designing sustainable low-carbon transport systems

36
1 UNCRD workshop (13/5/30) UNCRD workshop (13/5/30) Designing Sustainable Low Designing Sustainable Low - - Carbon Transport Carbon Transport Systems integrated with Regional Systems integrated with Regional Development in Asia Development in Asia Prof. Yoshitsugu Hayashi Dr. Kazuki Nakamura Graduate School of Environmental Studies, Nagoya University Int’l Center for Sustainable Transport and Cities

Upload: others

Post on 21-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Designing Sustainable Low-Carbon Transport Systems

1

UNCRD workshop (13/5/30)UNCRD workshop (13/5/30)

Designing Sustainable LowDesigning Sustainable Low--Carbon Transport Carbon Transport Systems integrated with Regional Systems integrated with Regional

Development in AsiaDevelopment in Asia

Prof. Yoshitsugu HayashiDr. Kazuki Nakamura

Graduate School of Environmental Studies, Nagoya UniversityInt’l Center for Sustainable Transport and Cities

Page 2: Designing Sustainable Low-Carbon Transport Systems

2

Risk of rapid growth in CORisk of rapid growth in CO22 emissions in emissions in developing countries in Asiadeveloping countries in Asia

Per C

apita

 GHG Emission

Low Carbon SocietyBackcastingDeveloping Countries

Leap‐frog

Developed Countries

Page 3: Designing Sustainable Low-Carbon Transport Systems

Framework of Backcasting Approach to Developing Framework of Backcasting Approach to Developing LowLow--Carbon Transport SystemsCarbon Transport Systems

•Travel Distance•Modal Share•Emission Factor by mode

•Travel Distance•Modal Share•Emission Factor by mode

Travel Demand(Habits)•Necessity to Travel•Local Travel•Diverse Destination•Mode Preferences

Travel Demand(Habits)•Necessity to Travel•Local Travel•Diverse Destination•Mode Preferences

Economic Growth

Economic Economic GrowthGrowth

Innovation in ICT

Innovation Innovation in ICTin ICTAgeingAgeingAgeing

Employment

Education

Safety Health Environment

Life Style•Information Dependence•Community •Leisure•Sharing

Life Style•Information Dependence•Community •Leisure•Sharing

Socio-Economic Systems

GDP QOL CO2

Land-use Transport Policies

Land-use Transport PoliciesOther PoliciesOther Policies

Financial & Institutional Coordination(Domestic & International)

Financial & Institutional Coordination(Domestic & International)

Elements

Indicators

Other Systems Land-use Transport System

Future Vision ScenariosPolicy D

esignPolicy D

esign

Page 4: Designing Sustainable Low-Carbon Transport Systems

0

5

10

15

20

25

30

35

2000 2010 2020 2030 2040 2050 2060

per‐capita GDP (1000 US$)

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

1950 1960 1970 1980 1990 2000 2010

Popu

lation

 (1000 pe

ople)

Japan

0

5

10

15

20

25

30

35

1950 1960 1970 1980 1990 2000 2010

per‐capita GDP (1000 US$)

Economic Growth in Japan

Economic Growth in Asia (Forecast)

x 4.5

China (x 5.5~8.9)

SocioSocio‐‐Economic Trends in AsiaEconomic Trends in AsiaPopulation Growth in Japan

0.80

0.85

0.90

0.95

1.00

1.05

1.10

2000 2010 2020 2030 2040 2050 2060

Popu

lation

 growth ratio from

 2010

Japan

China

Thailand

Population Growth in Asia (Forecast)

x 1.36

(x 1.03)

(x 0.97)

(x 0.86)

Source: UN World Population Prospects: The 2010 Revision

Thailand (x 3.7~8.1)

4

Page 5: Designing Sustainable Low-Carbon Transport Systems

時間

Visioning Future Transport Systems with Key IndicatorsVisioning Future Transport Systems with Key Indicators

時間

GDP・・・

London

(2008)

Tokyo

Reference

(2007)

Car Bus Rail Walk

CO2

1989 2005 2050

Car56%

Bus38%

Rail4%

Walk2%

Car43%Bus

41%

Walk16%

BAU

Leap‐Frog

What are necessary policies to realize it?

What are necessary policies to realize it?

