 4.3 Results and discussion 81

4.3.1 Biofunctionalization of TMMF for enzymes

immobilization 81 4.3.2 Haloalkane detection on optical fiber based sensor 83

4.3.2.1 The sensitivity of the optic sensor for

haloalkane detection 85 4.3.3 To evaluate the developed sensor performance 86

4.3.3.1 Calibration curves 86 4.3.4 Biosensor dynamic response time 88 4.3.5 Selectivity, repeatability and reproducibility of the

biosensor 90 4.3.6 Storage stability of the biosensor 91

4.4 Conclusion 92

5 ELECTROCHEMICAL BASED SENSOR OF HALOALKANE

DETECTION WITH GOLD MODIFIED SCREEN-PRINTED

ELECTRODE 93

5.1 Introduction 93 5.2 Materials and methods 93

5.2.1 Bioreceptors preparation 93

Page 16: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

xiii

5.2.1.1 Computational study to introduce disulfide

bridge 93 5.2.1.2 Molecular cloning and protein expression 94

5.2.2 Preparation of modified SPE electrode

(AuNWs/Cys/GA/SPE) 94 5.2.3 Fabrication of native and mutated mini protein on the

modified SPEs 95 5.2.4 Electrochemical analysis of modified SPEs 95

5.2.4.1 Instrumentations 95 5.2.4.2 Characterization of the modified SPEs 95

5.2.5 Electrochemical behavior of modified SPEs with

fabricated native and mutated mini protein towards

haloalkane 96 5.2.5.1 Sensitivity study 96

5.2.5.2 Selectivity, repeatability and reproducibility 96 5.2.5.3 Storage stability 97

5.3 Results and discussion 97 5.3.1 Bioreceptors preparation 97

5.3.1.1 Modification of mini protein structure 97 5.3.1.2 Molecular cloning and protein expression 100

5.3.2 Fabrication of modified SPEs 102 5.3.3 Electrochemical characterization of modified SPEs 102

5.3.3.1 Cyclic voltammetry (CV) 102 5.3.3.2 Electrochemical impedance spectroscopy

(EIS) 105 5.3.4 The immobilization of bioreceptors (native and mutated

mini protein) on modified SPEs 106 5.3.5 Electrochemical behavior of haloalkane 109

5.3.6 Electrocatalytic activity of modified SPEs (native and

mutated mini protein) towards haloalkane 112 5.3.6.1 Cyclic voltammetry (CV) analysis 112 5.3.6.2 Differential pulse voltammetry (DPV) 115 5.3.6.3 EIS detection of haloalkane 119

