design status of the iter up launcher · three sm designs under development: 1) balanced...

25
IAEA ITER ECH: 6.06.2007 M.A. Henderson ITER Upper Launcher / 18 M.A. Henderson 1 , R. Chavan 1 , R. Bertizzolo 1 , A. Bruschi 2 , D. Campbell 3 , E. Ciattaglia 3 ,S. Cirant 2 , A. Collazos 1 , I. Danilov 4 , F. Dolizy 1 , J. Duron 1 , D. Farina 2 , R. Heidinger 4 , W. Kasparek 5 , K. Kleefeldt 4 , H. Kumric 5 , J.-D. Landis 1 , A. Moro 2 , P. Platania 2 , B. Plaum 5 , E. Poli 6 , G. Ramponi 2 , G. Saibene 3 , F. Sanchez 1 , O. Sauter 1 , A. Serikov 4 , H. Shidara 1 , C. Sozzi 2 , P. Spaeh 4 , D. Straus 4 , V.S. Udintsev1, H. Zohm 6 , C. Zucca 1 1 CRPP, EURATOM – Confédération Suisse, EPFL, CH-1015 Lausanne Switzerland 2 Istituto di Fisica del Plasma, EURATOM- ENEA- CNR, 20125 Milano, Italy 3 EFDA Close Support Unit, Boltzmannstrasse 2, D-85748 Garching, Germany 4 Forschungszentrum Karlsruhe, EURATOM-FZK, D-76021 Karlsruhe, Germany 5 IPF-Stuttgart, Max Planck-Institute für Plasmaphysik, D-85748 Stuttgart, Germany 6 IPP-Garching, Max Planck-Institute für Plasmaphysik, D-85748 Garching, Germany Thanks to: T. Bigelow 6 , J. Doane 7 , H. Grunloh 7 , N. Kobayashi 8 , D. Rasmussen 6 , K. Sakamoto 9 , K. Takahashi 9 6 ITER-US, Oak Ridge TN, USA 7 General Atomics, San Diego CA, USA 8 ITER, Cadarache, France 9 JAEA, Naka, Japan Design Status of the ITER UP Launcher 1

Upload: others

Post on 15-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

M.A. Henderson1, R. Chavan1,R. Bertizzolo1, A. Bruschi2, D. Campbell3, E. Ciattaglia3,S. Cirant2, A. Collazos1,

I. Danilov4, F. Dolizy1, J. Duron1, D. Farina2, R. Heidinger4, W. Kasparek5,K. Kleefeldt4, H. Kumric5, J.-D. Landis1, A. Moro2, P. Platania2, B. Plaum5,E. Poli6, G. Ramponi2, G. Saibene3, F. Sanchez1, O. Sauter1, A. Serikov4,

H. Shidara1, C. Sozzi2, P. Spaeh4, D. Straus4, V.S. Udintsev1, H. Zohm6, C. Zucca1

1 CRPP, EURATOM – Confédération Suisse, EPFL, CH-1015 Lausanne Switzerland2 Istituto di Fisica del Plasma, EURATOM- ENEA- CNR, 20125 Milano, Italy

3 EFDA Close Support Unit, Boltzmannstrasse 2, D-85748 Garching, Germany 4 Forschungszentrum Karlsruhe, EURATOM-FZK, D-76021 Karlsruhe, Germany

5 IPF-Stuttgart, Max Planck-Institute für Plasmaphysik, D-85748 Stuttgart, Germany6 IPP-Garching, Max Planck-Institute für Plasmaphysik, D-85748 Garching, Germany

Thanks to:T. Bigelow6, J. Doane7, H. Grunloh7, N. Kobayashi8,

D. Rasmussen6, K. Sakamoto9, K. Takahashi96 ITER-US, Oak Ridge TN, USA

7 General Atomics, San Diego CA, USA8 ITER, Cadarache, France

9 JAEA, Naka, Japan

Design Status of the ITER UP Launcher

1

Page 2: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Outline

EC system functionality

UL mm-wave design

UL steering mechanism

UL interfaces

Conclusion

2

Aim of this presentation: Provide you with a general overview of progress in the UL mm-wave design aspects