Avoid Unnecessary TravelShift  to Low‐Carbon Mode

Improve Transport Emission intensity

AVOID

SFHIT

IMPROVE

Ageing

Bangkok

Page 6: Designing Sustainable Low-Carbon Transport Systems

Policy/technology optionsPolicy/technology options((CUTE MatrixCUTE Matrix))Strategies

MeansAVOID SHIFT IMPROVE

Technologies

• Transport oriented development (TOD)

• Poly-centric development• Efficient freight distribution

• Railways and BRT development

• Interchange improvement among railway, BRT, bus and para-transit modes

• Facilities for personal mobility and pedestrians

• Development of electric vehicles

• Development of biomass fuel

• "Smart grid“ development

Regulations • Land-use control

• Separation of bus/para-transit trunk and feeder routes

• Local circulating service• Control on driving and parking

• Emissions standards• “Top-runner" approach

Information• Telecommuting• Online shopping• Lifestyle change

• ITS public transport operation

• "Eco-driving"• ITS traffic-flow management• Vehicle performance labeling

Economy • Subsidies and taxation to location

• Park & ride• Cooperative fare systems among modes

• Fuel tax/carbon tax• Subsidies and taxation to low-emissions vehicles

Page 7: Designing Sustainable Low-Carbon Transport Systems

Trip Frequency

Built‐up Area Public Transport Network

Traffic Speed

Fossil Fuel Share

Road Network

Urban Compactness

× ×

Travel Demand Car Dependency Technology(Travel Distance)

GDP GDP

(CO2 Emission Factor)

GDP

(Modal Split)=

AVOIDAVOID SHIFTSHIFT IMPROVEIMPROVEMitigationMitigation

Car Ownership

LEV Share

Dynamic Tracking of Transport Related Emission Mechanism  Dynamic Tracking of Transport Related Emission Mechanism  

7

Page 8: Designing Sustainable Low-Carbon Transport Systems

Feasibility of Policy ImplementationFeasibility of Policy Implementation

[Billion USD]

Increasing limitation to transport investment due to ageing and population decline

Increasing public investment in economic growth

Thailand Japan

What are necessary frameworks to implement policies to realize the future vision?

What are necessary frameworks to implement policies to realize the future vision?

[Billion USD]

Current GDPTotal budget

Share of transportation budget

Current GDPTotal budget

Share of social welfare budget

Share of public work budget

Page 9: Designing Sustainable Low-Carbon Transport Systems

Steps of the Backcasting ApproachSteps of the Backcasting Approach

Capturing Key Causal Relationship of CO2

Emissions from Transport

Selecting Effective Policy Packages to Realize

the Vision

Examining the Feasibility of Policy

Implementation

Visioning Low Carbon Transport Systems

2

1

3 4

Page 10: Designing Sustainable Low-Carbon Transport Systems

Steps of the Backcasting ApproachSteps of the Backcasting Approach

Capturing Key Causal Relationship of CO2

Emissions from Transport

1

Page 11: Designing Sustainable Low-Carbon Transport Systems

Causal Relationship of TransportCausal Relationship of Transport‐‐related COrelated CO2 2 Emissions in AsiaEmissions in Asia::Vicious Circles between Motorization and Urban SprawlVicious Circles between Motorization and Urban Sprawl

11

Economic growth

Income growthIncome growth

Higher car ownershipHigher car ownership

More car use

More car use

Urbanization

Urbanization

Larger built-up

area

Larger built-up

area

Longer travel

distance

Longer travel

distance

Road-oriented development

Road-oriented development

Traffic congestion

Traffic congestion

Economic Damage

Economic Damage

Environmental Problems

Environmental Problems

Technology level

Technology level

More energy consumptionMore energy consumption

Poor access to public transportPoor access to public transport

Motorization (SHIFT)

Urban Sprawl (AVOID)

Disadvantages (IMPROVE)

Car plate auction

Freight traffic restriction zone

Railway/BRTdevelopment

Station‐area development

Emission standards

Expressway development

Car plate restriction

1

Excessive car-park provisionExcessive car-park provision

Page 12: Designing Sustainable Low-Carbon Transport Systems

The Trend of Car Ownership GrowthThe Trend of Car Ownership Growth

12

1

Per capita GDP  [Constant 2003 USD]