5.3.7 Selectivity, repeatability and reproducibility study 124 5.3.8 Storage stability 124

5.4 Conclusion 127

6 SUMMARY, CONCLUSION AND RECOMMENDATIONSFOR

FUTURE RESEARCH 128

6.1 Research summary and conclusion 128 6.2 Recommendations for future research 129

REFERENCES 131 APPENDICES 147

BIODATA OF STUDENT 161 LIST OF PUBLICATIONS 162

Page 17: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

xiv

LIST OF TABLES

Table Page

1 Limit of impurities (ppm) based on drug daily dose and allowable daily

intake 6

2 List of the haloalkane dehalogenase from the different bacterial strain

with their corresponding catalytic residues 11

3 Previously reported dehalogenase biosensor 28

4a General characteristics and sequences of PCR primers for mini

proteins 33

4b Sequences information of mini proteins 33

5 Predicted structures of mini proteins 42

6 Structures validation of mini proteins. 46

7 Binding energy of native/mini protein-haloalkane complex and

distance of haloalkane with nucleophile residue of native HLD and

mini proteins 49

Page 18: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

xv

LIST OF FIGURES

Figure Page

1 Aliskiren synthesis with O-alkylation of isovanillin by genotoxic alkyl

halides (1,3-dibromopropane) 5

2 Schematic setup of a biosensor 7

3 Tertiary structure of HLD enzyme 10

4 Simplified scheme of the catalytic mechanism of HLDs 13

5 Schematic representation of the basic immobilization methods 18

6 Schematic diagram of a tapered fiber 20

7 Design of a disposable and portable screen-printed electrode (SPE) 22

8 Principle of the fiber-optic biosensor 23

9 Typical cyclic voltammogram (A) and differential pulse

voltammogram (B) 25

10 Simple electrochemical system based on Randles equivalent circuit

(A) and Nyquist plot derived from the Randles circuit (B) 26

11 Flow chart of research methodology involved in the development of a

peptide based bioreceptor 29

12 Native structure of haloalkane dehalogenase 39

13 Multiple sequence alignment of DhlA enzyme with different types of

haloalkane dehalogenase (DhaA, DbjA, DppA, DmmA) 40

14 General topology of haloalkane dehalogenase 41

15 Distance of the haloalkane (1,2- dibromoethane) with aspartate-

nucleophile of native Haloalkane dehalogenase (HLD) 48

16 Quantitative analysis of conformational changes of five mini proteins

during MD simulations 52

17 Flexibility of native and mini proteins in terms of root mean square

fluctuation (RMSF) 54

18 The vector map of pET-28b(+) designed using Snapgene software 55

19 Amplification results of native HLD gene with PCR 56

Page 19: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

xvi

20 The digested expression vector pET-28b(+) and native HLD 56

21 Transformants of E. coli BL21 (DE3) in pET-28b(+)/native HLD on

LB plate containing 50 µg/mL kanamycin 57

22 The digested PCR product of five models of mini proteins with

different size. 58

23 The amplified insert gene of native HLD and mini proteins with

PCR 59

24 Protein products of recombinant native HLD 60

25 Qualitative colorimetry assay of native HLD interacting with

haloalkane compound (1,3-dibromopropane) 61

26 Purified fraction of native HLD 62

27 Induction of mini proteins with 0.5 mM IPTG at 20 °C for 18 h 63

28 Induction of mini proteins (model 1, 2 and 3) at different

temperatures 63

29 Induction of mini proteins (model 1, 2 and 3) at high IPTG

concentrations 64

30 Induction of mini proteins (model 4 and 5) at different incubation

temperatures (16, 20, 25, 30 °C) with 0.5 mM IPTG 65

31 Mini proteins induced with low IPTG concentrations (0.01, 0.05 and

0.1 mM) at 20 °C 66

32 Induction of recombinant mini protein (model 5) with 0.05 mM IPTG

and incubated at 20 °C 67

33 Single injection of haloalkane (1,3-dibromopropane) into native HLD

and mini protein 68

34 Heat rate data from a single injection of haloalkane titrant into the

different concentrations of native HLD and mini protein solutions 69

35 Effect of different haloalkane (1,3-dibromopropane) concentrations

toward heat rate produced 70

36 Multiple injections of haloalkane substrate (1, 3- dibromopropane) into

different protein samples, A) native HLD and B) mini protein 72

37 Cyclic dichroism (CD) spectra demonstrating the thermal denaturation

of proteins at various temperatures 74

Page 20: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

xvii

38 Nonlinear least squares fitting for thermal stability study with CD at a

different temperatures 75

39 Tapered fiber parameters. 78

40 Experimental setup for sensor detection of haloalkane 79

41 Absorbance spectra response of TMMF after being treated with A)

APTES and B) Glutaraldehyde 82

42 Absorption spectrum of immobilized bioreceptors (native HLD and

mini protein) 83

43 Haloalkane detection by using native HLD and mini protein

immobilized onto optical fiber as bioreceptors 84

44 Changes of absorption spectra 84

45 Haloalkane detection with a decreasing taper waist diameter from 50

µm to 10 µm 85

46 Effect of enzymes immobilized at different concentrations for

haloalkane detection 86

47 Absorbance spectra of haloalkane detection at different concentrations

(5 to 250 µM) with two bioreceptors 87

48 Relationship of absorbance versus haloalkane at different

concentrations started from 5 to 500 µM 88

49 Dynamic response time of the haloalkane detection 89

50 The repeatability (A) and reproducibility (B) of the biosensor obtained

from the absorbance spectra at 325 nm 91

51 Storage stability of native and mini protein based bioreceptors for four

weeks 92

52 Residues combination predicted to mutate with cysteine for disulfide

bridge formation 98

53 MD simulation of the original structure and mutated mini proteins with

cysteine residues 99

54 RMSF value analyzed from 20 ns simulation trajectories for original

structure and mutated mini proteins with cysteine 100

55 Molecular cloning to construct recombinant pET-32b(+)/mutated mini

protein 101

Page 21: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

xviii

56 Purified protein expression of recombinant pET-32b(+)/mutated mini

protein 102

57 Characterization of bare SPE, AuNWs/SPE, AuNWs/Cys/SPE and

AuNWs/Cys/GA/SPE with CV 103

58 Cyclic voltammogram of A) bare SPE; B) modified AuNWs/SPE and

C) modified AuNWs/Cys/GA/SPE at the different scan rates 104

59 Cyclic voltammograms for the 2nd and 50th cycle of modified SPEs in

a 0.1MKCl solution containing 1.0 mM K3[Fe(CN)6]. 105

60 Nyquist diagrams of bare SPE, modified AuNWs/SPE, modified

AuNWs/Cys/SPE and modified AuNWs/Cys/GA/SPE with EIS 106

61 Cyclic voltammograms of modified SPEs with and without

bioreceptors 107

62 Nyquist diagrams of modified AuNWs/Cys/GA/SPE, modified SPE/

native HLD and modified SPE/mutated mini protein with EIS 107

63 Cyclic voltammograms of bare SPE, modified SPEs and modified

SPEs fabricated with bioreceptors (native HLD and mutated mini

protein) with and without the presence of haloalkane (1,3-

dibromopropane) 109

64 Cyclic voltammograms of modified SPEs in 0.1 M phosphate buffer

pH 7.0 containing 10 µM haloalkane at different scan rates 111

65 Cyclic voltammograms of bioreceptor immobilized SPEs; A) native

HLD and B) mutated mini protein upon the different concentrations of

haloalkane 113

66 Calibration curves of modified SPEs with native HLD (A) and mutated

mini protein (B) at different concentrations of haloalkane 114

67 Hanes-Woolf plots of the immobilized native HLD (A) and mutated

mini protein (B) on modified SPEs from CV analysis 115

68 Differential pulse voltammograms of bare SPE, modified SPEs and

modified SPEs fabricated with bioreceptors with and without

haloalkane 116

69 Differential pulse voltammograms of bioreceptors immobilized SPEs;

A) native HLD and B) mutated mini protein at different concentrations

of haloalkane 117

70 Calibration curves of modified SPEs fabricated with bioreceptors in

0.1 M phosphate buffer at different concentrations of haloalkane with

DPV 118

Page 22: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

xix

71 Hanes-Woolf plot plots of the immobilized native HLD (A) and

mutated mini protein (B) on modified SPEs from DPV analysis 119

72 Nyquist plot of bare SPE and modified SPEs (AuNWs/Cys/GA/SPE)

without and with the present of haloalkane in the redox solution 120

73 Nyquist plots of modified SPEs immobilized with native (A) and

mutated mini protein (B) at different concentrations of haloalkane 121

74 Calibration curves of modified SPEs at different concentrations of

haloalkane with EIS 122

75 Hanes-Woolf plots of the immobilized native HLD (A) and mutated

mini protein (B) on modified SPEs from EIS 123

76 The selectivity (A), repeatability (B) and reproducibility (C) of

modified SPEs immobilized with native HLD and mutated mini protein

126

77 Storage stability of modified SPEs fabricated with native HLD and

mini protein (mutated and non-mutated) with the presence 10 µM

haloalkane 127

Page 23: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

xx

LIST OF ABBREVIATIONS

aa Amino acid

Å

Å2

APTES

bp

CV

Angstrom

Angstrom square

aminopropyl triethoxysilane

base pair

Cyclic voltammetry

Da Dalton

DPV

eV

g

h

HLD

IPTG

K

kDa

Km

L

LOD

LOQ

MD

M

mg

ml

min

Differential pulse voltammetry

Electronvolt

Gram

Hour

Haloalkane dehalogenase

isopropyl-β-D-tiogalactopyranoside

Kelvin

KiloDalton

Michaelis-Menten constant

Liter

Limit of detection

Limit of quantification

Molecular dynamics

Molar

Milligram

Milliliter

Minute

Page 24: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

xxi

mV

mVs-1

NWs

nm

nmol

Milivolt

Milivolt per second

Nanowires

Nanometer

Nanomole

PCR

pH

pmol

Polymerase chain reaction

Exponential of the concentration of hydrogen ion

Picomole

Rpm

RMSD

RMSF

RSD%

s

SASA

SDS-PAGE

sp.

SPEs

TMMF

Rotation per minute

Root mean square deviation

Root mean square fluctuation

Relative standard deviation percentage

Seconds

Solvent accessible surface area

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

Species

Screen-printed electrodes

Tapered multimode fiber

U Unit of enzyme activity

U/ml Unit per milliliter

U/mg

UV

Unit per milligram

Ultra violet

Page 25: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

1

CHAPTER 1

1 INTRODUCTION

1.1 Background of the study

Genotoxic impurities (GTIs) in the final active pharmaceutical ingredients (APIs) gain

attention and become a serious matter of concern in the present days for all

pharmaceutical industries. Hence, the need to investigate the genotoxic level in

pharmaceutical manufacturing is very crucial due to the usage of dangerous

compounds. Haloalkane is a toxic compound and used as a reactant for alkylation in

drug synthesis and utilized as organic solvents in the drug product manufacturing

process (Szekely et al., 2012). Over the years, regulatory health agencies have

consistently expanded those level of security required to control GTIs in drug

substance materials, thus raising the bar on prerequisites to quantify haloalkane

towards low ppm levels. Besides that, pharmaceutical industries generate a huge

quantity of wastes during manufacturing and maintenance operations. Improper

disposable of pharmaceutical waste products is also an issue in the pharmaceutical

industry (Patneedi and Prasadu, 2015). Additionally, several types of pharmaceuticals

compounds have been detected in water samples from ng/l to μg/l range (Kapoor,

2015). Thus, a very sensitive analysis needs to be performed to monitor and quantify

the amounts of genotoxic impurities in pharmaceutical products and in the

environment.

Conventional analytical techniques like LCMS/MS and GC-MS/MS based on

physicochemical properties of the compounds are employed towards the detection of

impurities. These techniques are highly selective and sensitive; however, they are

impractical for long-term continuous monitoring analysis, time-consuming, expensive

and laborious (Paul and Paul, 2015). Owing to that, a biosensor can be an alternative

tool to the conventional technique. Biosensor is a detection system composed of a

bioreceptor and a transducer. Catalytic biosensor is usually used for monitoring

haloalkane compounds, utilizing purified enzyme as the bioreceptors. It incorporates

with the purified enzyme to provide high selectivity and has the potential of modifying

catalytic properties via genetic engineering (Rogers, 2006). The first biosensor

exploiting a purified haloalkane dehalogenase (HLD) as the bioreceptor for haloalkane

detection (Bidmanova et al., 2010). However, the developed sensor demonstrated low

sensitivity towards haloalkane (Bidmanova et al., 2010).

Therefore, the main focuses of this study are to develop a biosensor that is specific,

sensitive and stable for continuous mode of haloalkane detection. HLD was selected

as a specific bioreceptor due to its ability to catalyze specifically the conversion of

haloalkane to alcohol, halides, and proton (Bidmanova et al., 2013). Immobilization

of the bioreceptor on the transducer is a necessary and critical step in designing

biosensors, where it strongly affects the analytical performance (Andresscu and Sadik,

2004). The suitable immobilization strategies need to preserve the active site that

Page 26: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

2

essential for enhancement of their catalytic properties (Koudelakova et al., 2013). The

immobilized enzymes are more robust and more resistant to environmental changes

than the free enzymes, where they allow multiple uses of the enzymes and continuous

operation of enzymatic processes (Homaei et al., 2013).