Page 3: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Role of Upper Launcher (<2006)

Steering range:Access q=3/2 and 2 surfacesfor scenarios 2, 3a and 50.64≤ρψ≤0.93

3

q=3/2 q=2

NTM stabilisation

Page 4: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Role of Upper Launcher (<2006)

Steering range:Access q=3/2 and 2 surfacesfor scenarios 2, 3a and 50.64≤ρψ≤0.93

3

q=3/2 q=2

NTM stabilisation

Achieved jCD/jBS for the 3 scenarios

Focusing:jCD/jBS >1.2(achieved 1.8< jCD/jBS < 3.6)Note: not all PEC will be available all the time!

Scenario 2 Scenario 3a Scenario 5

Page 5: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Revision of the UL Functionality

UL: 4 ports with 1 application

EL: 1 port with multiple applications

No EL design can achieveall desired functions

4

Several Short Comings have been identified in the ECH system

Page 6: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Revision of the UL Functionality

UL: 4 ports with 1 application

EL: 1 port with multiple applications

No EL design can achieveall desired functions

4

Several Short Comings have been identified in the ECH system

1

2

1 <100% full passabsorption 2 Partial access

of 20MW inside ρ<0.3

Page 7: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Revision of the UL Functionality

UL: 4 ports with 1 application

EL: 1 port with multiple applications

No EL design can achieveall desired functions

4

Several Short Comings have been identified in the ECH system

1

2

1 <100% full passabsorption 2 Partial access

of 20MW inside ρ<0.3

UL-FS (2005)3 ports (8 beams/port)

(In 2004: 4 ports for UL)

(2005) ITER: keep 4th port, aim for

lower engineering constraintsimprove physics performanceand collaborate with JAEA

Page 8: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Enhanced Performance (EP) Launcher

5

Spread out steering rangesAccess in to ρ=0.4 (sawteeth)1 2 Limit steering range, use QO design +

cnt-ECCD mirror, add poloidal tiltcnt-ECCD + QO mirror Poloidal tiltJAEA

co

cocnt

OR

Page 9: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Enhanced Performance (EP) Launcher

5

Spread out steering rangesAccess in to ρ=0.4 (sawteeth)1 2 Limit steering range, use QO design +

cnt-ECCD mirror, add poloidal tilt

Result: UL controls sawteeth (more efficiently)EL accesses ρ<0.15 with 20MW co and cnt-ECCD availablePure ECH (decouples heating and CD)

ITER (2006): Continue in this direction,minimize engineering constraints and maximize functionality

cnt-ECCD + QO mirror Poloidal tiltJAEA

co

cocnt

OR

Page 10: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

UL Optical Design

6

Top

view

Side

vie

w

plasma

entrance

Page 11: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

UL Optical Design

6

Top

view

Side

vie

w

8 beams/port

HE11 waveguide

isolationvalve windowmitre

bends

freespace

propagationsteeringmirrors

focusingmirrorsplasma

entrance

Page 12: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Planned Design Improvements

7

1. CNR: Optimisation of mirror size and beam clearance+ minimize beam deformation and stray radiation

2. CRPP: Optimisation of beam focusing+ replace mitre bends with free space mirrors (reduces cost and complexity)

3. IPF: Use HE11 to TEM00 converters+ minimize stray radiation

4. Relocate isolation valves and window?

1

24

3

Page 13: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Simplifying Launcher Entrance

8

Present Design Extremely Congested:Isolation of window from torus pressureActuator bellows forms 1st tritium barrierCongests closure plate, limiting accessComplicates access for valve maintenanceRequires non-standard valve design

Page 14: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Simplifying Launcher Entrance

8

Present Design Extremely Congested:Isolation of window from torus pressureActuator bellows forms 1st tritium barrierCongests closure plate, limiting accessComplicates access for valve maintenanceRequires non-standard valve design

Alternative valve location:Displace Valve (and window?) from port plugLauncher maintenance independent of valveIncreases available space at closure plateSimplifies valve (and window?) accessSimplifies waveguide-closure plate interface

