designing efficient hpc, big data, deep learning, and for ... · 11/2/2017  · designing efficient...

59
Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems Dhabaleswar K. (DK) Panda The Ohio State University Email: [email protected]state.edu http://www.cse.ohiostate.edu/~panda Keynote Talk at HPCACChina Conference by

Upload: others

Post on 25-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

Dhabaleswar K. (DK) Panda

The Ohio State University

E‐mail: [email protected]‐state.edu

http://www.cse.ohio‐state.edu/~panda

Keynote Talk at HPCAC‐China Conference

by

Page 2: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 2Network Based Computing Laboratory

Big Data (Hadoop, Spark, 

HBase, Memcached, 

etc.)

Big Data (Hadoop, Spark, 

HBase, Memcached, 

etc.)

Deep Learning(Caffe, TensorFlow, BigDL, 

etc.)

Deep Learning(Caffe, TensorFlow, BigDL, 

etc.)

HPC (MPI, RDMA, Lustre, etc.)

HPC (MPI, RDMA, Lustre, etc.)

Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big Data, and Deep Learning!

Increasing Need to Run these applications on the Cloud!!

Page 3: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 3Network Based Computing Laboratory

Can We Run Big Data and Deep Learning Jobs on Existing HPC Infrastructure?

Physical ComputePhysical Compute

Page 4: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 4Network Based Computing Laboratory

Can We Run Big Data and Deep Learning Jobs on Existing HPC Infrastructure?

Page 5: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 5Network Based Computing Laboratory

Can We Run Big Data and Deep Learning Jobs on Existing HPC Infrastructure?

Page 6: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 6Network Based Computing Laboratory

Can We Run Big Data and Deep Learning Jobs on Existing HPC Infrastructure?

Spark Job

Hadoop Job Deep LearningJob

Page 7: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 7Network Based Computing Laboratory

• Traditional HPC– Message Passing Interface (MPI), including MPI + OpenMP

– Support for PGAS and MPI + PGAS (OpenSHMEM, UPC) 

– Exploiting Accelerators

• Big Data/Enterprise/Commercial Computing– Spark and Hadoop (HDFS, HBase, MapReduce) 

– Memcached is also used for Web 2.0 

• Deep Learning– Caffe, CNTK, TensorFlow, and many more

• Cloud for HPC and BigData– Virtualization with SR‐IOV and Containers

HPC, Big Data, Deep Learning, and Cloud

Page 8: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 8Network Based Computing Laboratory

Supporting  Programming Models for Multi‐Petaflop and Exaflop Systems: Challenges 

Programming ModelsMPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP, OpenACC, Cilk, Hadoop (MapReduce), Spark (RDD, DAG), etc.

Application Kernels/Applications

Networking Technologies(InfiniBand, 40/100GigE, Aries, and Omni‐Path)

Multi‐/Many‐coreArchitectures

Accelerators(GPU and FPGA)

MiddlewareCo‐Design 

Opportunities and 

Challenges across Various 

Layers

PerformanceScalabilityResilience

Communication Library or Runtime for Programming ModelsPoint‐to‐point Communication

Collective Communication

Energy‐Awareness

Synchronization and Locks

I/O andFile Systems

FaultTolerance

Page 9: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 9Network Based Computing Laboratory

Overview of the MVAPICH2 Project• High Performance open‐source MPI Library for InfiniBand, Omni‐Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI‐1), MVAPICH2 (MPI‐2.2 and MPI‐3.0), Started in 2001, First version available in 2002

– MVAPICH2‐X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2‐GDR) and MIC (MVAPICH2‐MIC), Available since 2014

– Support for Virtualization (MVAPICH2‐Virt), Available since 2015

– Support for Energy‐Awareness (MVAPICH2‐EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,825 organizations in 85 countries

– More than 429,000 (> 0.4 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (June ‘17 ranking)• 1st, 10,649,600‐core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China 

• 15th, 241,108‐core (Pleiades) at NASA 

• 20th, 462,462‐core (Stampede) at TACC 

• 44th, 74,520‐core (Tsubame 2.5) at Tokyo Institute of Technology

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio‐state.edu

• Empowering Top500 systems for over a decade

– System‐X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ‐>

– Sunway TaihuLight (1st in Jun’17, 10M cores, 100 PFlops)

Page 10: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 10Network Based Computing Laboratory

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Sep‐04

Feb‐05

Jul‐0

5

Dec‐05

May‐06

Oct‐06

Mar‐07

Aug‐07

Jan‐08

Jun‐08

Nov

‐08

Apr‐09

Sep‐09

Feb‐10

Jul‐1

0

Dec‐10

May‐11

Oct‐11

Mar‐12

Aug‐12

Jan‐13

Jun‐13

Nov

‐13

Apr‐14

Sep‐14

Feb‐15

Jul‐1

5

Dec‐15

May‐16

Oct‐16

Mar‐17

Aug‐17

Num

ber o

f Dow

nloa

ds

Timeline

MV 0.9.4

MV2

 0.9.0

MV2

 0.9.8

MV2

1.0

MV1.0

MV2

1.0.3

MV1.1

MV2

1.4

MV2

1.5

MV2

1.6

MV2

1.7

MV2

1.8

MV2

1.9 M

V22.1

MV2

‐GDR 2.0b

MV2

‐MIC 2.0

MV2

‐Virt 2.2

MV2

‐GDR  2.2rc1

MV2

‐X2.2

MV2

MVAPICH2 Release Timeline and Downloads

Page 11: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 11Network Based Computing Laboratory

Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface(MPI)

PGAS(UPC, OpenSHMEM, CAF, UPC++)

Hybrid ‐‐‐MPI + X(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication RuntimeDiverse APIs and Mechanisms

Point‐to‐point 

Primitives

Collectives Algorithms

Energy‐Awareness

Remote Memory Access

I/O andFile Systems

FaultTolerance

Virtualization Active Messages

Job StartupIntrospection & Analysis

Support for Modern Networking Technology(InfiniBand, iWARP, RoCE, Omni‐Path)