Optical and electrochemical sensors are the most widely used tools in the development

of catalytic biosensor (Rodriguez-Mozaz et al., 2004). Both sensors are also reported

for the detection of dehalogenase reaction product (Peter et al., 1996). Optical sensor

with tapered multimode fiber (TMMF) has proven to be a viable technology for

sensing applications (Qiu et al., 2016). In an electrochemical sensor, screen-printed

electrodes (SPEs) are commonly used as electrodes due to the moderate cost, highly

reproducible and reliable sensors. Additionally, various chemical modifications on the

working surface SPEs can be performed (Bergamini et al., 2007). Nanomaterials like

nanowires, increase the specific surface area for the electrochemical reaction,

subsequently improve sensitivity and decrease the limit of detection (LOD)

(Swierczewska et al., 2013).

Current developed sensor for haloalkane monitoring with native HLD loses its

stability at a higher temperature (above 50 °C) due to structure denaturation (Jesenská

et al., 2002). Thus, this increases the demand for creating mini proteins which are

stable as bioreceptors and suitable for harsh industrial application. Mini protein is a

polypeptide which nevertheless exhibits a well-defined tertiary structure (Wang et al.,

2008). It provides a simple and useful model system for studying the native structure

and also knowledge in understanding the relationship between protein structure and

function (Polticelli et al., 2001). Through this study, the computational approach was

used to design mini proteins from the 3D structure of native HLD from Xanthobacter

autotrophicus (PDB ID: 2DHC) which acted as a template. The application of

powerful computational approach for functional novel protein designing has recently

succeeded in engineering target activities (Tiwari et al., 2012).

1.2 Problem statements

The level of GTIs needs to be monitored due to the utilization of toxic compounds

such as in the manufactured pharmaceutical product and waste. A high amount of

GTIs, exceeding a certain acceptable limit has a various negative effect on human

health. Acceptable limits for haloalkane GTIs in pharmaceutical product is at 1.5 ppm

(1500 µg L–1) for 1 g daily dose of product. Meanwhile, lower acceptable limit of

haloalkane set in drinking water is at 0.05 µg L–1 to 5 µg L–1. Normally, gas

chromatography coupled with mass spectroscopy is used for the analysis of haloalkane

compounds. However, these methods are time-consuming, costly and require the use

of highly skilled personnel. Due to that, demand for rapid, low cost, and in-situ

methods of detecting haloalkane is increasing. Enzyme is considered as a bioreceptor

and very specific to detect the substrates (contaminant). However, enzymes are large

biomolecules that susceptible to denaturation at extreme conditions. Fabrication and

operation of native HLD as bioreceptor are more costly than the mini protein. By

incorporating a mini protein as an alternative bioreceptor may solve the problem. Mini

Page 27: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

3

protein is less bulky and should have the advantage in term of stability as compared

to the native HLD.

1.3 Significance of the study

This work has presented the first optical and electrochemical-based sensor utilizing

mini proteins as bioreceptors. The mini protein may provide stability at the same time

provide higher sensitivity and selectivity. In the long run, the newly developed sensor

is economy scale.

1.4 Objectives

The main objective of this study is to develop a novel mini peptide-based bioreceptor

for the detection of haloalkane compounds. Listed below are the specific objectives of

this study:

To design a mini protein of haloalkane dehalogenase (HLD).

To immobilize the designed mini protein with the transducer based on optical

and electrochemical techniques.

To evaluate the performance of the developed biosensor by using optical and

electrochemical techniques.

Page 28: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

131

7 REFERENCES

Andreescu, S. and Sadik, O. A. 2004. Trends and challenges in biochemical sensors

for clinical and environmental monitoring. Pure Applied and Chemistry 76(4):

861-878.

Arduini, F., Guidone, S., Amine, A., Palleschi, G. and Moscone, D. 2013.

Acetylcholinesterase biosensor based on self-assembled monolayer-modified

gold-screen printed electrodes for organophosphorus insecticide detection.

Sensors and Actuators: B. Chemical 179:201-208.

Atkins, P. W. and De Paula, J. 2005. The Elements of Physical Chemistry. New York,

NY, USA: Oxford University Press.

Baianu, I. and Prisecaru, V. 2011. NMR, NIR, and infrared spectroscopy of

carbohydrate− protein interactions and glycoproteins. In NMR Spectroscopy of

Polymers: Innovative Strategies for Complex Macromolecules, ed. A. Koenig,

pp. 337-352. Pennsylvania Ave, Urbana: ACS Publication.

Benjwal, S., Verma, S., Rohm, K. H. and Gursky, O. 2006. Monitoring protein

aggregation during thermal unfolding in circular dichroism experiments. Protein

Science 15(3): 635-639.

Bergamini, M.F., dos Santos, D.P. and Zanoni, M.V.B. 2007. Development of

voltammetric sensor for chromium (VI) determination of waste water sample.

Sensors and Actuators B 123(2): 902-908.

Bhalla, N., Jolly, P., Formisano, N. and Estrela, P. 2016. Introduction to biosensors.

Essays in Biochemistry 60(1):1-8.

Bhatia, S. 2016. Nanoparticles types, classification, characterization, fabrication

methods and drug delivery applications. In Natural Polymer Drug Delivery

Systems, pp.33-93. Switzerland: Springer International Publishing.

Bidmanova, S., Chaloupkova, R., Damborsky, J. and Prokop, Z. 2010. Development

of an enzymatic fiber-optic biosensor for detection of halogenated hydrocarbons.

Analytical and Bioanalytical Chemistry 398(5): 1891–1898.

Bidmanova, S., Damborsky, J. and Prokop, Z. 2013. Immobilization of haloalkane

dehalogenase LinB from Sphingobium japonicum UT26 for biotechnological

applications. Journal of Biocatalysis and Biotransformation 2(1).

Bisignano, P. and Moran, O. 2010. Molecular dynamics analysis of the wild type and

dF508 mutant structures of the human CFTR-nucleotide binding domain 1.

Biochimie 92(1): 51–57.

Page 29: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

132

Boháč, M., Nagata, Y., Prokop, Z., Prokop, M., Monincová, M., Tsuda, M. and

Damborský, J. 2002. Halide-stabilizing residues of haloalkane dehalogenases

studied by quantum mechanic calculations and site-directed mutagenesis.

Biochemistry 41(48): 14272-14280.

Bosch, M. E., Sánchez, A. J., Rojas, F. S. and Ojeda, C. B. 2007. Recent development

in optical fiber biosensors. Sensors 7(6): 797–859.

Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram

quantities of protein utilizing the principle of protein-dye binding. Analytical

Biochemistry 72(1-2): 248–254.

Buchete, N.V. 2015. Book review: The art of molecular dynamics simulation. Journal

of Stastical Physics 118(1): 365-367.

Campbell, D. W., Müller, C. and Reardon, K. F. 2006. Development of a fiber optic

enzymatic biosensor for 1,2-dichloroethane. Biotechnology Letters 28(12): 883–

887.

Chan, K. F., Lim, H. N., Shams, N., Jayabal, S., Pandikumar, A. and Huang, N. M.

2016. Fabrication of graphene / gold-modified screen-printed electrode for

detection of carcinoembryonic antigen. Materials Science and Engineering C 58:

666–674.

Chen, G. Y., Ding, M., Newson, T. P. and Brambilla, G. 2013. A review of microfiber

and nanofiber based optical sensors. The Open Optics Journal 7: 32–57.

Chen, X., Liu, C., Hughes, M. D., Nagel, D. A., Hine, A. V. and Zhang, L. 2015.

EDC-mediated oligonucleotide immobilization on a long period grating optical

biosensor. Journal of Biosensors and Bioelectronics 6(2):173.