Car ownership rate [cars/ 1000 inhabitants]

2011

2010

2010

2006

2010

2010

Nagoya

Tokyo

Shanghai

Beijing

Bangkok

Delhi

Page 13: Designing Sustainable Low-Carbon Transport Systems

The Trend of Traffic CongestionThe Trend of Traffic Congestion

13

0

2

4

6

8

10

12

14

16

18

0246810

k

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600

Bangkok

Tokyo

London

Nagoya

1972

1986

1993

1971

1988

1972

1987

1993

1972

1988

1972

1986

1993

1972

1993

1971

1988

Ro

ad

len

gth

pe

r ca

r(m/c

ar)

Car ownership(car/1,000 inhabitants)Speed (min/km)

1

Page 14: Designing Sustainable Low-Carbon Transport Systems

The Trend of Road DevelopmentThe Trend of Road Development

14

0

20

40

60

80

100

120

0 10,000 20,000 30,000 40,000 50,000

Length (%

 of the

 current levels)

GRP per capita (US$)

Tokyo

20052000

198019701960

1960

1970

1980

1990

19902000

Road

Rail

0

20

40

60

80

100

120

0 5,000 10,000 15,000 20,000 25,000

Length (%

 of the

 current levels)

GRP per capita (US$)

Bangkok

Rail

Road2011

1990

2001

1995

20082004

20031999

2009

0

20

40

60

80

100

0 2,000 4,000 6,000 8,000 10,000 12,000

Length (%

 of the

 current levels)

GRP per capita (US$)

Shanghai

Road

Rail

2007

2006

2006

2003

2003

2000

1997

20001993

0

20

40

60

80

100

120

0 2,000 4,000 6,000 8,000 10,000 12,000

Length (%

 of the

 current levels)

GRP per capita (US$)

Beijing

20092006

2005

1997

1978

1978 1986‐19911992‐1998

2002

Road

Rail

1

Page 15: Designing Sustainable Low-Carbon Transport Systems

20002000 20102010 FutureFuture

Development of Mass Rapid Transit (MRT)Development of Mass Rapid Transit (MRT)1

0 10 20 30 405km

Ü

123km

0 10 20 30 405km

Ü

20km

4,835km

6,641km 11,974km

Megacities in Asian developing countries have started MRT development since the early 2000s

Megacities in Asian developing countries have started MRT development since the early 2000s

4,392km

22.9km 73.3km509km(plan)

0 10 20 30 405km

Ü Ü

4,835km

Ü

Page 16: Designing Sustainable Low-Carbon Transport Systems

~5,000 ~10,000 ~30,000 ~50,000 ~100,000Population[person]

2000 2005 2010

Shanghai (6,400km2)

Pop[million] Rail length[km]

Rail length

City center(114km2)

Urban fringe(550km2)

Suburb(5,737km2)

2000 2005 2010

Bangkok (7,650km2)Pop[million] Rail length[km]

City center(129km2)

Urban fringe(1,051km2)

Suburb(6,473km2)

Rail length

Changes in Urban FormsChanges in Urban Forms1

Page 17: Designing Sustainable Low-Carbon Transport Systems

Steps of the Backcasting ApproachSteps of the Backcasting Approach

Visioning Low Carbon Transport Systems

2

Page 18: Designing Sustainable Low-Carbon Transport Systems

Vision 2050: Urban TransportUrban Transport

18

Hierarchically Connected Compact CityHierarchically Connected Compact City

railway, bus rapid transit, conventional bus, para‐transit, personal mobility

small vehicle, renewable energy 

+ biomass fuel

2

Page 19: Designing Sustainable Low-Carbon Transport Systems

Key Options of the Vision (Urban Transport)Key Options of the Vision (Urban Transport)

Safe Transport to Secure Safe Transport to Secure Communal EducationCommunal Education

Reliable Transport to Reliable Transport to Support Economic GrowthSupport Economic Growth

Diverse Transport to Diverse Transport to Contribute to Healthy LifeContribute to Healthy Life