Support for Modern Multi‐/Many‐core Architectures(Intel‐Xeon, OpenPower, Xeon‐Phi, ARM, NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC UMR ODPSR‐IOV

Multi Rail

Transport MechanismsShared Memory

CMA IVSHMEM

Modern Features

MCDRAM* NVLink* CAPI*

* Upcoming

XPMEM*

Page 12: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 12Network Based Computing Laboratory

• Scalability for million to billion processors– Support for highly‐efficient inter‐node and intra‐node communication– Scalable Start‐up– Optimized Collectives using SHArP and Multi‐Leaders– Optimized CMA‐based Collectives

• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, UPC++, …) 

• Integrated Support for GPGPUs• Optimized MVAPICH2 for OpenPower and ARM

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

Page 13: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 13Network Based Computing Laboratory

One‐way Latency: MPI over IB with MVAPICH2

00.20.40.60.81

1.21.41.61.8 Small Message Latency

Message Size (bytes)

Latency (us)

1.111.19

1.011.15

1.04

TrueScale‐QDR ‐ 3.1 GHz Deca‐core (Haswell) Intel PCI Gen3 with IB switchConnectX‐3‐FDR ‐ 2.8 GHz Deca‐core (IvyBridge) Intel PCI Gen3 with IB switchConnectIB‐Dual FDR ‐ 3.1 GHz Deca‐core (Haswell) Intel PCI Gen3 with IB switchConnectX‐4‐EDR ‐ 3.1 GHz Deca‐core (Haswell) Intel PCI Gen3 with IB Switch

Omni‐Path ‐ 3.1 GHz Deca‐core (Haswell) Intel PCI Gen3 with Omni‐Path switch

0

20

40

60

80

100

120TrueScale‐QDRConnectX‐3‐FDRConnectIB‐DualFDRConnectX‐4‐EDROmni‐Path

Large Message Latency

Message Size (bytes)

Latency (us)

Page 14: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 14Network Based Computing Laboratory

TrueScale‐QDR ‐ 3.1 GHz Deca‐core (Haswell) Intel PCI Gen3 with IB switchConnectX‐3‐FDR ‐ 2.8 GHz Deca‐core (IvyBridge) Intel PCI Gen3 with IB switchConnectIB‐Dual FDR ‐ 3.1 GHz Deca‐core (Haswell) Intel PCI Gen3 with IB switch

ConnectX‐4‐EDR ‐ 3.1 GHz Deca‐core (Haswell) Intel PCI Gen3 IB switchOmni‐Path ‐ 3.1 GHz Deca‐core (Haswell) Intel PCI Gen3 with Omni‐Path switch

Bandwidth: MPI over IB with MVAPICH2

0

5000

10000

15000

20000

25000TrueScale‐QDRConnectX‐3‐FDRConnectIB‐DualFDRConnectX‐4‐EDROmni‐Path

Bidirectional Bandwidth

Band

width 

(MBy

tes/sec)

Message Size (bytes)

21,227

12,161

21,983

6,228

24,136

0

2000

4000

6000

8000

10000

12000

14000 Unidirectional Bandwidth

Band

width 

(MBy

tes/sec)

Message Size (bytes)

12,590

3,373

6,356

12,08312,366

Page 15: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 15Network Based Computing Laboratory

Startup Performance on KNL + Omni‐Path

0

5

10

15

20

25

64 128

256

512 1K 2K 4K 8K 16K

32K

64K

Time Taken (Secon

ds)

Number of Processes

MPI_Init & Hello World ‐ Oakforest‐PACS

Hello World (MVAPICH2‐2.3a)

MPI_Init (MVAPICH2‐2.3a)

• MPI_Init takes 22 seconds on 229,376 processes on 3,584 KNL nodes (Stampede2 – Full scale)• 8.8 times faster than Intel MPI at 128K processes (Courtesy: TACC)• At 64K processes, MPI_Init and Hello World takes 5.8s and 21s respectively (Oakforest‐PACS)• All numbers reported with 64 processes per node

5.8s

21s

22s

New designs available in MVAPICH2‐2.3a and as patch for SLURM‐15.08.8 and SLURM‐16.05.1

Page 16: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 16Network Based Computing Laboratory

0

0.05

0.1

0.15

0.2

(4,28) (8,28) (16,28)

Latency (secon

ds)

(Number of Nodes, PPN)

MVAPICH2

MVAPICH2‐SHArP13%

Mesh Refinement Time of MiniAMR

Advanced Allreduce Collective Designs Using SHArP

12%

0

0.1

0.2

0.3

0.4

(4,28) (8,28) (16,28)

Latency (secon

ds)

(Number of Nodes, PPN)

MVAPICH2

MVAPICH2‐SHArP

Avg DDOT Allreduce time of HPCG

SHArP Support is available in MVAPICH2 2.3a

M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning‐based Multi‐Leader Design, SuperComputing '17. 

Page 17: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 17Network Based Computing Laboratory

Performance of MPI_Allreduce On Stampede2 (10,240 Processes)

0

50

100

150

200

250

300

4 8 16 32 64 128 256 512 1024 2048 4096

Latency (us)

Message SizeMVAPICH2 MVAPICH2‐OPT IMPI

0200400600800100012001400160018002000

8K 16K 32K 64K 128K 256KMessage Size

MVAPICH2 MVAPICH2‐OPT IMPI

OSU Micro Benchmark 64 PPN

2.4X

• For MPI_Allreduce latency with 32K bytes, MVAPICH2‐OPT can reduce the latency by 2.4XM. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning‐based Multi‐Leader Design, SuperComputing '17. 