Chovancová, E., Kosinski, J., Bujnicki, J. M. and Damborský, J. 2007. Phylogenetic

analysis of haloalkane dehalogenases. Proteins Structure Function and

Bioinformatics 67(2): 305-316.

Clark, L. C. and Lyons, C. 1962. Electrode systems for continuous monitoring in

cardiovascular surgery. Annals of The New York Academy of Sciences 102(1):

29–45.

Colovos, C. and Yeates, T. O. 1993. Verification of protein structures: Patterns of

nonbonded atomic interactions. Protein Science 2(9): 1511–1519.

Copeland, R.A. 2000. Enzymes: A Practical Introduction to Structure, Mechanism,

and Data Analysis. Wiley-VCH, Inc., Publication New York pp. 89-93.

Corres, J.M., Matias, I.R., Bravo, J. and Arregui, F. J. 2008. Tapered optical fiber

biosensor for the detection of anti-gliadin antibodies. Sensors and Actuators B:

Chemical 135(1): 166-171.

Page 30: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

133

Costa, S., Almeida, A., Castro, A. and Domingues, L. 2014. Fusion tags for protein

solubility, purification, and immunogenicity in Escherichia coli: The novel Fh8

system. Frontiers in Microbiology 5(63).

Couto, R. A. S., Lima, J. L. F. C. and Quinaz, M. B. 2015. Screen-printed electrode

based electrochemical sensor for the detection of isoniazid in pharmaceutical

formulations and biological fluids. International Journal of Electrochemical

Science 10: 8738–8749.

Cunningham, B.T. and Laing, L.G. 2008. Advantages and application of label-free

detection assays in drug screening. Expert Opinion on Drug Discovery 3(8): 891-

901.

Damian, L. 2013. Isothermal Titration Calorimetry for Studying Protein–Ligand

Interactions. In Protein-Ligand Interactions. Methods in Molecular Biology

(Methods and Protocols), eds. M. A. Williams and T. Daviter, pp. 103-118.

Totowa, NJ: Humana Press.

Datta, S., Christena, L.R. and Rajaram, Y.R.S. 2013. Enzyme immobilization: an

overview on techniques and support materials. 3 Biotech 3(1):1-9.

Dennison, M.J. and Turner, P.F. 1995. Biosensors for environmental monitoring.

Biotechnology Advances 13(1): 1-12.

Dravis, B. C., Swanson, P. E. and Russell, A. J. 2001. Haloalkane hydrolysis with an

immobilized haloalkane dehalogenase. Biotechnology and Bioengineering 75(4):

416-423.

Drienovska, I., Chovancova, E., Koudelakova, T., Damborsky, J. and Chaloupkova,

R. 2012. Biochemical characterization of a novel haloalkane dehalogenase from

a cold-adapted bacterium. Applied and Environmental Microbiology 78(14):

4995-4998.

Duff, M.R., Grubbs, J. and Howell, E.E. 2011. Isothermal titration calorimetry for

measuring macromolecule-ligand affinity. Journal of Visualized Experiments 55:

2796.

Dwivedi, A. M. 2002. Residual solvent analysis in pharmaceuticals. Pharmaceutical

Technology Europe 14(12):26-28.

Erden, P.E. and Kilic, E. 2013. A review of enzymatic uric acid biosensors based on

amperometric detection. Talanta 107: 312-323.

Fakhari, A. R., Sahragard, A. and Ahmar, H. 2014. Development of an

electrochemical sensor based on reduced graphene oxide modified screen-printed

carbon electrode for the determination of Buprenorphine. Electroanalysis

26(11): 2474-2483.

Page 31: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

134

Fathi-Roudsari, M., Akhavian-Tehrani, A. and Maghsoudi, N. 2016. Comparison of

three Escherichia coli strains in recombinant production of reteplase. Avicenna

Journal of Medical Biotechnology 8(1): 16-22.

Fidanboylu, K.A. and Efendioglu, H.S.B. 2009. Fiber optic sensors and their

applications. 5th International Advanced Technologies Symposium (IATS’09),

May 13-15, Karabuk, Turkey.

Fiser, A. 2004. Protein structure modeling in the proteomics era. Expert Review of

Proteomics 1(1): 97-110.

Floudas, C. A. 2007. Computational methods in protein structure prediction.

Biotechnology and Bioengineering 97(2): 207-213.

Gao, N., Li, H., Li, Q., Liu, J. and Luo, G. 2011. Synthesis and kinetic evaluation of a

trifunctional enzyme mimic with a dimanganese active centre. Journal of

Inorganic Biochemistry 105(2): 283-288.

Gehret, J.J., Gu, L., Geders, T.W., Brown, W.C., Gerwick, L., Gerwick, W.H.,

Sherman, D.H. and Smith, J. 2012. Structure and activity of DmmA, a marine

haloalkane dehalogenase. Protein Science 21(2): 239-248.

Geum, L., Huber, R., Leung, N. and Lowe, M. 2015. Construction of recombinant

expression vectors to study the effect of thioredoxin on heterologous protein

solubility. Journal of Experimental Microbiology and Immunology 19.

Ghosh, S., Rasheedi, S., Rahim, S. S., Banerjee, S., Choudhary, R. K., Chakhaiyar, P.

and Hasnain, S. E. 2004. Method for enhancing solubility of the expressed

recombinant proteins in Escherichia coli. BioTechniques 37(3): 418-423.

Greenfield, N. J. 2009. Using circular dichroism spectra to estimate protein secondary

structure. Nature Protocols 1(6): 2876-2890.

Grieshaber, D., Mackenzie, R., Vörös, J. and Reimhult, E. 2008. Electrochemical

biosensors -Sensor Principles and Architectures. Sensors 8(3): 1400-1458.

Grodowska, K. and Parczewski, A. 2010. Organic solvents in the pharmaceutical

industry. Acta Poloniae Pharmaceutica-Drug Research 67(1): 3-12.

Guan, L., Yabuki, H., Okai, M., Ohtsuka, J. and Tanokura, M. 2014. Crystal structure

of the novel haloalkane dehalogenase DatA from Agrobacterium tumefaciens

C58 reveals a special halide-stabilizing pair and enantioselectivity mechanism.

Applied Microbiology and Biotechnology 98(20):8573-8582.

Gunda, N. S. K., Singh, M., Norman, L., Kaur, K. and Mitra, S.K. 2014. Optimization

and characterization of biomolecule immobilization on silicon substrates using

(3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker. Applied

Surface Science 305: 522-530.

Page 32: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

135

Gupta, V. K., Jain, R., Radhapyari, K., Jadon, N. and Agarwal, S. 2011. Voltammetric

techniques for the assay of pharmaceuticals -a review. Analytical Biochemistry

408(2): 179–196.

Hamzeh-Mivehroud, M., Alizade, A.A., Ahmadifar, M. and Dastmalchi, S. 2012. In

silico evaluation of crosslinking effects on denaturant meq values and ΔCp upon

protein unfolding. Avicenna Journal of Medical Biotechnology 4(1): 23-34.

Hansen, L.D., Transtrum, M.K., Quinn, C. and Demarse, N. 2016. Enzyme-catalyzed

and binding reaction kinetics determined by titration calorimetry. Biochimica et

Biophysica Acta 1860(5): 957-966.

Harun, S. W., Lim, K. S., Tio, C. K., Dimyati, K. and Ahmad, H. 2013. Theoretical

analysis and fabrication of tapered fiber. Optik 124(6): 538-543.

Hayat, A. and Marty, J. L. 2014. Disposable screen printed electrochemical sensors:

tools for environmental monitoring. Sensors 14(6): 10432-10453.

He, B., Morrow, T.J. and Keating, C.D. 2008. Nanowire sensors for multiplexed

detection of biomolecules. Current Opinion in Chemical Biology 12(5): 522-528.