To form habits not to use carsTo form habits not to use cars

Sub CentersSub Centers

2

CBDCBDTransitTransit‐‐Oriented Polycentric SystemsOriented Polycentric Systems

MultiMulti‐‐Purpose Purpose Transport SystemsTransport Systems

Quality MRT SystemsQuality MRT Systems

A

B

C

Page 20: Designing Sustainable Low-Carbon Transport Systems

Policy Package of Transit-Oriented Polycentric Developmentfor Early-stage Developing Cities with Land-use Control

20

Transit-Oriented Sub Center Development

MRT developmentIntegrated fare system among modesIntegrated fare system among modesComfortable bus stopsComfortable bus stops

Value CaptureValue Capture

Development axes

Curitiba BRT

2 A

Provision of local employment & educationProvision of local employment & education

Page 21: Designing Sustainable Low-Carbon Transport Systems

Policy Package of Quality MRT Developmentfor Early-stage Developing Cities without Land-use Control

2012/10/9 21

MRT Infrastructure/ Management Improvement

Bogota BRT

Traffic controlTraffic controlICT-based operationICT-based operationExpress lines, Large capacity carriersExpress lines, Large capacity carriers

2 B

Page 22: Designing Sustainable Low-Carbon Transport Systems

(Sun, G., LTA)

Punggol LRT• Orbital local network

• 10km, 15 stations

• Connection to MRT

• Automatic operation

Policy Package of Multi-Purpose Transport Developmentfor Developing Mega-cities

22

Feeder Transport ImprovementProvision of feeder circular routesProvision of feeder circular routes

Suburban Urban-Village Development

Singapore LRT

2 C

Neighborhood design connected to transit servicesNeighborhood design connected to transit services

Street improvement for personal mobility & pedestriansStreet improvement for personal mobility & pedestrians

Multi-socioeconomic neighborhood developmentMulti-socioeconomic neighborhood development

Page 23: Designing Sustainable Low-Carbon Transport Systems

Steps of the Backcasting ApproachSteps of the Backcasting Approach

Selecting Effective Policy Packages to Realize

the Vision

3

Page 24: Designing Sustainable Low-Carbon Transport Systems

Testing Development Scenarios of Megacities; Testing Development Scenarios of Megacities; Bangkok, ThailandBangkok, Thailand

20052050 Road‐oriented Development Scenario

2050 Rail‐oriented Development Scenario

SHIFT(Rail Network)

AVOID(Spatial Distribution of Population)

2013/5/30 24

3

Is Rail development more effective than Road development?Is Rail development more effective than Road development?

Page 25: Designing Sustainable Low-Carbon Transport Systems

Estimated Time Saving from Road and Rail Estimated Time Saving from Road and Rail Development (Bangkok)Development (Bangkok)

25

3

0

5

10

15

20

25

30

Develop

men

t cost 

(billion US$)

Dra2

Sra1

Sra2

Rail‐oriented

0.0 

0.5 

1.0 

1.5 

2.0 

0 10 20 30 40 50 60Average

 trip rim

e (h/trip)

Transport volume(million trips)

Rail transport

Do Nothing

*1 In the Do-Nothing case, no investment in transport development would be made from 2005 to 2010.

0

5

10

15

20

25

30Develop

men

t cost

(billion US$)

Rail‐oriented

Do NothingSro1

Sro2

Dro2Dro1

0.0 

0.5 

1.0 

1.5 

2.0 

0 10 20 30 40 50 60Average trip tim

e (h/trip)

Transport volume (million trips)

Road transport

Road‐oriented

Page 26: Designing Sustainable Low-Carbon Transport Systems

Estimated COEstimated CO22 Mitigation in BangkokMitigation in Bangkok

8.1%

8.1% 55.8

55.8%

2005 2050 Rail‐Oriented Development

2050 Road‐Oriented Development

26

Car59%

Rail2%

Bus29%

Walk10%

Car97%

Rail0.2%

Bus3%

Walk0.4%

Car32%

Rail66%

Bus2%

Walk0.4%

3

Page 27: Designing Sustainable Low-Carbon Transport Systems

首都:バンコク首都:バンコク

Khon KeanKhon Kean

200km450㎞ from BangkokPop 240,000Area 230 km2

5 Routes of BRT Planned to operate from 2022

Testing Development Scenarios of MiddleTesting Development Scenarios of Middle‐‐sized Cities;sized Cities;Khon Kean, ThailandKhon Kean, Thailand

27

ZONE境界

幹線道路

CBDエリア

2km

ZONE境界

幹線道路

CBDエリア

ソンテウルート

2km

BRT Pink LineBRT Blue LineBRT Green LineBRT Red LineBRT Yellow Line

ZONE境界

幹線道路

CBDエリア

2km

BangkokBangkok

3

(Nihon Univ.)