Page 18: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 18Network Based Computing Laboratory

Enhanced MPI_Bcast with Optimized CMA‐based Design

1

10

100

1000

10000

100000

1K 4K 16K 64K 256K 1M 4MMessage Size

KNL (64 Processes)

MVAPICH2‐2.3a

Intel MPI 2017

OpenMPI 2.1.0

Proposed

Latency (us)

1

10

100

1000

10000

100000

Message Size

Broadwell (28 Processes)

MVAPICH2‐2.3a

Intel MPI 2017

OpenMPI 2.1.0

Proposed1

10

100

1000

10000

100000

1K 4K 16K 64K 256K 1M 4MMessage Size

Power8 (160 Processes)

MVAPICH2‐2.3a

OpenMPI 2.1.0

Proposed

• Up to 2x ‐ 4x improvement over existing implementation for 1MB messages• Up to 1.5x – 2x faster than Intel MPI and Open MPI for 1MB messages

Use CMA

UseSHMEM

Use CMA

UseSHMEM

Use CMA

UseSHMEM

• Improvements obtained for large messages only• p‐1 copies with CMA, p copies with Shared memory• Fallback to SHMEM for small messages

S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel‐Assisted MPI Collectives for Multi/Many‐core Systems, IEEE Cluster ’17, BEST Paper Finalist

Page 19: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 19Network Based Computing Laboratory

• Scalability for million to billion processors• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + 

UPC, CAF, UPC++, …) • Integrated Support for GPGPUs• Optimized MVAPICH2 for OpenPower and ARM

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

Page 20: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 20Network Based Computing Laboratory

MVAPICH2‐X for Hybrid MPI + PGAS Applications

• Current Model – Separate Runtimes for OpenSHMEM/UPC/UPC++/CAF and MPI– Possible deadlock if both runtimes are not  progressed

– Consumes more network resource

• Unified communication runtime for MPI, UPC, UPC++, OpenSHMEM, CAF– Available with since 2012 (starting with MVAPICH2‐X 1.9) – http://mvapich.cse.ohio‐state.edu

Page 21: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 21Network Based Computing Laboratory

Application Level Performance with Graph500 and SortGraph500 Execution Time

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models, International Supercomputing Conference (ISC’13), June 2013

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September 2012

05101520253035

4K 8K 16K

Time (s)

No. of Processes

MPI‐SimpleMPI‐CSCMPI‐CSRHybrid (MPI+OpenSHMEM)

13X

7.6X

• Performance of Hybrid (MPI+ OpenSHMEM) Graph500 Design• 8,192 processes

‐ 2.4X improvement over MPI‐CSR‐ 7.6X improvement over MPI‐Simple

• 16,384 processes‐ 1.5X improvement over MPI‐CSR‐ 13X improvement over MPI‐Simple

J. Jose, K. Kandalla, S. Potluri, J. Zhang and D. K. Panda, Optimizing Collective Communication in OpenSHMEM, Int'l Conference on Partitioned Global Address Space Programming Models (PGAS '13), October 2013.

Sort Execution Time

0500

10001500200025003000

500GB‐512 1TB‐1K 2TB‐2K 4TB‐4K

Time (secon

ds)

Input Data ‐ No. of Processes

MPI Hybrid

51%

• Performance of Hybrid (MPI+OpenSHMEM) Sort Application

• 4,096 processes, 4 TB Input Size‐MPI – 2408 sec; 0.16 TB/min‐ Hybrid – 1172 sec; 0.36 TB/min‐ 51% improvement over MPI‐design

Page 22: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 22Network Based Computing Laboratory

Optimized OpenSHMEM with AVX and MCDRAM: Application Kernels Evaluation

Heat Image Kernel

• On heat diffusion based kernels AVX‐512 vectorization showed better performance• MCDRAM showed significant benefits on Heat‐Image kernel for all process counts. 

Combined with AVX‐512 vectorization, it showed up to 4X improved performance

1

10

100

1000

16 32 64 128

Time (s)

No. of processes

KNL (Default)KNL (AVX‐512)KNL (AVX‐512+MCDRAM)Broadwell

Heat‐2D Kernel using Jacobi method

0.1

1

10

100

16 32 64 128

Time (s)

No. of processes

KNL (Default)KNL (AVX‐512)KNL (AVX‐512+MCDRAM)Broadwell

Page 23: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 23Network Based Computing Laboratory

• Scalability for million to billion processors• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + 

UPC, CAF, UPC++, …) • Integrated Support for GPGPUs

– CUDA‐aware MPI– GPUDirect RDMA (GDR) Support– Control Flow Decoupling through GPUDirect Async– Optimized GDR Support

• Optimized MVAPICH2 for OpenPower and ARM

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

Page 24: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 24Network Based Computing Laboratory

At Sender:

At Receiver:MPI_Recv(r_devbuf, size, …);

insideMVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU‐Aware (CUDA‐Aware) MPI Library: MVAPICH2‐GPU 

Page 25: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 25Network Based Computing Laboratory

CUDA‐Aware MPI: MVAPICH2‐GDR 1.8‐2.2 Releases• Support for MPI communication from NVIDIA GPU device memory• High performance RDMA‐based inter‐node point‐to‐point communication 

(GPU‐GPU, GPU‐Host and Host‐GPU)• High performance intra‐node point‐to‐point communication for multi‐GPU 

adapters/node (GPU‐GPU, GPU‐Host and Host‐GPU)• Taking advantage of CUDA IPC (available since CUDA 4.1) in intra‐node 

communication for multiple GPU adapters/node• Optimized and tuned collectives for GPU device buffers• MPI datatype support for point‐to‐point and collective communication from 

GPU device buffers• Unified memory

Page 26: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 26Network Based Computing Laboratory

01000200030004000

1 4 16 64 256 1K 4K

MV2‐GDR2.2MV2‐GDR2.0bMV2 w/o GDR

GPU‐GPU Internode Bi‐Bandwidth

Message Size (bytes)

Bi‐Ban

dwidth (M

B/s)

051015202530

0 2 8 32 128 512 2K

MV2‐GDR2.2 MV2‐GDR2.0bMV2 w/o GDR

GPU‐GPU  internode latency

Message Size (bytes)

Latency (us)

