design studies and sensor test for the beam calorimeter of the ilc detector e. kuznetsova desy...

38
Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Upload: lynne-allen

Post on 15-Jan-2016

230 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector

E. Kuznetsova DESY Zeuthen

Page 2: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

a facility for precision measurements

International Linear Collider (ILC) – why?e+e- √s = 500 GeV in ~2015

H f (Z, W-)

f (Z, W+)

-

e+

e-

Z0

-

~

χ0

+~ +

χ0

LC

(hep-ph/0510088)

Page 3: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

International Linear Collider (ILC)

√s [GeV] 500

Charge per bunch, N 2x1010

Beam size, x [nm] 655

Beam size, y [nm] 5.7

Bunch length, z [m] 300

Luminosity, L [cm-2s-1] 2x1034

Nominal parameters (Aug.2005)e+e-, e-e- (e, )

90 GeV ≤ √s ≤ 500 GeV (1 TeV)

polarized beams

2-20 mrad crossing angle

Page 4: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

ILC Detector - Large Detector Concept (LDC)

“Particle flow method” (PFLOW) : TPC + calorimetry

Ejet/Ejet ≈ 30%/√E

B = 4 T

Page 5: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Beamstrahlung at ILCN = 2x1010; x = 655 nm; y = 5.7

nm

n = 1.26 (ILC)

TESLA; z = 365 cm

B = 4 T

Per bunch crossing @ 500 GeV:

TESLA 22 TeV20 mrad crossing angle design

66 TeV

~20 mrad

~1 mrad

Page 6: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Very Forward Region of the LDC

Detector hermeticityLuminosity measurements (LumiCal)Fast Beam diagnostics (BeamCal)

Page 7: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

LumiCal and luminosity measurementsLuminosity accuracy goal L/L ~ 2x10-4

3

1

d

d

dd

dL

dt

dNmax

min

if min = 30 mradmax = 75 mrad

1 year:~109 events (L/L)stat ~ 10-4

Cross section calculation

polar angle measurements

~ 2()sys/

(L/L)sys

Si/W calorimeter(26-141) mrad

Page 8: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

BeamCal: motivation

Beam diagnostics:

Low angle detection:

ILC; z = 355 cm

+ vertical offset of 10nm

(5.6-26.6) mrad

σ ~ 102 fb (SPS1a) σ ~ 106 fb

-

e+

e-

Z0

-

~

χ0

+

~ +

χ0 e+

e-

e+

e-

+

-

Page 9: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

BeamCal: requirements

Diamond-Tungsten sandwich calorimeter

•High radiation hardness (up to 10 MGy/year)•Small Moliere radius and high granularity•Wide dynamic range

Page 10: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

 Silicon Diamond

Band gap [eV] 1.12 5.47

Resistivity, W×cm 2.3×105 1013-1016

Breakdown field, V/cm 3×105 107

Dielectric constant 11.9 5.7

Energy/(e--h pair), eV 3.6 13

Average e--h number per 100 mm (for MIP) 9200 3600

Mobility, cm2/(V×s)

e- 1350 up to 4500

h 480 up to 3800

T.Behnke et al., 2001

Why diamond?

•Resistant enough to e/m radiation (at least for low energy)

•Comparison with silicon:

Page 11: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Simulation studies of the calorimeter performance•TESLA Detector design

Z - segmentation :

tungsten 3.5 mm Layer = = 1 X0

diamond 0.5 mm

(r,) - segmentation :

tungsten absorber + -> RM ~ 1 cm

diamond sensor

cell size ~ 0.5 cm

Page 12: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Simulation Studies of the calorimeter performanceEvent – 50-250 GeV e-

Background – pairs from 1 bunch crossing (“Guinea-Pig”)Full detector simulation – BRAHMS (GEANT3)

Statistics: 500 bunch crossings

Page 13: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Simulation studies: efficiency

Page 14: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Simulation studies: fake rate

~2% of “fake” e- of E > 50 GeVfor the chosen parameters

• In 10% of bunch crossing a “high” energy e- occurs• BG fluctuations • The reconstruction is not ideal

pure BGE> 20 GeV

pure BGafter reco

Page 15: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Simulation studies: energy resolutionintrinsic /E=22%/√E

with BG (example)

Page 16: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Requirements from the simulation studies:• Dynamic range – 10-105 MIP/cm2

• Digitization - 10 bit (considered segmentation)

Page 17: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Sensor tests: pCVD diamonds

Polycrystalline Chemical Vapour Deposition Diamonds

Typical growth rate : ( 0.1 – 10 ) m/hr

Si

•Defects at the grain boundaries•Graphite phase presence•Si, N impurities

substrate side

growth side

Page 18: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Sensor tests: samples