Henrysson, T. and Mattiasson, B. 1993. A microbial biosensor system for

dihalomethanes. Biodegradation 4(2): 101-105.

Hesseler, M., Bogdanović, X., Hidalgo, A., Berenguer, J., Palm, G.J., Hinrichs, W.

and Bornscheuer, U.T. 2011. Cloning, functional expression, biochemical

characterization, and structural analysis of a haloalkane dehalogenase from

Plesiocystis pacifica SIR-1. Applied Microbiology and Biotechnology 91(4):

1049-1060.

Holloway, P., Trevors, J. T. and Lee, H. 1998. A colorimetric assay for detecting

haloalkane dehalogenase activity. Journal of Microbiological Methods 32(1):31-

36.

Holtje, H.D., Sippl, W., Rognan, D. and Folkers, G. 2008. Molecular Modeling: Basic

Principles and Applications. WILEY-VCH Verlag GmbH & Co. KGaA

Weinheim pp. 126-145.

Homaei, A.A., Sariri, R., Vianello, F. and Stevanato, R. 2013. Enzyme

immobilization: an update. Journal of Chemical Biology 6(4):185-205.

Hussain, G. and Silvester, D.S. 2018. Comparison of voltammetric techniques for

ammonia sensing in ionic liquids. Electroanalysis 30(1): 75-83.

Hutter, W., Peter, J., Swoboda, H., Hampel, W., Rosenberg, E., Krämer, D. and

Kellner, R. 1995. Development of a microbial bioassay for chlorinated and

brominated hydrocarbons. Analytica Chimica Acta 306(2-3): 237-241.

Page 33: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

136

Iwasaki, I., Utsumi, S. and Ozawa, T. 1952. New colorimetric determination of

chloride using mercuric thio- cyanate and ferric ion. Bulletin of the Chemical of

Society Japan 25(3):226.

Jaffrezic-Renault, N. and Dzyadevych, S. V. 2008. Conductometric microbiosensors

for environmental monitoring. Sensors 8(4): 2569-2588.

Jaliani, H. Z., Farajnia, S., Safdari, Y., Mohammadi, S. A., Barzegar, A. and Talebi,

S. 2014. Optimized condition for enhanced soluble-expression of recombinant

mutant Anabaena variabilis phenylalanine ammonia lyase. Advanced

Pharmaceutical Bulletin 4(3): 261-266.

James, J. J., Lakshmi, B. S., Seshasayee, A. S. N. and Gautam, P. 2007. Activation of

Candida rugosa lipase at alkane-aqueous interfaces: A molecular dynamics

study. FEBS Letters 581(23): 4377-4383.

Janssen, D. B. 2004. Evolving haloalkane dehalogenases. Current Opinion in

Chemical Biology 8(2): 150-159.

Jeffery, C. J., Gloss, L. M., Petsko, G. A. and Ringe, D. 2000. The role of residues

outside the active site : structural basis for function of C191 mutants of

Escherichia coli aspartate aminotransferase. Protein Enggineering13(2): 105-

112.

Jesenská, A., Bartoš, M., Czerneková, V., Rychlìk, I., Pavlìk, I. and Damborský, J.

2002. Cloning and expression of the haloalkane dehalogenase gene dhmA from

Mycobacterium avium N85 and preliminary characterization of DhmA. Applied

and Environmental Microbiology 68(8):3724-3730.

Jianrong, C., Yuqing, M., Nongyue, H. and Xiaohua, W. 2004. Nanotechnology and

biosensors. Biotechnology Advances 22(7): 505-518.

Johnson, A. K., Zawadzka, A. M., Deobald, L. A., Crawford, R. L. and Paszczynski,

A. J. 2008. Novel method for immobilization of enzymes to magnetic

nanoparticles. Journal of Nanoparticle Research 10(6): 1009-1025.

Juzgado, A., Solda, A., Ostric, A., Criado, A., Valenti, G., Rapino, S., Conti, G.,

Fracasso, G., Paolucci, F. and Prato, M. 2017. Highly sensitive

electrochemiluminescence detection of a prostate cancer biomarker. Journal of

Materials Chemistry B 5(32): 6681-6687.

Kapoor, D. 2015. Impact of pharmaceutical industries on environment, health and

safety. Journal of Critical Reviews 2(4): 25-30.

Karplus, M. and McCammon, J.A. 2002. Molecular dynamics simulations of

biomolecules. Nature Structural Biology 9(9): 646-652.

Karube, I. and Nomura, I. 2000. Enzyme sensors for environmental analysis. Journal

of Molecular Catalysis B: Enzymatic 10(1-3): 177-181.

Page 34: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

137

Keuning, S., Janssen, D. B. and Witholt, B. 1985. Purification and characterization of

hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10.

Journal of Bacteriology 163(2): 635-639.

Khoury, G.A., Smadbeck, J., Kieslich, C.A. and Floudas, C.A. 2013. Protein folding

and de novo protein design for biotechnological applications. Trends in

Biotechnology 32(2):99-109.

Kim, D. and Herr, A. E. 2013. Protein immobilization techniques for microfluidic

assays. Biomicrofluidics 7(4): 41501.

Klepeis, J. L., Lindorff-larsen, K., Dror, R. O. and Shaw, D. E. 2009. Long-timescale

molecular dynamics simulations of protein structure and function. Current

Opinion in Structural Biology 19(2): 120-127.

Koudelakova, T., Bidmanova, S., Dvorak, P., Pavelka, A., Chaloupkova, R., Prokop,

Z. and Damborsky, J. 2013. Haloalkane dehalogenases: Biotechnological

applications. Biotechnology Journal 8(1): 32-45.

Koudelakova, T., Chovancova, E., Brezovsky, J., Monincova, M., Fortova, A.,

Jarkovsky, J. and Damborsky, J. 2011. Substrate specificity of haloalkane

dehalogenases. Biochemical Journal 435(2): 345-354.

Krieger, E., Darden, T., Nabuurs, S. B., Finkelstein, A. and Vriend, G. 2004. Making

optimal use of empirical energy functions: Force-field parameterization in crystal

space. Proteins: Structure, Function and Bioinformatics 57(4): 678-683.

Krieger, E., Koraimann, G. and Vriend, G. 2002. Increasing the precision of

comparative models with YASARA NOVA - A self-parameterizing force field.

Proteins: Structure, Function and Genetics 47(3): 393-402.

Krull, U.J. and Thompson, M. 1985. Lipid membrane technology for chemical &

biosensor development. Trends in Analytical Chemistry 4(4): 90-96.

Kuah, E., Toh, S., Yee, J., Ma, Q. and Gao, Z. 2016. Enzyme mimics: Advances and

applications. Chemistry A Europian Journal 22(25): 8404- 8430.

Kukol, A. 2008. Molecular Modeling of Proteins. Totowa, NJ: Humana Press.

Kulakov, L. A., Poelarends, G. J., Janssen, D. B. and Larkin, M. J. 1999.

Characterization of IS 2112 , a new insertion sequence from Rhodococcus , and

its relationship with mobile elements belonging to the IS 110 family.

Microbiology 145: 561-568.

Kusumawati, A., Santoso, A. and Radji, M. 2013. Soluble expression of recombinant

human interferon alpha 2a fusion protein in Escherichia coli. International

Journal of Pharmaceutical Science and Health Care 2(3): 42-49.

Page 35: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

138

Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of head of

bacteriophage‐T4. Nature 227(5259): 680-685.

Laskowski, R.A., MacArthur, M.W. and Thornton, J. M. 2001. PROCHECK:

validation of protein structure coordinates. In International Tables of

Crystallography, Vol. F, Crystallography of Biological Macro-molecules, eds.

M.G. Rossmann, and E. Arnold, pp. 722-725. Kluwer, Dordrecht.

Laskowski, R., Macarthur, M., Moss, D. and Thornton, J. 1993. PROCHECK: a

program to check the stereochemical quality of protein structures. Journal of

Applied Crystallography 26(2): 283-291.