MVAPICH2‐GDR‐2.2Intel Ivy Bridge (E5‐2680 v2) node ‐ 20 cores

NVIDIA Tesla K40c GPUMellanox Connect‐X4 EDR HCA

CUDA 8.0Mellanox OFED 3.0 with GPU‐Direct‐RDMA

10x2X

11x

Performance of MVAPICH2‐GPU with GPU‐Direct RDMA (GDR) 

2.18us0

50010001500200025003000

1 4 16 64 256 1K 4K

MV2‐GDR2.2MV2‐GDR2.0bMV2 w/o GDR

GPU‐GPU Internode Bandwidth

Message Size (bytes)

Band

width 

(MB/s) 11X

2X

3X

Page 27: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 27Network Based Computing Laboratory

• Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)• HoomdBlue Version 1.0.5

• GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application‐Level Evaluation (HOOMD‐blue)

0

500

1000

1500

2000

2500

4 8 16 32

Average Time Step

s per 

second

 (TPS)

Number of Processes 

MV2 MV2+GDR

0500100015002000250030003500

4 8 16 32Average Time Step

s per 

second

 (TPS)

Number of Processes 

64K Particles  256K Particles 

2X2X

Page 28: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 28Network Based Computing Laboratory

Application‐Level Evaluation (Cosmo) and Weather Forecasting in Switzerland

0

0.2

0.4

0.6

0.8

1

1.2

16 32 64 96Normalized

 Executio

n Time

Number of GPUs

CSCS GPU cluster

Default Callback‐based Event‐based

00.20.40.60.81

1.2

4 8 16 32

Normalized

 Executio

n Time

Number of GPUs

Wilkes GPU Cluster

Default Callback‐based Event‐based

• 2X improvement on 32 GPUs nodes• 30% improvement on 96 GPU nodes (8 GPUs/node) 

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non‐Contiguous Data Movement Processing on Modern GPU‐enabled Systems, IPDPS’16

On‐going collaboration with CSCS and MeteoSwiss (Switzerland) in co‐designing MV2‐GDR and Cosmo Application

Cosmo model: http://www2.cosmo‐model.org/content/tasks/operational/meteoSwiss/

Page 29: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 29Network Based Computing Laboratory

Latency oriented: Kernel+Send and Recv+Kernel

MVAPICH2‐GDS: Preliminary Results Overlap with host computation/communication 

• Latency Oriented: Able to hide the kernel launch overhead– 8‐15% improvement compared to default behavior 

• Overlap: Asynchronously to offload queue the Communication and computation tasks– 89% overlap with host computation at 128‐Byte message size 

Intel Sandy Bridge, NVIDIA Tesla K40c and Mellanox FDR HCACUDA 8.0, OFED 3.4, Each kernel is ~50us

Will be available in a public release soon 

0

20

40

60

80

1 4 16 64 256 1K 4K

Default MPI Enhaced MPI+GDS

Message Size (bytes)

Latency (us)

020406080100

1 4 16 64 256 1K 4K

Default MPI Enhanced MPI+GDS

Message Size (bytes)

Overla

p (%

)

Page 30: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 30Network Based Computing Laboratory

0

2000

4000

6000

1 2 4 8 16 32 641282565121K 2K 4KBand

width (M

B/s)

Message Size (Bytes)

GPU‐GPU Inter‐node Bi‐Bandwidth

MV2‐(NO‐GDR) MV2‐GDR‐2.3a

0

1000

2000

3000

4000

1 2 4 8 16 32 641282565121K 2K 4KBand

width (M

B/s)

Message Size (Bytes)

GPU‐GPU Inter‐node Bandwidth

MV2‐(NO‐GDR) MV2‐GDR‐2.3a

0

10

20

30

0 1 2 4 8 16 32 64 128256512 1K 2K 4K 8K

Latency (us)

Message Size (Bytes)

GPU‐GPU Inter‐node Latency

MV2‐(NO‐GDR) MV2‐GDR‐2.3a

MVAPICH2‐GDR‐2.3a (upcoming)Intel Haswell  (E5‐2687W) node ‐ 20 cores

NVIDIA Pascal P100 GPUMellanox Connect‐X5 EDR HCA

CUDA 8.0Mellanox OFED 4.0 with GPU‐Direct‐RDMA

10x

9x

Optimized MVAPICH2‐GDR Design 

1.91us

11X

Page 31: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 31Network Based Computing Laboratory

• Scalability for million to billion processors• Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + 

UPC, CAF, UPC++, …) • Integrated Support for GPGPUs• Optimized MVAPICH2 for OpenPower and ARM

Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale

Page 32: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 32Network Based Computing Laboratory

0

0.2

0.4

0.6

0.8

1

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Latency (us)

MVAPICH2

Intra‐node Point‐to‐Point Performance on OpenPower

0

10000

20000

30000

40000

1 2 4 8 16 32 64 128

256

512

1K 2K 4K 8K 16K

32K

64K

128K

512K 1M

Band

width (M

B/s) MVAPICH2

0

20000

40000

60000

80000

1 2 4 8 16 32 64 128

256

512

1K 2K 4K 8K 16K

32K

64K

128K

256K

512K 1M

Bidirectional Bandw

idth MVAPICH2

Platform: OpenPOWER (Power8‐ppc64le) processor with 160 cores dual‐socket CPU. Each socket contains 80 cores.

0

20

40

60

80

8K 16K 32K 64K 128K 256K 512K 1M 2M

Latency (us)

MVAPICH2

Small Message Latency Large Message Latency

Bi‐directional BandwidthBandwidth

Page 33: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 33Network Based Computing Laboratory

0

1

2

3

4

0 1 2 4 8 16 32 64 256 512 1K 2K 4K

Latency (us)

MVAPICH2

Inter‐node Point‐to‐Point Performance on OpenPower

0

5000

10000

15000

1 2 4 8 16 32 64 128

256

512

1K 2K 4K 8K 16K

32K

64K

128K

256K

512K 1M

Band

width (M

B/s) MVAPICH2

0

10000

20000

30000

1 2 4 8 16 32 64 128

256

512

1K 2K 4K 8K 16K

32K

64K

128K

256K

512K 1M

Bidirectional Bandw

idth MVAPICH2

Platform: Two nodes of OpenPOWER (Power8‐ppc64le) CPU using Mellanox EDR (MT4115) HCA.

