deuterium fractionation in protoplanetary disks

22
Deuterium Fractionation in Protoplanetary Disks Richard Teague, Max Planck Institute for Astronomy D. Semenov, S. Guilloteau, Th. Henning, A. Dutrey, V. Wakelam, E. Chapillon, V. Piétu and the Chemistry in Disks Collaboration arXiv:1501.00984

Upload: richteague

Post on 18-Aug-2015

26 views

Category:

Science


2 download

TRANSCRIPT

Page 1: Deuterium Fractionation in Protoplanetary Disks

Deuterium Fractionation in Protoplanetary Disks

Richard Teague, Max Planck Institute for Astronomy D. Semenov, S. Guilloteau, Th. Henning, A. Dutrey, V. Wakelam, E. Chapillon, V. Piétu and the Chemistry in Disks Collaboration

arXiv:1501.00984

Page 2: Deuterium Fractionation in Protoplanetary Disks

Sub-mm observations probe low energy environments.

Deuterium Fractionation

Ceccarelli et al. PPVI chapter provides a comprehensive review of deuterium fractionation.

CxH3+

Light Hydrocarbons

T > 30 K

H3+

Trihydrogen Cation

T < 30 K

HD Deuterium Reservoir

DCO+ Deuterated Molecules

Page 3: Deuterium Fractionation in Protoplanetary Disks

See also Henning & Semenov (2013) Chem. Rev. and Dutrey et al. (2013) PPVI Chapter.

Well understood* structure helps in the interpretation of observations.

Protoplanetary Disks

*To some degree…

Keplerian rotation dominates kinematics.

Grain growth and sedimentation.

Elevated ‘molecular layer’.

Radial & vertical gradients in physical properties.

Page 4: Deuterium Fractionation in Protoplanetary Disks

Molecular line emission probes distinct regions of the disk.

Molecular Menagerie

Bergin et al. (2013), van Dishoeck et al. (2003) Öberg et al. (2012), Cleeves et al. (2014)

Simple Diatomic Molecules e.g. HD

Carbon Bearing Species e.g. DCO+, DCN

Nitrogen Bearing Species e.g. H2D+, N2D+

No molecule traces the entire disk; must use complementary studies.

Page 5: Deuterium Fractionation in Protoplanetary Disks

More than just thermal history probes.

DCO+ and HCO+

 H2D+

 HCO+

 DCO+  H3+  H2

CO

HD

H2

CO

ice

ice

Page 6: Deuterium Fractionation in Protoplanetary Disks

Ionization.

DCO+ and HCO+

 H2D+

 HCO+

 DCO+  H3+  H2

CO

HD

H2

CO

ice

ice

Page 7: Deuterium Fractionation in Protoplanetary Disks

Deuterium fractionation efficiency.

DCO+ and HCO+

 H2D+

 HCO+

 DCO+  H3+  H2

CO

HD

H2

CO

ice

ice

Page 8: Deuterium Fractionation in Protoplanetary Disks

CO depletion.

DCO+ and HCO+

 H2D+

 HCO+

 DCO+  H3+  H2

CO

HD

H2

CO

ice

ice

Page 9: Deuterium Fractionation in Protoplanetary Disks

Chemical modelling is essential to interpret observations.

DCO+ and HCO+

 H2D+

 HCO+

 DCO+  H3+  H2

CO

HD

H2

CO

ice

ice

Page 10: Deuterium Fractionation in Protoplanetary Disks

Carried out with IRAM Plateau de Bure Interferometer, Teague et al. (in press)

Zeroth Moment Maps - Total Intensity

Observations of DM Tau

Δα [”]

Δδ [”

]

Page 11: Deuterium Fractionation in Protoplanetary Disks

Carried out with IRAM Plateau de Bure Interferometer, Teague et al. (in press)

First Moment Maps - Kinematics

Observations of DM Tau

Δα [”]

Δδ [”

]

Page 12: Deuterium Fractionation in Protoplanetary Disks

Derives best fit column densities from observations.

DISKFIT

100

10-1

10-2

R D(H

CO+ )

40 100 600Radius (au)

N(DCO+)N(HCO+)

RD(HCO+) =

Page 13: Deuterium Fractionation in Protoplanetary Disks

Derives best fit column densities from observations.

DISKFIT

Teague et al. (in press), Pietu et al. (2007)

100

10-1

10-2

R D(H

CO+ )

40 100 600Radius (au)

DM Tau

Typical Error

Page 14: Deuterium Fractionation in Protoplanetary Disks

TW Hya and HD 163296

Protoplanetary Disks

100

10-1

10-2

R D(H

CO+ )

40 100 600Radius (au)

Qi et al. (2008), Mathews et al. (2014)

TW H

ya

HD 163296

Typical Error

Page 15: Deuterium Fractionation in Protoplanetary Disks

Ensemble of prestellar cores.

Prestellar Cores

Butner et al. (1995)

100

10-1

10-2

R D(H

CO+ )

40 100 600Radius (au)

Prestellar Cores

Typical Error

Page 16: Deuterium Fractionation in Protoplanetary Disks

Time dependent chemistry code.

ALCHEMIC

100

10-1

10-2

R D(H

CO+ )

40 100 600Radius (au)

5⠐ 106

106

104

103

105 Time (yrs)

Teague et al. (in press), Semenov et al. (2010), Albertsson et al. (2013), Albertsson et al. (2014a)

Typical Error

Page 17: Deuterium Fractionation in Protoplanetary Disks

Molecular DistributionVertical temperature gradients result in different vertical profiles.

Teague et al. (in press)

40 100 600 40 100 6000

1

2z /

R

Radius (au)

log10(x(DCO+)) log10(x(HCO+))

Page 18: Deuterium Fractionation in Protoplanetary Disks

100

10-1

10-2

R D(H

CO+ )

40 100 600Radius (au)

X-Ray Luminosity of the star.

Modelling

Decreasing LX

Increasing LX

Typical Error

Page 19: Deuterium Fractionation in Protoplanetary Disks

100

10-1

10-2

R D(H

CO+ )

40 100 600Radius (au)

Larger grains, a = 1um

Modelling

Larger grains

Typical Error

Page 20: Deuterium Fractionation in Protoplanetary Disks

What can we probe with RD(HCO+)?

Results

X-rays dominates ionization in the HCO+ molecular layer.

Ionization

Grain evolution heavily impacts the freeze out and

desorption of CO.

CO Depletion

Radial temperature gradient in disk drives radial gradient in RD.

Deuterium Fractionation

Page 21: Deuterium Fractionation in Protoplanetary Disks

Beyond Remote SensingComparison of log10((RD (H2O))) values in the Solar System.

Adapted from Hartogh et al. (2011)

Jupiter Family Comets

Ea

rth

Ma

rs

Jup

iter

Satu

rn

Ura

nu

s

Nep

tun

e

Oo

rt Clo

ud

- 3.5

- 4.5

- 5.5

Cycle 3 - Band 7

Cycle 2

Cycle 3 - Bands 3, 4, & 6

Angular resolution assuming a source distance of 150 pc,

maximum baselines and observing frequency

270 GHz.

Page 22: Deuterium Fractionation in Protoplanetary Disks

Deuterium FractionationHelping unraveling the planet formation process…

Protoplanetary Disks

Planets &

AtmospheresPrestellar Cores

DepletionThermal History

Ionization Fractionation