Lassila, J.K., Privett, H.K., Allen, B.D. and Mayo, S.L. 2006. Combinatorial methods

for small molecule placement in computational enzyme design. Proceedings of

the National Academy of Sciences of the United States of America 103 (45):

16710-16715.

Laviron, E. 1974. Adsorption, autoinhibition and autocatalysis in polarographyand in

linear potential sweep voltammetry. Journal of Electroanalytical Chemistry and

Interfacial Electrochemistry 52(3): 355-393.

Leung, A., Shankar, P. M. and Mutharasan, R. 2007. A review of fiber-optic

biosensors. Sensors and Actuators B: Chemical 125(2): 688-703.

Lexa, D., SavCant, JM., Su, KB. and Wang, DL. 1988. Single electron transfer and

nucleophilic substitution. Reaction of alkyl bromides with aromatic anion

radicals and low oxidation state iron porphyrins. Journal of the American

Chemical Society 110(23): 7617-7625.

Li, W.C., Yang, B. Wang, Y. Wei, D., Whitely, C. and Wang, X. 2009. Molecular

modeling of substrate selectivity of Candida antarctica lipase B and Candida

134 rugosa lipase towards c9, t11- and t10, c12-conjugated linoleic acid. Journal

of Molecular Catalysis B: Enzymatic 57(1-4): 299-303.

Li, G. and Miao, P. 2013. Theoretical Background of Electrochemical Analysis. In

Electrochemical Analysis of Proteins and Cells, pp. 5-18. Berlin, New York:

Springer.

Li, Y., Zhang, L., Li, M., Pan, Z. and Li, D. 2012. A disposable biosensor based on

immobilization of laccase with silica spheres on the MWCNTs- doped screen-

printed electrode. Chemistry Central Journal 6(103): 2-9.

Li, M., Li, Y., Li, D. and Long, Y.2012. Recent developments and applications of

screen-printed electrodes in environmental assays-A review. Analytica Chimica

Acta 734: 31-44.

Lilie, H. 2003. Designer proteins in biotechnology. EMBO Reports 4(4): 346-351.

Page 36: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

139

Lilie, H., Schwarz, E. and Rudolph, R. 1998. Advanced in refolding of proteins

produced in E. Coli. Current Opinion in Biotechnology 9(5): 497-501.

Lim, T. and Ramakrishna, S. 2006. A conceptual review of nanosensors. A Journal of

Physical Science 61(7-8): 402-412.

Liu, B., Gao, B., Xu, X., Hong, W., Su, Y. and Yue, Q. 2011. Treatment of pulp and

paper wastewater by using the mimic enzyme prepared from iron-based

biomimetic compound. Desalination 278(1–3): 36-41.

Liu, Z., Liu, J. and Shen, G. 2006. A reagentless tyrosinase biosensor based on 1 , 6-

hexanedithiol and nano-Au self-assembled monolayers. Electroanalysis 18(6):

1572-1577.

MacDonald, J.T., Maksimiak, K., Sadowski, M.I. and Taylor, W.R. 2010. De novo

backbone scaffolds for protein design. Proteins 78(5):1311-1125.

Malainey, M. E. 2011. A consumer’s guide to archaeological science. In Manuals in

Archaeological Method, Theory and Technique: Electromagnetic radiation, eds.

C.E. Orser and M.B. Schiffer, pp. 23-26. New York: Springer-Verlag.

Malisi, C., Kohlbacher, O. and Höcker, B. 2009. Automated scaffold selection for

enzyme design. Proteins: Structure, Function and Bioinformatics 77(1): 74–83.

Marasovic, M., Marasovic, T. and Miloš, M. 2017. Robust nonlinear regression in

enzyme kinetic parameters estimation. Journal of Chemistry 2017. DOI:

10.1155/2017/6560983.

Marazuela, M. D. and Moreno-Bondi, M. C. 2002. Fiber-optic biosensors - an

overview. Analytical and Bioanalytical Chemistry 372(5-6): 664-682.

Marek, J., Vévodová, J., Smatanová, I. K., Nagata, Y., Svensson, L. A., Newman, J.

and Damborský, J. 2000. Crystal structure of the haloalkane dehalogenase from

Sphingomonas paucimobilis UT26. Biochemistry 39(46): 14082-14086.

Mateo, C., Palomo, J. M., Fuentes, M., Betancor, L., Grazu, V., López-Gallego, F.,

Benevides, C. C., Hidalgo, A., Fernandez-Lorente, G., Fernandez-Lafuente, R.

and Guisán, J. M. 2006. Glyoxyl agarose: a fully inert and hydrophilic support

for immobilization and high stabilization of proteins. Enzyme and Microbial

Technology 39(2): 274-280.

Mazumdar, P. A., Hulecki, J. C., Cherney, M. M., Garen, C. R. and James, M. N. G.

2008. X-ray crystal structure of Mycobacterium tuberculosis haloalkane

dehalogenase Rv2579. Biochimica et Biophysica Acta - Proteins and Proteomics

1784(2): 351-362.

McNaught, A. and Wilkinson, A. 1997. IUPAC Compendium of Chemical

Terminology, 2nd Edition, The "Gold Book". Oxford: Blackwell Scientific

Publications.

Page 37: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

140

Mehrvar, M., Bis, C., Scharer, J. M., Young, M. M. and Luong, J. H. 2000. Fiber-optic

biosensors. Trends and Advances. Analytical Sciences 16(7): 677-692.

Mihăşan, M. 2010. Basic protein structure prediction for the biologist: A review.

Archives of Biological Sciences 62(4): 857-871.

Mir, R. A., Lovelace, J., Schafer, N. P., Simone, P. D., Kellezi, A., Kolar, C. and

Borgstahl, G. E. O. 2016. Biophysical characterization and modeling of human

Ecdysoneless ( ECD ) protein supports a scaffolding function. AIMS Biophysics

3(1): 195-208.

Monk, D. J. and Walt, D. R. 2004. Optical fiber-based biosensors. Analytical and

Bioanalytical Chemistry 379(7-8): 931-945.

Monteiro, O. A. C. and Airoldi, C. 1999. Some studies of crosslinking chitosan –

glutaraldehyde interaction in a homogeneous system. International Journal of

Biological Macromolecules 26(2-3): 119-128.

Morris, G. M. and Lim-Wilby, M. 2008. Molecular docking. Methods in Molecular

Biology 443: 365-382.

Muhammad, A., Hajian, R., Yusof, N. A., Shams, N., Abdullah, J., Woi, P. M. and

Hamid, G. 2018. A screen printed carbon electrode modified with carbon

nanotubes and gold nanoparticles as a sensitive electrochemical sensor for

determination of thiamphenicol residue in milk. RSC Advances 8(5): 2714-2722.

Mustapa, M.A., Abu Bakar, M.H., Mustapha Kamil, Y., Amir Hamzah, A.S. and

Mahdi, M.A. 2018. Bio-functionalized tapered multimode fiber coated with

dengue virus NS1 glycoprotein for label free detection of anti-dengue virus NS1

IgG antibody. IEEE Sensors Journal 18(10): 4066 - 4072.

Newman, J., Peat, T. S., Richard, R., Kan, L., Swanson, P. E., Affholter, J. and

Terwilliger, T. C. 1999. Haloalkane dehalogenases: structure of a Rhodococcus

enzyme. Biochemistry 38(49): 16105-16114.

Nixon, A. E., Ostermeier, M. and Benkovic, S. J. 1998. Hybrid enzymes:

Manipulating enzyme design. Trends in Biotechnology 16(6): 258-264.

Nordin, N., Yusof, N.A., Abdullah, J., Radu, S. and Hajian, R. 2016. Characterization

of polylactide-stabilized gold nanoparticles and its application in the fabrication

of electrochemical DNA biosensors. Journal of Brazillian Chemical Society

27(9): 1679-1686.