0

50

100

150

200

8K 16K 32K 64K 128K 256K 512K 1M 2M

Latency (us)

MVAPICH2

Small Message Latency Large Message Latency

Bi‐directional BandwidthBandwidth

Page 34: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 34Network Based Computing Laboratory

05

101520

1 2 4 8 16 32 64 128

256

512 1K 2K 4K 8K

Latency (us)

Message Size (Bytes)

INTRA‐NODE LATENCY (SMALL)

INTRA‐SOCKET(NVLINK) INTER‐SOCKET

MVAPICH2‐GDR: Performance on OpenPOWER (NVLink + Pascal)

010203040

1 4 16 64 256 1K 4K 16K

64K

256K 1M 4M

Band

width (G

B/sec)

Message Size (Bytes)

INTRA‐NODE BANDWIDTH

INTRA‐SOCKET(NVLINK) INTER‐SOCKET

0

2

4

6

8

1 4 16 64 256 1K 4K 16K

64K

256K 1M 4M

Band

width (G

B/sec)

Message Size (Bytes)

INTER‐NODE BANDWIDTH

Platform: OpenPOWER (ppc64le) nodes equipped with a dual‐socket CPU, 4 Pascal P100‐SXM GPUs, and 4X‐FDR InfiniBand Inter‐connect

0

200

400

16K 32K 64K 128K256K512K 1M 2M 4M

Latency (us)

Message Size (Bytes)

INTRA‐NODE LATENCY (LARGE)

INTRA‐SOCKET(NVLINK) INTER‐SOCKET

0

10

20

30

40

1 2 4 8 16 32 64 128

256

512 1K 2K 4K 8K

Latency (us)

Message Size (Bytes)

INTER‐NODE LATENCY (SMALL)

0200400600800

1000

Latency (us)

Message Size (Bytes)

INTER‐NODE LATENCY (LARGE)

Intra‐node Bandwidth: 32 GB/sec (NVLINK)Intra‐node Latency: 16.8 us (without GPUDirectRDMA)

Inter‐node Latency: 22 us (without GPUDirectRDMA) Inter‐node Bandwidth: 6 GB/sec (FDR)Will be available in upcoming MVAPICH2‐GDR 

Page 35: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 35Network Based Computing Laboratory

0

1

2

3

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Latency (us)

MVAPICH2

Intra‐node Point‐to‐point Performance on ARMv8

0

1000

2000

3000

4000

5000

Band

width (M

B/s) MVAPICH2

0

2000

4000

6000

8000

10000

Bidirectional Bandw

idth MVAPICH2

Platform: ARMv8 (aarch64) MIPS processor with 96 cores dual‐socket CPU. Each socket contains 48 cores.

0

200

400

600

8K 16K 32K 64K 128K 256K 512K 1M 2M

Latency (us)

MVAPICH2

Small Message Latency Large Message Latency

Bi‐directional BandwidthBandwidth

Will be available in 

upcoming MVAPICH2 

0.74 microsec (4 bytes)

Page 36: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 36Network Based Computing Laboratory

• Traditional HPC– Message Passing Interface (MPI), including MPI + OpenMP

– Support for PGAS and MPI + PGAS (OpenSHMEM, UPC) 

– Exploiting Accelerators

• Big Data/Enterprise/Commercial Computing– Spark and Hadoop (HDFS, HBase, MapReduce) 

– Memcached is also used for Web 2.0 

• Deep Learning– Caffe, CNTK, TensorFlow, and many more

• Cloud for HPC and BigData– Virtualization with SR‐IOV and Containers

HPC, Big Data, Deep Learning, and Cloud

Page 37: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 37Network Based Computing Laboratory

How Can HPC Clusters with High‐Performance Interconnect and Storage Architectures Benefit Big Data Applications?

Bring HPC and Big Data processing into a “convergent trajectory”!

What are the major What are the major bottlenecks in current Big 

Data processing middleware (e.g. Hadoop, Spark, and Memcached)?

Can the bottlenecks be alleviated with new designs by taking advantage of HPC technologies?

Can RDMA‐enabledhigh‐performance interconnectsbenefit Big Data processing?

Can HPC Clusters with high‐performance 

storage systems (e.g. SSD, parallel file 

systems) benefit Big Data applications?

How much performance benefits

can be achieved through enhanced 

designs?

How to design How to design benchmarks for  evaluating the 

performance of Big Data middleware on 

HPC clusters?

Page 38: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 38Network Based Computing Laboratory

Designing Communication and I/O Libraries for Big Data Systems: Challenges  

Big Data Middleware(HDFS, MapReduce, HBase, Spark and Memcached)

Networking Technologies(InfiniBand, 1/10/40/100 GigE 

and Intelligent NICs)

Storage Technologies(HDD, SSD, NVM, and NVMe‐

SSD)

Programming Models(Sockets)

Applications

Commodity Computing System Architectures

(Multi‐ and Many‐core architectures and accelerators)

RDMA?

Communication and I/O LibraryPoint‐to‐PointCommunication

QoS & Fault Tolerance

Threaded Modelsand Synchronization

Performance TuningI/O and File Systems

Virtualization (SR‐IOV)

Benchmarks

Upper level Changes?Upper level Changes?

