design of magnetic levitation demonstration appartus april 4, 2014dp_13_11 fuyuan lin, marlon...

Click here to load reader

Upload: vernon-phelps

Post on 22-Dec-2015

219 views

Category:

Documents


3 download

TRANSCRIPT

  • Slide 1
  • DESIGN OF MAGNETIC LEVITATION DEMONSTRATION APPARTUS April 4, 2014http://poisson.me.dal.ca/~dp_13_11 Fuyuan Lin, Marlon McCombie, Ajay Puppala Xiaodong Wang Supervisor: Dr. Robert Bauer Dept. of Mechanical Engineering, Dalhousie University TEAM 11 WINTER TERM PRESENTATION
  • Slide 2
  • Presentation Overview 1. Project Description 2. Design Requirements 3. Product Architecture 4. Component Selection 5. Conceptual Design i. Design Alternatives ii. Chassis Design 6. Control System i. Plant Subsystem ii. Circuit Design: Amplifier & Driver iii. Controller 7. System Implementation 8. GUI 9. Budget 10. Assessing Requirements 11. Future Considerations 2
  • Slide 3
  • 1. Project Description Design and build a magnetic levitating device To levitate an object magnetically Demonstrate different control theories taught in MECH 4900 Systems II course 3 Arduino (MCU) & Circuitry for Levitation Object Levitating
  • Slide 4
  • 2. Design Requirements Demonstrative Requirements Levitate object magnetically Compare simulated and experimental position of the object being levitated Lag, lead, lag-lead P, PI, and PID control User Requirements Graphical User Interface (GUI) to interact with device Plug n Play Safe and Ergonomic 4
  • Slide 5
  • 2. Design Requirements Visual Requirements Viewable from 15- 20 ft. (back of the classroom) Levitate the object at least 2-4 cm away from the coil Power Requirements Conventional 120 VAC input No potential electrical risk to the user Operating Budget $1,500 5
  • Slide 6
  • 3. Product Architecture 6 General Schematic of demonstration device
  • Slide 7
  • 4. Component Selection Levitation Technique Object MCUSensor MaterialShapeMotion Permanent Magnets Chrome Steel Rectangular prism HorizontalArduinoHall Effect Electro- magnets Regular Steel Circular disk Vertical LEGO Mindstorm NXT 2.0 Reflective Electro- dynamics NeodymiumSolid sphereBeagleBoard Optical Proximity Super- conductors Composite Hollow sphere Altera DE2Photoelectric 7 Table shows selected components of the subsystem
  • Slide 8
  • Electromagnetic Levitation 8
  • Slide 9
  • 5.1. Design Alternatives 9 1.Single Electromagnet with Hall Effect Sensor 2. Double Electromagnet Design 3. Multiple Coil Parallel Arrangement
  • Slide 10
  • 5.2. Chassis Design MaterialMass (kg)Cost Aluminum 10603.95$235 ABS Plastic1.50$675 Wood (Birch Ply)1.20$126 Material options for the chassis 10 Design evolution of the chassis
  • Slide 11
  • 6. Control System + _ Input Desired Position Plant Controller ErrorCurrent Actual Position Unity Feedback System 11
  • Slide 12
  • Sensor 6.1. Plant Subsystem Levitation Position Change Voltage Output Current Breakdown of the Plant System 12
  • Slide 13
  • Electromagnet Design Requirements 13
  • Slide 14
  • Design Criteria 12 VDC Pneumatic Solenoid Height of the electromagnet < 7 cm3.65 cm Core Diameter3 cm2 cm Cu wire gageMax. 22 (Dia. 0.645) Dia. 0.65 Coil Turnings1000~2000 Field Strength-Satisfactory Test Results -No heat issues Electromagnet Selection 14 Assessment of 12 VDC Pneumatic Solenoid based on design requirements
  • Slide 15
  • Sensor 6.1. Plant Subsystem Levitation Position Change Voltage Output Current Breakdown of the Plant System 15 Hall Effect Sensor
  • Slide 16
  • Sensor Component Hall Effect Sensor Analog position sensor (Solid State Type SS49 Series) Size: 30 x 4 x 2 mm Range of Detection: up to 4 cm Unit Cost: $2.50 16 Picture Courtesy of Honeywell.
  • Slide 17
  • Design Refinement Addition of new Hall Effect Sensor to differentiate Electromagnet signal Initial Design 17 Final Design
  • Slide 18
  • Sensor Testing 18
  • Slide 19
  • Sensor Circuit Design 19 Circuit for Differential Amplification of Sensor Ouput
