design considerations for high resolution pipelined adcs in digital cmos technologies

Upload: deepakbj80

Post on 06-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    1/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 1

    Design Considerations for High ResolutionPipeline ADCs in Digital CMOS Technology

    Jorge Guilherme P. Figueiredo Joo Vital P. [email protected] [email protected] [email protected] [email protected]

    G. Minderico A. Leal Jos [email protected] [email protected] [email protected]

    IST Center for MicrosystemsIntegrated Circuits and Systems Group

    INSTITUTO SUPERIOR TECNICOAv. Rovisco Pais 1, 1096 Lisboa Codex,

    PORTUGAL

    CHIPIDEA MicroelectrnicaEdificio Inovao IVSala 733 2780-920

    PORTO SALVO - PORTUGAL

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    2/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 2

    Outline

    Introduction

    Pipeline overall noise contributions

    Trade offs between noise and power in single stage amplifiers

    Trade offs between noise and power in two stage amplifiers

    Optimization of the compensation capacitor

    Pipeline example architecture

    Conclusions

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    3/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 3

    Stage 1

    SHAAnaloginput

    Stage i Stage n

    Registers

    Digital Correction

    Digital Output

    Ni- bitADC

    Ni- bitDAC

    G

    G=2Ni

    residueamplifier

    +

    +

    +=2

    2

    2

    1

    2

    2,

    2

    1

    2

    1,

    2

    &,

    111 GG

    V

    G

    VVV

    MDACnoMDACnoHSno

    ni

    Block diagram of an N-bit and Ni-stage pipeline ADC

    Noise contribution of each stage

    The main noise contributioncomes from the input stages

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    4/21ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 4

    Noise budget relation:

    Quantization noiseNNq 2

    2

    212

    1

    =

    Thermal noise KT/C

    Quantization noise > Thermal noise

    Excessive power dissipation, no advantage

    Quantization noise < Thermal noise

    Loss of resolution

    Best trade off

    Quantization noiseThermal noisebut

    Difficult to achieve

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    5/21ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 5

    1

    2

    Vin

    Vref

    Ron

    Ron

    CDAC

    Cf

    CL

    Cp

    Gm

    1

    222

    , 42 GiVnBKTRC

    KTV ampeqON

    DAC

    MDACno

    ++=

    eqeqeq C

    gm

    C

    gm

    B 422 ==

    ( )

    f

    PDACL

    PLDACeqC

    CCCCCCC

    ++++=

    Simplified noise model of the MDAC

    MDAC output noise

    Noise bandwith of the amplifier

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    6/21ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 6

    C

    difpair

    Load

    Telescopic

    C

    gm

    gmKT

    Vn

    3

    12

    +

    =

    The amplifier has one of the mostimportant noise contributions

    Low noise amplifierstopologies should be chosen

    The telescopic cascode yields thelowest noise since only two

    transistors contribute to the totalnoiseBias

    Load

    gnd

    Bias

    Cc

    M1

    M3

    M2

    M4

    Cc

    vdd

    diffpair

    The noise can be controlled by Ccand gmof transistorsCascode compensation achives

    higher GBW for the same power asMiller compensation

    Two stage telescopic cascode amplifier

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    7/21ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 7

    ( )

    ++++

    ==

    F

    PDACLPDACL

    C

    CCCCCC

    gmGBWBW

    2

    CDAC

    Cf

    CLCp

    Gm

    Vout

    Residue amplification phase

    Single stage amplifier

    Close loop dominant pole

    BW GBW

    A0

    f

    OVDB VIgm 2=

    )2ln(B

    N =

    Number of time constants for afirst order system

    SR

    A

    eqOVD

    B

    B

    TFs

    CVI

    )2ln(

    CMOS transcondutance relation

    IB doubles for each increasing bit !( )

    f

    PDACL

    PLDACeqC

    CCC

    CCCC

    +

    +++=

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    8/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 8

    CC

    gmGBW

    2=

    PfDAC

    fC

    SR

    A

    OVDB

    BCCC

    CC

    TFs

    VI++

    )2ln(

    CDAC

    Cf

    CL

    CpGm

    Vout

    Cc

    Output

    stage

    Gmload

    Residue amplification phase

    Two stage amplifier

    The GBWdepends on Cc

    PfDAC

    f

    CCCC

    CC

    gmBW

    ++

    =

    2

    CL influences thephase margin of theamplifier

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    9/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 9

    +

    =

    difpair

    Load

    C

    DAC

    gm

    gm

    CC

    1

    3

    2IF !