Nosoh, Y. and Sekiguchi,T. 1991. Protein Stability and Stabilization through Protein

Engineering. New York: Ellis Horwood Limited.

Page 38: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

141

Okai, M., Ohtsuka, J., Imai, L.F., Mase, T., Moriuchi, R., Tsuda, M., Nagata, K.,

Nagata, Y. and Tanokura, M. 2013. Crystal structure and site-directed

mutagenesis analyses of haloalkane dehalogenase LinB from Sphingobium sp.

Strain MI1205. Journal of Bacteriology 195(11): 2642-2651.

Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M. and

Goldman, A. 1992. The alpha/beta hydrolase fold. Protein Enginering 5(3): 197-

211.

Otyepka, M. and Damborsk, J. 2002. Functionally relevant motions of haloalkane

dehalogenases occur in the specificity-modulating cap domains. Protein Science

11(5): 1206-1217.

Park, J. and Kim, M. 2015. Strategies in protein immobilization on a gold surface.

Applied Science and Convergence Technology 24(1): 1-8.

Patneedi, C. B. and Prasadu, K. D. 2015. Impact of pharmaceutical wastes on human

life and environment. Rasayan Journal of Chemistry 8(1)-67-70.

Paul, D. and Paul, K. 2015. Genotoxicity : A real concern of the pharmaceutical

industry. World Journal of Pharmacy and Pharmaceutical Sciences 4(2): 1124-

1153.

Peerayeh, S. N., Atoofi, J., Hoseinkhani, S. and Farshchian, M. 2009. Cloning and

expression of Helicobacter pylori HpaA gene. Yakhteh Medical Journal 11(3):

273-276.

Peter, J., Hutter, W., Stöllnberger, W. and Hampel, W. 1996. Detection of chlorinated

and brominated hydrocarbons by an ion sensitive whole cell biosensor.

Biosensors and Bioelectronics 11(12): 1215-1219.

Philot, E.A., Lima, A.N., Resende-Lara, P.T., Tuffaneto, P.C. and Scott, L.P.B. 2016.

Considering global and local conformational changes in molecular docking. JSM

Chemistry 4(3): 1031.

Pierri, C. L., Parisi, G. and Porcelli, V. 2010. Computational approaches for protein

function prediction: A combined strategy from multiple sequence alignment to

molecular docking-based virtual screening. Biochimica et Biophysica Acta -

Proteins and Proteomics 1804(9): 1695-1712.

Pillardy, J., Czaplewski, C., Liwo, A., Lee, J., Ripoll, D. R., Kaźmierkiewicz, R. and

Scheraga, H. 2001. Recent improvements in prediction of protein structure by

global optimization of a potential energy function. Proceedings of the National

Academy of Sciences of the United States of America 98(5): 2329-2333.

Polticelli, F., Raybaudi-Massilia, G. and Ascenzi, P. 2001. Structural determinants of

mini-protein stability. Biochemistry and Molecular Biology Education 29(1):16-

20.

Page 39: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

142

Pospisilova, M., Kuncova, G. and Trogl, J. 2015. Fiber-optic chemical sensors and

fiber-optic bio-sensors. Sensors 15(10): 25208-25259.

Prokop, Z., Sato, Y., Brezovsky, J., Mozga, T., Chaloupkova, R., Koudelakova, T. and

Damborsky, J. 2010. Enantioselectivity of haloalkane dehalogenases and its

modulation by surface loop engineering. Angewandte Chemie - International

Edition in English 49(35): 6111-6115.

Qin, X., Miao, Z., Du, X. and Chen, Q. 2016. Electrocatalytic activation of silver

nanowires-modified Pt electrode by cyclic voltammetry in comparison with

differential pulse voltammetry in halide determination. Electroanalysis 28(3):

555-561.

Qiu, H., Gao, S., Chen, P., Li, Z., Liu, X., Zhang, C., Xu, Y., Jiang, S., Yang, C. and

Huo, Y. 2016. Evanescent wave absorption sensor based on tapered multimode

fiber coated with monolayer graphene film. Optics Communications 366: 275-

281.

Ramachandran, G. N. and Sasisekharan, V. 1968. Conformation of polypeptides and

proteins. Advances in Protein Chemistry 23: 283-438.

Reardon, K. F., Campbell, D. W. and Müller, C. 2009. Optical fiber enzymatic

biosensor for reagentless measurement of ethylene dibromide. Engineering in

Life Sciences 9(4): 291-297.

Richter, F., Leaver-Fay, A., Khare, S.D., Bjelic, S. and Baker, D. 2011. De novo

enzyme design using Rosetta3. PLoS One 6(5):e19230.

Riu, J., Maroto, A. and Rius, X. 2006. Nanosensors in environmental analysis. Talanta

69(2): 288-301.

Rogers, K.R. 2006. Recent advances in biosensor techniques for environmental

monitoring. Analytica Chimica Acta 568(1-2): 222-231.

Rodriguez-Mozaz, S., Marco, M.-P., Lopez De Alda, M. J. and Barceló, D. 2004.

Biosensors for environmental applications: Future development trends. Pure

Applied and Chemistry 76(4): 723-752.

Rosano, G.L. and Ceccarelli, E.A. 2014. Recombinant protein expression in

Escherichia coli: advances and challenges. Frontiers in Microbiology 5:172.

Sacco, A. 2017. Electrochemical impedance spectroscopy: Fundamentals and

application in dye-sensitized solar cells. Renewable and Sustainable Energy

Reviews 79: 814-829.

Sassolas, A., Blum, L. J. and Leca-Bouvier, B. D. 2012. Immobilization strategies to

develop enzymatic biosensors. Biotechnology Advances 30(3): 489-511.

Page 40: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

143

Schymkowitz, J.W.H., Rousseau, F., Martin, I. C., Ferkinghoff-Borg, J., Stricher, F.,

and Serrano, L. 2005. Prediction of water and metal binding sites and their

affinities by using the fold-X force field. Proceedings of the National Academy

of Sciences of the United States of America 102(29): 10147-10152.

See, W. P., Nathan, S. and Heng, L. Y. 2011. A disposable copper ( II ) ion biosensor

based on self-assembly of L-cysteine on gold nanoparticle-modified screen-

printed carbon electrode. Journal of Sensors 2011, [230535].

Sethi, M. K., Guha, R., Shukla, R., Mahajan, S. and Chakraborty, P. 2016. Genotoxic

impurities evaluation in active pharmaceutical ingredients ( API )/ drug

substance. Der Pharmacia Lettre 8(12): 234-243.

Shabaneh, A., Girei, S., Arasu, P., Mahdi, M., Rashid, S., Paiman, S. and Yaacob, M.

2015. Dynamic response of tapered optical multimode fiber coated with carbon

nanotubes for ethanol sensing application. Sensors 15(5): 10452-10464.

Shams, N., Lim, H. N., Hajian, R., Yusof, N. A., Abdullah, J., Sulaiman, Y. and

Huang, N. M. 2016. Electrochemical sensor based on gold

nanoparticles/ethylenediamine-reduced graphene oxide for trace determination

of fenitrothion in water. RSC Advances 6(92): 89430-89439.

Shoub, S. A. B., Yusof, N. A. and Hajian, R. 2017. Gold nanoparticles / ionophore-

modified screen-printed electrode for detection of Pb ( II ) in river water using

linear sweep anodic stripping voltammetry. Sensors and Materials 29(5): 555-

565.

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W. and Higgins, D.

G. 2011. Fast, scalable generation of high-quality protein multiple sequence

alignments using Clustal Omega. Molecular Systems Biology 7: 539.

Skoog, D., Holler, F. and Crouch, S. 2007. Principles of instrumental analysis. 6th

Edition, Belmont, Califonia: Thomson Brooks/Cole.

Su, L., Jia, W., Hou, C. and Lei, Y. 2011. Microbial biosensors: A review. Biosensors

and Bioelectronics 26(5): 1788-1799.

Suni, I. I. 2008. Impedance methods for electrochemical sensors using nanomaterials.