  • Slide 20
  • 6.1. Plant Subsystem Sensor Calibration Levitation Sensor Measurement Position Change Voltage Output Actual Position Current 2 Hall Effect Sensors 20
  • Slide 21
  • Position Sensor Calibration 21
  • Slide 22
  • 6.3. Control System + _ Input Desired Position Plant Controller ErrorCurrent Actual Position Unity Feedback System 22
  • Slide 23
  • 6.3. Controller Component Microcontroller - Arduino Mega 2560 4 Hardware serial ports for communication with MATLAB Runs control algorithms Cost: $55 Picture Courtesy of Arduino 23
  • Slide 24
  • 7. System Implementation Serial 24 LevitationControl Arduino & Real Time Arduino uses feedback data from sensors to manipulate position MATLAB & Arduino Manipulation of control parameters Retrieval of feedback data Communication Receive Data
  • Slide 25
  • 8. PID Controller 25
  • Slide 26
  • 8. Budget Materials Unit Cost AmountCost ELECTRONICS Arduino$55.093$165.27 Hall Effect Sensor$2.6420$42.78 Potentiometer$27.402$54.80 Operation Amplifier$0.645$3.20 Power Supply Unit$77.42- Neodymium Magnet$4.991 USB Cable$6.002$12.00 Electromagnet$14.954$38.97 Other Parts--$55.51 CHASSIS Wood (61 x 121 x 2.5 cm )$6.153$18.45 Acrylic glass$13.992$27.98 Aluminum sheet$15.931 Other Parts--$22.38 Sub Total$564.09 Summary of Materials Cost 26
  • Slide 27
  • 8. Budget Sub Total$564.09 Total Shipping$85.11 Total Taxes$65.14 Contributions-$150.00 Total$564.34 Summary of Budget 27
  • Slide 28
  • 9. Assessing Requirements Demonstrative Requirements Levitate object magnetically ~ Compare desired and measured controller variables Lag, lead, lag-lead compensation techniques P, PI, and PID control User Requirements Graphical User Interface (GUI) to interact with device Plug n Play Safe and Ergonomic 28
  • Slide 29
  • 9. Assessing Requirements Visual Requirements Viewable from 15- 20 ft. back of the classroom Levitate the object at least 2-4 cm away from the coil Power Requirements Conventional 120 VAC input No potential electrical risk to the user Operating Budget $1,500 29
  • Slide 30
  • 10. Future Considerations Build more powerful electromagnet or add an extra electromagnet to repel the levitated object Might increase the range of levitation. Implementation of lag, lead, and lag-lead compensator. Use different microcontroller capable of serial or other form of communication without effecting the frequency of the feedback signal. Use different interface instead of MATLAB for example LabView 30
  • Slide 31
  • Acknowledgements Dr. Y.J. Pan Mechanical Dept. Professor Dr. Timothy Little Electrical Dept. Professor Al-Mokhtar O. Mohamed Post-Doctoral Position Mech. Dept. Jonathan MacDonald Electrical Technician Angus MacPherson Mechanical Technician Reg Peters Wood Workshop Technician 31
  • Slide 32
  • Thank You & Questions? 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • References Arduino UNO webpage. http://arduino.cc/en/Main/arduinoBoardUno. Retrieved Mar. 30, 2014 ATmega238 datasheet. http://www.atmel.com/Images/doc8161.pdf. Retrieved Mar. 30, 2014 Honeywell SS49 datasheet. http://www.wellsve.com/sft503/Counterpoint3_1.pdf. Retrieved Mar. 30, 2014 "RobotShop : The World's Leading Robot Store." RobotShop. N.p., n.d. Sun. Mar. 30, 2014 MathWorks MATLAB/Simulink website. http://www.mathworks.com/products/simulink/. Retrieved Mar. 30, 2014 Mikonikuv Blog, Arduino Magnet Levitation detailed description. http://mekonik.wordpress.com/2009/03/17/arduino-magnet-levitation/. Retrieved Nov. 20, 2013 Williams, Lance. "Electromagnetic Levitation Thesis." N.p., 2005. Web. 28 Oct. 2013. 40
  • Slide 41
  • Control System Question
  • Slide 42
  • System Model Inverse Square Law!
  • Slide 43
  • System Model Electromagnet Model Electromagnetic coil driving circuit
  • Slide 44
  • System Model Simplified Circuit
  • Slide 45
  • Control Systems Plant (Levitation) Ball Electromagnet Voltage Input Position Change Note: Negative controller gain is required