Page 39: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 39Network Based Computing Laboratory

• RDMA for Apache Spark 

• RDMA for Apache Hadoop 2.x (RDMA‐Hadoop‐2.x)– Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions

• RDMA for Apache HBase

• RDMA for Memcached (RDMA‐Memcached)

• RDMA for Apache Hadoop 1.x (RDMA‐Hadoop)

• OSU HiBD‐Benchmarks (OHB)

– HDFS, Memcached, HBase, and Spark Micro‐benchmarks

• http://hibd.cse.ohio‐state.edu

• Users Base: 250 organizations from 31 countries

• More than 23,500 downloads from the project site

The High‐Performance Big Data (HiBD) Project

Available for InfiniBand and RoCEAlso run on Ethernet

Page 40: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 40Network Based Computing Laboratory

050100150200250300350400

80 120 160

Execution Time (s)

Data Size (GB)

IPoIB (EDR)OSU‐IB (EDR)

0100200300400500600700800

80 160 240

Execution Time (s)

Data Size (GB)

IPoIB (EDR)OSU‐IB (EDR)

Performance Numbers of RDMA for Apache Hadoop 2.x –RandomWriter & TeraGen in OSU‐RI2 (EDR)

Cluster with 8 Nodes with a total of 64 maps

• RandomWriter– 3x improvement over IPoIB 

for 80‐160 GB file size

• TeraGen– 4x improvement over IPoIB for 

80‐240 GB file size

RandomWriter TeraGen

Reduced by 3x Reduced by 4x

Page 41: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 41Network Based Computing Laboratory

• InfiniBand FDR, SSD, 32/64 Worker Nodes, 768/1536 Cores, (768/1536M 768/1536R)

• RDMA vs. IPoIB with 768/1536 concurrent tasks, single SSD per node. – 32 nodes/768 cores: Total time reduced by 37% over IPoIB (56Gbps) 

– 64 nodes/1536 cores: Total time reduced by 43% over IPoIB (56Gbps) 

Performance Evaluation of RDMA‐Spark on SDSC Comet – HiBench PageRank

32 Worker Nodes, 768 cores, PageRank Total Time 64 Worker Nodes, 1536 cores, PageRank Total Time

050

100150200250300350400450

Huge BigData Gigantic

Time (sec)

Data Size (GB)

IPoIB

RDMA

0

100

200

300

400

500

600

700

800

Huge BigData Gigantic

Time (sec)

Data Size (GB)

IPoIB

RDMA

43%37%

Page 42: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 42Network Based Computing Laboratory

Performance Evaluation on SDSC Comet: Astronomy Application

• Kira Toolkit1: Distributed astronomy image processing toolkit implemented using Apache Spark. 

• Source extractor application, using a 65GB dataset from the SDSS DR2 survey that comprises 11,150 image files.

• Compare RDMA Spark performance with the standard apache implementation using IPoIB.

1. Z. Zhang, K. Barbary, F. A. Nothaft, E.R. Sparks, M.J. Franklin, D.A. Patterson, S. Perlmutter. Scientific Computing meets Big Data Technology: An Astronomy Use Case. CoRR, vol: abs/1507.03325, Aug 2015.

020406080100120

RDMA Spark Apache Spark(IPoIB)

21 %

Execution times (sec) for Kira SE benchmark using 65 GB dataset, 48 cores.

M. Tatineni, X. Lu, D. J. Choi, A. Majumdar, and D. K. Panda, Experiences and Benefits of Running RDMA Hadoop and Spark on SDSC Comet,  XSEDE’16, July 2016

Page 43: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 43Network Based Computing Laboratory

• Traditional HPC– Message Passing Interface (MPI), including MPI + OpenMP

– Support for PGAS and MPI + PGAS (OpenSHMEM, UPC) 

– Exploiting Accelerators

• Big Data/Enterprise/Commercial Computing– Spark and Hadoop (HDFS, HBase, MapReduce) 

– Memcached is also used for Web 2.0 

• Deep Learning– Caffe, CNTK, TensorFlow, and many more

• Cloud for HPC and BigData– Virtualization with SR‐IOV and Containers

HPC, Big Data, Deep Learning, and Cloud

Page 44: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 44Network Based Computing Laboratory

• Deep Learning frameworks are a different game altogether– Unusually large message sizes (order of megabytes)

– Most communication based on GPU buffers

• Existing State‐of‐the‐art– cuDNN, cuBLAS, NCCL ‐‐> scale‐up performance

– CUDA‐Aware MPI ‐‐>  scale‐out performance

• For small and medium message sizes only!

• Proposed: Can we co‐design the MPI runtime (MVAPICH2‐GDR) and the DL framework (Caffe) to achieve both?

– Efficient Overlap of Computation and Communication

– Efficient Large‐Message Communication (Reductions)

– What application co‐designs are needed to exploit communication‐runtime co‐designs?

Deep Learning: New Challenges for MPI Runtimes

Scale‐up

 Perform

ance

Scale‐out Performance

cuDNN

NCCL

gRPC

Hadoop

ProposedCo‐Designs

MPIcuBLAS

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S‐Caffe: Co‐designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)

Page 45: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 45Network Based Computing Laboratory

• NCCL 1.x had some limitations– Only worked for a single node; no scale‐out on multiple nodes

– Degradation across IOH (socket) for scale‐up (within a node)

• We propose optimized MPI_Bcast design that exploits NCCL [1]

– Communication of very large GPU buffers

– Scale‐out on large number of dense multi‐GPU nodes

Efficient Broadcast: MVAPICH2‐GDR and NCCL

1. A. A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda, Efficient Large Message Broadcast using NCCL and CUDA‐Aware MPI for Deep Learning. In Proceedings of the 23rd European MPI Users' Group Meeting (EuroMPI 2016). [Best Paper Nominee]

2. A. A. Awan, C‐H. Chu, H. Subramoni, and D. K. Panda. Optimized Broadcast for Deep Learning Workloads on Dense‐GPU InfiniBand Clusters: MPI or NCCL?, arXiv ’17 (https://arxiv.org/abs/1707.09414)

1

32

4

Internode Comm. (Knomial)

1 2

CPU

PLX

3 4

PLX

Intranode Comm.(NCCL Ring)

Ring Direction

051015202530

2 4 8 32 64 128

Training

Time (secon

ds)

No. of GPUs

MV2‐GDR‐NCCL MV2‐GDR‐Opt

• Hierarchical Communication that efficiently exploits:– CUDA‐Aware MPI_Bcast in MV2‐GDR 

– NCCL Broadcast for intra‐node transfers

• Can pure MPI‐level designs be done that achieve similar or better performance than NCCL‐based approach? [2]

051015202530

2 4 8 16 32 64

Training

Time (secon

ds)

No. of GPUs

MV2‐GDR MV2‐GDR‐NCCL

VGG Training with CNTK

Page 46: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 46Network Based Computing Laboratory

• Caffe : A flexible and layered Deep Learning framework.