Trends Trends in Analytical Chemistry 27(7): 604-611.

Swierczewska, M., Liu, G., Lee, S.and Chen, X. 2013. High-sensitivity nanosensors

for biomarker detection. Chemical Society Reviews 41(7): 2641-2655.

Szekely, G., Amores de Sousa, M.C., Gil, M., Ferreira, F. C. and Heggie, W. 2012.

Genotoxic impurities in pharmaceutical manufacturing : Sources , regulations ,

and mitigation. Chemical Reviews 115 (16): 8182-8229.

Page 41: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

144

Tangkuaram, T., Ponchio, C., Kangkasomboon, T., Katikawong, P. and Veerasai, W.

2007. Design and development of a highly stable hydrogen peroxide biosensor

on screen printed carbon electrode based on horseradish peroxidase bound with

gold nanoparticles in the matrix of chitosan. Biosensors and Bioelectronics 22(9-

10): 2071-2078.

Thévenot, D.R., Toth, K., Durst, R.A. and Wilson, G.S. 2009. Electrochemical

biosensors: recommended definitions and classification. Pure and Applied

Chemistry 71(12): 2333-2348.

Thévenot, D. R., Toth, K., Durst, R. A. and Wilson, G. S. 2001. Electrochemical

biosensors: recommended definitions and classification. Biosensors and

Bioelectronics 16(1): 121-131.

Tian, Y., Wang, W., Wu, N., Zou, X. and Wang, X. 2011. Tapered optical fiber sensor

for label-free detection of biomolecules. Sensors 11(4): 3780-3790.

Tiwari, M.K., Singh, R., Kumar Singh, R., Kim, I. and Lee, J. 2012. Computational

approaches for rational design of proteins with novel functionalities.

Computational and Structural Biotechnology Journal 2: e201209002.

Trivedi, U. B., Lakshminarayana, D., Kothari, I. L., Patel, N. G., Kapse, H. N.,

Makhija, K. K. and Panchal, C. J. 2009. Potentiometric biosensor for urea

determination in milk. Sensors and Actuators B: Chemical 140(1): 260-266.

Ukpong, E. J., Udoetok, I. A. and Akpanudo, N. W. 2013. Cyclic voltammetry of

aqueous copper ( II ) - pentamethyldiethylenetriamine systems at various pH

values. IOSR Journal of Applied Chemistry 5(3): 50-55.

Usman, H., Abu Bakar, M. H., Hamzah, A. S. and Salleh, A. B. 2016. A tapered fibre

optics biosensor for histamine detection. Sensor Review 36(1): 40-47.

Van Den Bosch, M., Swart, M., Van Gunsteren, W. F. and Canters, G. W. 2004.

Simulation of the substrate cavity dynamics of quercetinase. Journal of

Molecular Biology 344(3): 725-728.

Varghese, P. B, John, S. and Madhusoodanan, K.N. 2010. Fiber optic sensor for the

measurement of concentration of silica in water with dual wavelength probing.

The Review of Scientific Instruments 81(3): 035111.

Vashist, S. K., Marion Schneider, E. M., Lam, E., Hrapovic, S. and Luong, J. H. T.

2014. One-step antibody immobilization-based rapid and highly-sensitive

sandwich ELISA procedure for potential in vitro diagnostics. Scientific Reports

4:4407.

Vega, F., Torres, C., Diaz, L. and Mattos, L. 2013. Simple method of fabrication

tapered fiber. Proceeding SPIE 8785: 8th Iberoamerican Optics Meeting and

11th Latin American Meeting on Optics, Lasers, and Applications, 87852D,

Porto, Portugal.

Page 42: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

145

Verschueren, K. H., Franken, S. M., Rozeboom, H. J., Kalk, K. H. and Dijkstra, B. W.

1993. Non-covalent binding of the heavy atom compound [Au(CN)2]- at the

halide binding site of haloalkane dehalogenase from Xanthobacter autotrophicus

GJ10. FEBS Letters 323(3): 267-270.

Walt D.R., Schauer C.L., Stitzel S.E., Fleming M.S. and Epstein J.R. 2004.

Fluorescence-based fiber-optic biosensors. In Biosensors, Second edition, eds. J.

Cooper and T. Cass, pp.131-152. New York: Oxford University Press.

Wang, F., Xiao, J., Pan, L., Yang, M., Zhang, G., Jin, S. and Yu, J. 2008. A systematic

survey of mini-proteins in bacteria and archaea. PLoS One 3(12): e4027.

Wang, J., Yang, S. and Zhang, K. 2016. A simple and sensitive method to analyze

genotoxic impurity hydrazine in pharmaceutical materials. Journal of

Pharmaceutical and Biomedical Analysis 126: 141-147.

Wedemeyer, W.J., Welker, E., Narayan, M. and Scheraga. H.A. 2000. Disulfide bonds

and protein folding. Biochemistry 39(15): 4208-4216.

Werner, T., Morris, M. B., Dastmalchi, S. and Church, W. B. 2012. Structural

modelling and dynamics of proteins for insights into drug interactions. Advanced

Drug Delivery Reviews 64(4): 323-343.

Whitehead, T. L. 2006. Molecular Modeling: Basic Principles and Applications, 2nd

Edition (Hans-Dieter Höltje, Wolfgang Sippl, Didier Rognan, and Gerd Folkers).

Journal of Chemical Education 83(6): 851.

Wiederstein, M. and Sippl, M. 2007. ProSA-web: Interactive web service for the

recognition of errors in three-dimensional structures of proteins. Nucleic Acids

Research 35(2): 407-410.

Wu, C., Pan, T., Wu, C., Yen, L. and Chuang, C. 2012. Label-free detection of prostate

specific antigen using a silicon nanobelt field-effect transistor. International

Journal of Electrochemical Science 7(5): 4432-4442.

Xiang, Z. 2006. Advances in homology protein structure modeling. Current Protein

and Peptide Science 7(3): 217-27.

Xu, H., Sun, L., Shi, Y., Wu, Y., Zhang, B. and Zhao, D. 2008. Optimization of

cultivation conditions for extracellular polysaccharide and mycelium biomass by

Morchella esculenta As51620. Biochemical Engineering Journal 39(1): 66-73.

Xu, X., Liu, S. and Ju, H. 2003. A novel hydrogen peroxide sensor via the direct

electrochemistry of horseradish peroxidase immobilized on colloidal gold

modified screen-printed electrode. Sensors 3(9): 350-360.

Yang, J.T., Wu, C.S. and Martinez, H.M. 1986. Calculation of protein conformation

from circular dichroism. Methods in Enzymology 130: 208-269.

Page 43: DEVELOPMENT OF A NOVEL MINI PEPTIDE-BASED …

© COPYRIG

HT UPM

146

Yang, J., Jiang, L., Wang, S., Li, B., Wang, M., Xiao, H. and Tsai, H. 2011. High

sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned

optical fiber for refractive index sensing. Applied Optics 50(28): 5503-5507.

Yonzon, C. R., Stuart, D. A., Zhang, X., Mcfarland, A. D., Haynes, C. L. and Duyne,

R. P. Van. 2005. Towards advanced chemical and biological nanosensors -an

overview. Talanta 67(3): 438-448.

Yun, M., Myung, N. V, Vasquez, R. P., Wang, J. and Monbouquette, H. 2003.

Nanowire growth for sensor arrays. Proceedings of SPIE - The International

Society for Optical Engineering 5220.

Zajíc, J., Bittner, M., Brányik, T., Solovyev, A., Šabata, S, Kuncová, G. and

Pospíšilová, M. 2016. Repetitive inductions of bioluminescence of Pseudomonas

putida TVA8 immobilised by adsorption on optical fibre. Chemical Papers

70(7): 877-887.

Zhang, L., Lou, J. and Tong, L. 2011. Micro/nanofiber optical sensors. Photonic

Sensors 1(1): 31-42.