Page 15: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Low power

Low and high power RF tests

9

1. Test optical integrity of focusing mirror(s)2. Quantify mirror and shield block aperture affects

High power1. Test complete mock-up launcher2. Planned for ~2010 (pending source availability)

Page 16: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Steering MechanismPneumatic system:Frictionless and backlash free

Accurate rotational control≤0.1º or ~2 to 4mm(<3.5% degradation in jCD)

flexure pivot replaces bearings

Bellows ‘piston’ replaces push-pull rods

10

Flexure pivot concept

Pneumatic actuator conceptPbellows=nominal Pbellows~13barPbellows~2bar

Page 17: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Three SM designs under development:

1) Balanced configuration- lower forces on FP

2) 1st prototype design- test machinability- test actuator concept- Initiate industrial collaboration

3) Cantilevered configuration- simpler support- optimizes actuator space- increase beam clearance @ FWP

(a) Steering Mechanism design

11

(2003 design)

(2007 design)

Page 18: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Forces on flexure pivot doubledSimplifies fixation to BSMSimplifies RH aspectsMirror expands freelyOptimizes use of BSM spaceMore space for beam passage through FWP

Cantilevered Steering Mechanism

12

XY

Z

EM Moment

0.175m 0.175m

Page 19: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Bellows (cyclic fatigue)Most susceptible to cyclic fatigue

ITER lifetime: ~23’000 cycles

Present design: ~150’000 cycles(based on EJMA with SS bellows)

Investigating Alloy718 and NiCo

Analyzing thermal treatment effects(ITER database points out uncertainty)

Critical component: Bellows

13

Page 20: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Thermal Treatment of Alloy 718 BellowsWorking with BOA AG for understanding thermal treatment effects

14

Solution annealing

Additional heat treatment

ITER prescribed heat treatment

Each sample undergoes equivalent stress cycling

ITER treatment achieves 560’000 cycles without failure

Page 21: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Induced currents during VDEVDE results in strong torques on mirrorFFP ~ 1.4 to 3kN

Present design supports accepts FFP > 6kN(at worst rotation and maximum torque)

Critical Issues: Induced EM currents

15

XY

Z

EM Moment

0.175m0.175m

All FE modeling in ANSYSThermal-mechanical

EM induced currents

Rigidity

(models inputed from CATIA)

Page 22: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

T-line - Launcher Interface

16

Compatible with Tritium barriersMaximize maintenance accessMaximize access at launcher entranceSimplify procedure for launcher removalCompensate for ±30mm torus displacementCompatible with T-line calibration

CRPP/EFDA proposal

Page 23: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

T-line - Launcher Interface

16

Compatible with Tritium barriersMaximize maintenance accessMaximize access at launcher entranceSimplify procedure for launcher removalCompensate for ±30mm torus displacementCompatible with T-line calibration

CRPP/EFDA proposal ITER-US, GA T-line layout for UL

Wall of tokamak buildingDoor of bioshield

Port cellUL port plug

D. Rasmussen et al, this conference.

Page 24: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Common Issues active or under consideration: mitre bend tests waveguide tests HIPping tests mirror encoder free space mirror loading isolation valve waveguide cooling bellows analysis fail-safe concepts auxiliary systems

EL - UL Common Issues

17

JAEA

JAEA

JAEA

Page 25: Design Status of the ITER UP Launcher · Three SM designs under development: 1) Balanced configuration - lower forces on FP 2) 1st prototype design - test machinability - test actuator

IAEA ITER ECH: 6.06.2007M.A. Henderson ITER Upper Launcher

/ 18

Conclusion

18

UL has an adequate margin of safety for NTM stabilization

Physics roles of UL and EL can be redefined for a more balanced partitioning of physics objectives- relaxes some of the engineering constraints- increases capabilities of the EC system

UL design is continuing to progress toward- a more simplified/reliable design- further optimized optical design

Collaboration with local industry has begun in preparation for fabrication

Testing has begun on critical components/subsystems

Active collaboration with other ITER parties- resolving interface issues- sharing design and analysis- moving toward a common component philospohy