• Benefits and Weaknesses– Multi‐GPU Training within a single node

– Performance degradation for GPUs across different sockets 

– Limited Scale‐out

• OSU‐Caffe: MPI‐based Parallel Training – Enable Scale‐up (within a node) and Scale‐out (across 

multi‐GPU nodes)

– Scale‐out on 64 GPUs for training CIFAR‐10 network on CIFAR‐10 dataset

– Scale‐out on 128 GPUs for training GoogLeNet network on ImageNet dataset

OSU‐Caffe: Scalable Deep Learning

0

50

100

150

200

250

8 16 32 64 128

Training

 Tim

e (secon

ds)

No. of GPUs

GoogLeNet (ImageNet) on 128 GPUs

Caffe OSU‐Caffe (1024) OSU‐Caffe (2048)

Invalid use caseOSU‐Caffe publicly available from

http://hidl.cse.ohio‐state.edu/

Page 47: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 47Network Based Computing Laboratory

0100200300

2 4 8 16 32 64 128

Latency (m

s)

Message Size (MB)

Reduce – 192 GPUsLarge Message Optimized Collectives for Deep Learning

0

100

200

128 160 192

Latency (m

s)

No. of GPUs

Reduce – 64 MB

0100200300

16 32 64

Latency (m

s)

No. of GPUs

Allreduce ‐ 128 MB

0

50

100

2 4 8 16 32 64 128

Latency (m

s)

Message Size (MB)

Bcast – 64 GPUs

0

50

100

16 32 64

Latency (m

s)

No. of GPUs

Bcast  128 MB

• MV2‐GDR provides optimized collectives for large message sizes 

• Optimized Reduce, Allreduce, and Bcast 

• Good scaling with large number of GPUs

• Available in MVAPICH2‐GDR 2.2GA

0100200300

2 4 8 16 32 64 128

Latency (m

s)

Message Size (MB)

Allreduce – 64 GPUs

Page 48: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 48Network Based Computing Laboratory

• Initial Evaluation shows promising performance gains for MVAPICH2‐GDR 2.3a* compared to Baidu‐allreduce

MVAPICH2‐GDR vs. Baidu‐allreduce

*MVAPICH2‐GDR 2.3a will be available soon

110

1001000100001000001000000

Latency (us) ‐log scale

Message Size (bytes)

8 GPUs (4 nodes log scale‐allreduce vs MVAPICH2‐GDR (MPI_Allreduce)

Baidu‐allreduce MVAPICH2‐GDR

~30X better~11% improvement

Page 49: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 49Network Based Computing Laboratory

X. Lu, H. Shi, M. H. Javed, R. Biswas, and D. K. Panda, Characterizing Deep Learning over Big Data (DLoBD) Stacks on RDMA‐capable Networks, HotI 2017.

High‐Performance Deep Learning over Big Data (DLoBD) Stacks• Benefits of Deep Learning over Big Data (DLoBD)

Easily integrate deep learning components into Big Data processing workflow

Easily access the stored data in Big Data systems No need to set up new dedicated deep learning clusters; 

Reuse existing big data analytics clusters • Challenges

Can RDMA‐based designs in DLoBD stacks improve performance, scalability, and resource utilization on high‐performance interconnects, GPUs, and multi‐core CPUs? 

What are the performance characteristics of representative DLoBD stacks on RDMA networks?

• Characterization on DLoBD Stacks CaffeOnSpark, TensorFlowOnSpark, and BigDL IPoIB vs. RDMA; In‐band communication vs. Out‐of‐band 

communication; CPU vs. GPU; etc. Performance, accuracy, scalability, and resource utilization  RDMA‐based DLoBD stacks (e.g., BigDL over RDMA‐Spark) 

can achieve 2.6x speedup compared to the IPoIB based scheme, while maintain similar accuracy

0

20

40

60

10

1010

2010

3010

4010

5010

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Acc

urac

y (%

)

Epoc

hs T

ime

(sec

s)

Epoch Number

IPoIB-TimeRDMA-TimeIPoIB-AccuracyRDMA-Accuracy

2.6X

Page 50: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 50Network Based Computing Laboratory

• Traditional HPC– Message Passing Interface (MPI), including MPI + OpenMP

– Support for PGAS and MPI + PGAS (OpenSHMEM, UPC) 

– Exploiting Accelerators

• Big Data/Enterprise/Commercial Computing– Spark and Hadoop (HDFS, HBase, MapReduce) 

– Memcached is also used for Web 2.0 

• Deep Learning– Caffe, CNTK, TensorFlow, and many more

• Cloud for HPC and BigData– Virtualization with SR‐IOV and Containers

HPC, Big Data, Deep Learning, and Cloud

Page 51: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 51Network Based Computing Laboratory

• Virtualization has many benefits– Fault‐tolerance– Job migration– Compaction

• Have not been very popular in HPC due to overhead associated with Virtualization

• New SR‐IOV (Single Root – IO Virtualization) support available with Mellanox InfiniBand adapters changes the field

• Enhanced MVAPICH2 support for SR‐IOV• MVAPICH2‐Virt 2.2 supports:

– OpenStack, Docker, and singularity

Can HPC and Virtualization be Combined?