Requirements:- stability under irradiation- linearity of response

Samples:Fraunhofer IAF, Element

Six

First step - Fraunhofer IAF (Freiburg) :

• CVD diamond 12 x 12 mm2

• 300 and 200 m thickness• Different wafers and different surface treatment (3 samples/group):

•#1 – substrate side polished; 300 m•#2 – substrate removed; 200 m•#3 – growth side polished; 300 m•#4 – both sides polished; 300 m

Page 19: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

0 < |V| < 500 V0 < |F| < ~2 V/m

Shielded box•Light tight•N2 flow

Sensor tests: Current-Voltage characteristics

+ open circuit measurements: |I| < 0.05 pA for 0 < |V| < 500 V

Dia

mo

nd

Ke

ith

ley

48

7

HV

N2

Page 20: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Sensor tests: Current-Voltage characteristics

“ohmic” behaviour, “low” current

“non-ohmic” behaviour, “high” current

No correlation with group# (wafer, surface treatment)R ~ (1011-1014 ) at F = 1 V/m

Page 21: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Sensor tests: Charge Collection Distance (CCD)

Polycrystalline material with large amount of charge traps

Qinduced < Qcreated

= Qinduced/Qcreated

CCD ≈ L

L

Page 22: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Sensor tests: CCD measurementsMIP:

Qcreated/L= 36 e-/m

CCD = L x Qmeasured/Qcreated

CCD[m] = Qmeasured[e-]/36

CCD range = f(wafer), but no correlation with surface treatment

Fast measurements - in 2 minutes after the voltage applied…

Page 23: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Sensor tests: CCD vs dose

Group#2 (wafer#2, cut substrate) Group#3 (wafer#3, untreated substrate)

F = 1 V/m

Group#3 (wafer#3, untreated substrate)

Page 24: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Sensor tests: more samples!Fraunhofer sample Element Six

I < 0.3 nA

• Stabilizes after ~20 Gy!• CCD ~ 30 m• dose rate influence…

Page 25: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Sensor tests: linearity testHadronic beam, 3 & 5 GeV (CERN PS)Fast extraction mode

~104-107 / ~10 ns

ADC

Diamond Scint.+PMT&

signal gate

10 ns

17 s

Page 26: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Linearity test – relative intensity measurements

+ offline PMTs calibration

+ absolute intensity measurement (Thermoluminescence dosimetry)

wide intensity range

PM

T1,

PM

T2

Beam intensity

“Rel

ativ

e In

ten

sity

Beam intensity

Page 27: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Linearity test – particle flux estimation

+ absolute calibration for one of the runs

1 RI = (27.3±2.9) 103 MIP/cm2

Linearity of the corrected PMT response(at a reduced range)

Page 28: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Linearity of the diamond response

30% deviation from a linear response for a particle fluence up to ~107 MIP/cm2

The deviation is at the level of systematic errors of the fluence calibration

E64 FAP2

Fraunhofer sampleElement Six sampley = p[0]x

Page 29: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

•diamond-tungsten sandwich design of the BeamCal is feasible•For Ee~ √s/2 an efficient detection is possible for most of • For lower Ee: > 15 mrad • (E/E)intr = 22%/√E; E/E = f(BG)• ~ 10-4 rad; φ ~ 10-2 rad - for low BG density• Dynamic range 10-105 MIP/cm2 (TESLA)

• pCVD diamond – a promising sensor material• A set of measurements is established to test the sensor quality• A feedback to Fraunhofer IAF allows to improve quality• We already have samples

• with CCD of ~30 m• with a stable response• with a ~linear response for a fluence up to 107 MIP/cm2

Conclusions

-> Sensor studies

-> Simulation studies

Page 30: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Reserve

Page 31: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Simulation studies: efficiency

Ngen = 500Nreco = 521E = 100 GeV

Page 32: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Simulation studies: energy resolution

Page 33: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Simulation studies: angular resolution

Page 34: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Simulations:Sr + diamond

Page 35: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

CCD – irradiation studies – results

Group #1 (substrate side polished). HV = 300V

Group #2 (substrate side removed). HV = 200V

Page 36: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

CCD – irradiation studies – results

Group #3 (growth side polished). HV = 300V

Group #4 (both sides polished). HV = 300V

Page 37: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Linearity test – PMT calibration

),(),(),(

),(),(

)tan(,

1)(

202

0

2200

2/12

HVQdHVQdd

dHVQ

ddHVQddHVQ

Rd

Dd

ddI

PMT

LED

Page 38: Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen

Raman spectroscopy

Resolution ~ 1 cm-1

Result = S(diam)/S(graphite)*1000