Page 28: Designing Sustainable Low-Carbon Transport Systems

The Future Vision of Khon KeanThe Future Vision of Khon Kean

28

Seamless &Hierarchical 

Transportation System

Leverage Advanced 

Technologies

Hierarchical Compact City

Bio Ethanol Production and Ethanol Bus Introduction

ImproveShiftShiftAvoidAvoidWith TOD case in 2022

3

(Nihon Univ.)

Page 29: Designing Sustainable Low-Carbon Transport Systems

Shift

Avoid

Improve

72.6%

Ethanol

HV

38.5%PV->BRT

Estimated COEstimated CO22 Mitigation in Khon KeanMitigation in Khon Kean

29

3

(Nihon Univ.)

Page 30: Designing Sustainable Low-Carbon Transport Systems

Policies Policies in previous studies on Vientianein previous studies on Vientiane3

(Nihon Univ.)

Page 31: Designing Sustainable Low-Carbon Transport Systems

Map of Bus lines

BRT 1

BRT 2

BRT 3

National University of Laos

Friendship Bridge

Map of proposed BRT lines

Development Scenarios of MiddleDevelopment Scenarios of Middle‐‐sized Cities;sized Cities;Vientiane, LaosVientiane, Laos

3

(Nihon Univ.)

Page 32: Designing Sustainable Low-Carbon Transport Systems

LowLow‐‐Carbon Urban Transport Mode by Region Carbon Urban Transport Mode by Region in Thailandin Thailand

Railway (4 cities)LRT (2 cities)BRT (16 cities)

Car (7 cities)

150300

600

Population of a region

[x10,000]

32

3

Page 33: Designing Sustainable Low-Carbon Transport Systems

Steps of the Backcasting ApproachSteps of the Backcasting Approach

Examining the Feasibility of Policy

Implementation

4

Page 34: Designing Sustainable Low-Carbon Transport Systems

Identifying Necessary Levels Identifying Necessary Levels of of MRT DevelopmentMRT Developmentto achieve 70% to achieve 70% COCO22 mitigation target in Urban mitigation target in Urban

TransportTransport

0

2

4

6

8

10

12

14

2005 2015 2025 2035 2045

Mitigation Scenario

70%

CO2排出量[Gt-CO2/year]

Avoid

Shift

Improve

0

2

4

6

8

10

12

14

2005 2015 2025 2035 2045

Mitigation Scenario

70%

CO2排出量[Gt-CO2/year]

Avoid

Shift

Improve

ThailandChina

・・・

4

Length of additional MRT development in Thailand

Rail

LRT・BRT

Length of MRT  (Rail, LRT, BRT) in each city

km

AVOID      : land‐use control (5%/year less expansion of built‐up area) IMPROVE: Increasing LEV share (EV76%, HV23%), 

Improving Energy Efficiencies (by 28%)Improving power generation efficiencies (17.6 times)

Page 35: Designing Sustainable Low-Carbon Transport Systems

Development Cost

2010 2050

International Support

Domestic Investment

Examining Financial Feasibility of the MRT Examining Financial Feasibility of the MRT DevelopmentDevelopment

The Marginal Mitigation Cost decides Effectiveness of Investment depending on Sectors and Regions.

The Marginal Mitigation Cost decides Effectiveness of Investment depending on Sectors and Regions.

4

Effective Investment in the Transport Sector

Urban Transport($/t‐CO2)

All‐Sector Average($/t‐CO2)

741 816

Estimated Marginal Mitigation Cost in Thailand in 2050

9.2% less

Page 36: Designing Sustainable Low-Carbon Transport Systems

DiscussionDiscussion

• What is the challenges of developing low‐carbon transport systems integrated with regional development in Asian developing countries?

• What is the visions of the desirable system?

• How can we realize the vision with measuresin a leapfrog manner?

• Is it feasible to implement such measures?

36