J. Zhang, X. Lu, J. Jose, R. Shi and D. K. Panda, Can Inter‐VM Shmem Benefit MPI Applications on SR‐IOV based Virtualized InfiniBand Clusters? EuroPar'14J. Zhang, X. Lu, J. Jose, M. Li, R. Shi and D.K. Panda, High Performance MPI Libray over SR‐IOV enabled InfiniBand Clusters, HiPC’14    J. Zhang, X .Lu, M. Arnold and D. K. Panda, MVAPICH2 Over OpenStack with SR‐IOV: an Efficient Approach to build HPC Clouds, CCGrid’15   

Page 52: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 52Network Based Computing Laboratory

0

50

100

150

200

250

300

350

400

milc leslie3d pop2 GAPgeofem zeusmp2 lu

Execution Time (s)

MV2‐SR‐IOV‐Def

MV2‐SR‐IOV‐Opt

MV2‐Native

1%9.5%

0

1000

2000

3000

4000

5000

6000

22,20 24,10 24,16 24,20 26,10 26,16

Execution Time (m

s)

Problem Size (Scale, Edgefactor)

MV2‐SR‐IOV‐Def

MV2‐SR‐IOV‐Opt

MV2‐Native2%

• 32 VMs, 6 Core/VM 

• Compared to Native, 2‐5% overhead for Graph500 with 128 Procs

• Compared to Native, 1‐9.5% overhead for SPEC MPI2007 with 128 Procs

Application‐Level Performance on Chameleon

SPEC MPI2007Graph500

5%

Page 53: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 53Network Based Computing Laboratory

0

10

20

30

40

50

60

70

80

90

100

MG.D FT.D EP.D LU.D CG.D

Execution Time (s)

Container‐Def

Container‐Opt

Native

• 64 Containers across 16 nodes, pining 4 Cores per Container 

• Compared to Container‐Def, up to 11% and 73% of execution time reduction for NAS and Graph 500

• Compared to Native, less than 9 % and 5% overhead for NAS and Graph 500

Application‐Level Performance on Docker with MVAPICH2

Graph 500NAS

11%

0

50

100

150

200

250

300

1Cont*16P 2Conts*8P 4Conts*4P

BFS Execution Time (m

s)

Scale, Edgefactor (20,16)

Container‐Def

Container‐Opt

Native

73%

Page 54: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 54Network Based Computing Laboratory

0

500

1000

1500

2000

2500

3000

22,16 22,20 24,16 24,20 26,16 26,20

BFS Execution Time (m

s)

Problem Size (Scale, Edgefactor)

Graph500

Singularity

Native

0

50

100

150

200

250

300

CG EP FT IS LU MG

Execution Time (s)

NPB Class D

Singularity

Native

• 512 Processes across 32 nodes

• Less than 7% and 6% overhead for NPB and Graph500, respectively

Application‐Level Performance on Singularity with MVAPICH2

7%

6%

J. Zhang, X .Lu and D. K. Panda, Is Singularity‐based Container Technology Ready for Running MPI Applications on HPC Clouds?, UCC ’17   

Page 55: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 55Network Based Computing Laboratory

• Next generation HPC systems need to be designed with a holistic view of Big Data, Deep Learning and Cloud 

• Presented some of the approaches and results along these directions

• Enable Big Data, Deep Learning and Cloud community to take advantage of modern HPC technologies 

• Many other open issues need to be solved

• Next generation HPC professionals need to be trained along these directions

Concluding Remarks

Page 56: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 56Network Based Computing Laboratory

Funding AcknowledgmentsFunding Support by

Equipment Support by

Page 57: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 57Network Based Computing Laboratory

Personnel AcknowledgmentsCurrent Students 

– A. Awan (Ph.D.)

– M. Bayatpour (Ph.D.)

– S. Chakraborthy  (Ph.D.)

– C.‐H. Chu (Ph.D.)

Past Students – A. Augustine (M.S.)

– P. Balaji (Ph.D.)

– S. Bhagvat (M.S.)

– A. Bhat (M.S.) 

– D. Buntinas (Ph.D.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– R. Rajachandrasekar (Ph.D.)

– G. Santhanaraman (Ph.D.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Sur (Ph.D.)

– H. Subramoni (Ph.D.)

– K. Vaidyanathan (Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

Past Research Scientist– K. Hamidouche

– S. Sur

Past Post‐Docs– D. Banerjee

– X. Besseron

– H.‐W. Jin

– W. Huang (Ph.D.)

– W. Jiang (M.S.)

– J. Jose (Ph.D.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– K. Kulkarni (M.S.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– A. Moody (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)

– S. Guganani (Ph.D.)

– J. Hashmi (Ph.D.)

– N. Islam (Ph.D.)

– M. Li (Ph.D.)

– J. Lin

– M. Luo 

– E. Mancini

Current Research Scientists– X. Lu

– H. Subramoni

Past Programmers– D. Bureddy

– J. Perkins

Current Research Specialist– J. Smith

– M. Arnold

– M. Rahman (Ph.D.)

– D. Shankar (Ph.D.)

– A. Venkatesh (Ph.D.)

– J. Zhang (Ph.D.)

– S. Marcarelli

– J. Vienne

– H. Wang

Current Post‐doc– A. Ruhela

Page 58: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 58Network Based Computing Laboratory

• Looking for Bright and Enthusiastic Personnel to join as 

– Post‐Doctoral Researchers (博士后)

– PhD Students (博士研究生)

– MPI Programmer/Software Engineer (MPI软件开发工程师)

– Hadoop/Big Data Programmer/Software Engineer (大数据软件开发工程师)

• If interested, please contact me at this conference and/or send an e‐mail to [email protected]‐state.edu or [email protected]‐state.edu

Multiple Positions Available in My Group

Page 59: Designing Efficient HPC, Big Data, Deep Learning, and for ... · 11/2/2017  · Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

HPCAC‐China ‘17 59Network Based Computing Laboratory

Thank You!

Network‐Based Computing Laboratoryhttp://nowlab.cse.ohio‐state.edu/

[email protected]‐state.edu

The High‐Performance MPI/PGAS Projecthttp://mvapich.cse.ohio‐state.edu/

The High‐Performance Deep Learning Projecthttp://hidl.cse.ohio‐state.edu/

The High‐Performance Big Data Projecthttp://hibd.cse.ohio‐state.edu/