    DAC

    ampC

    KTVn

    2

    For typical designs gmload< gmDiffpair

    In the order of 2-3 times

    CDAC 0.75 Cc

    Leads to a higher output polesince Ccis higher than CDAC

    CL

    gmPole Loadoutput

    Helps improving stability

    Noise of theamplifier

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    10/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 10

    2

    12

    21218

    +=

    N

    difpair

    LoadC

    VrefgmgmKTC

    A two stage amplifier has at least 4 legsThe gmof the output needs be higher than the input by 2-3 times, due to stabilityFor the same overdrive voltage the output current will be 2-3 times the input current

    BDDstage IVP 8

    Ni

    DACf

    CC2

    =

    Is the fraction of quantization noiseattributed to the S/H and first MDAC

    Assuming equal noise contributionsfor the S/H and MDAC

    Cc will be the starting point of thedesign optimization

    PfDAC

    fC

    SRA

    OVD

    B

    DDstageCCC

    CC

    T

    Fs

    VVP

    ++

    )2ln(8

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    11/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 11

    First stages will be noise limited if

    Stage gain precision not limitted by matching

    Use of analog or digital calibration techniques

    Remaining stages will be matching limited and area dictates the powerdissipation

    Total power dissipation will be a trade off between the noise and matching

    First stages should use large resolution 4-5 bits

    Final solution obtained by a optimization program

    High resolution ADCs optimization

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    12/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 12

    FLASH

    6b

    15b Out

    Digital Error Correction Logic

    Inp

    Clk10b

    1.5 b/stage

    pipeline ADC

    BackendDAC

    3R

    17R

    Unity c urrent-

    source matrix

    Iref

    3R17R

    S/HInn

    CAL-DAC

    VbgVrefbp

    Vrefbn

    SAR

    Backend Vref Generation

    Vrefp

    Vrefn

    Switches

    Vbg

    Frontend Vref Generation

    Vrefp

    Vrefn

    Comparator

    CAL-DACSAR

    DAC full-scale

    current generation

    Backend input-

    range calibration

    amp. o ffset calibration

    3R

    3R

    17R

    17R

    Architecture for 15bit@10MS/s ADC

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    13/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 13

    Noise contribution of the Front-end Pipeline Blocks

    Vin

    Csh

    Csh

    2

    2

    1

    1

    1'

    DACFlash

    Inputsamplingcapacitors

    S/H amplifier

    DAC

    Resistors

    Residue amplifier

    MHzFoFn 702

    ==

    RVod

    FnIdTKVndac

    =

    3

    16

    f

    Vdsat

    Vdsat

    Cc

    TKVnamp 7

    11

    3

    2+

    =

    RFnTKVr = 4

    Kelvin 1998The resistors and the DAC inject large noise!

    The DAC noise current is proportional to gm

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    14/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 14

    dBVnampVr

    VndacVrVnampC

    TKVref

    Vref

    SNR

    N

    78

    32

    .2.2.2.24

    2

    2.12

    22

    1

    log1022

    222

    2

    2

    2

    =

    +++++

    +

    =

    SNR system calculation

    C= 10 pFCc= 10 pFIdac= 1mA

    Rstring= 1000 ohm

    Noise Bandwidth of a 2 pole system = 0.7854 Fo helpsreducing the noise from the DAC and resistors

    Noise distribution by block

    Quantization 26%KT/C 17%Resistors 20%

    DAC 16%Amplifiers 21%

    Trade off between power,noise and resolutionobtained by program

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    15/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 15

    SNR system simulation

    dB

    oiseSimulatedN

    Cs

    TKVref

    Vref

    SNR

    N

    6.78..2

    212

    2

    1

    210log.10

    2

    2

    2

    2

    =

    ++

    =

    Simulated noise

    Noise from the DAC

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    16/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 16

    Bias

    vdd

    gnd

    Bias

    Cc

    VinP

    OutP

    I

    M1

    M3

    M9

    M2

    M4

    M5 M6

    M7 M8

    I

    OutNCc

    M10

    M11 M12

    M13M14

    M15

    VinN

    Main schematic of the amplifiers used in the S/H and residue amplifiers

    f

    Vdsat

    Vdsat

    Cc

    TKVnamp 7

    11

    3

    2+

    =

    CcCLCcCCLCCT ..1.1 ++=

    ( )

    ( )22

    2

    2

    3

    2

    2

    .2

    9.3.1.

    .2

    .9.3.1..3

    ..29.3.2

    1

    )(

    CTC

    gmgmgmsCTC

    CcgmgmsCT

    CcgmCcCLgms

    sCcCgmgmCTC

    gm

    sH

    +++

    +

    =

    The amplifiers where designedbased on the noise allowed to itdependent on Cc

    A telescopic cascodecompensation topology waschosen to minimize power

    From Ccand GBWwe obtainedthe gmand current of the inputdiferential pair

    CCgmGBW2

    =

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    17/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 17

    Front-end Amplifiers

    Resistor model

    2

    2nCR

    Rsquare=8*8um^2

    3R

    3R

    17R

    17R

    3R

    3R

    17R

    17R

    Vo2 Vo3Vo1

    C

    C

    ph1

    ph1

    ph2

    ph2

    ph1a

    A1 A2 A3Vin

    C

    R

    C C

    R R R

    Effect of Resistor L variation

    3

    833.0

    iCL

    Cascade of 3 amplifiersclose loop pole

    Resistor area (matching) limits the settlingNeed of gain calibartion

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    18/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 18

    Block diagram of the calibration network

    Calibration Control SAR l

    Calib

    Clockstart

    Data

    Calibration DAC 1

    SAR 2

    Data

    Calibration DAC 2

    end start end

    control controlend

    Comparatorout

    controlResidue amplifier

    Backend Vref

    VCM

    Offset Voltage of the

    Io Io

    Residue AmplifierBackend Vref Voltage

    Comp

    Calibration Operation

    The first stage needs calibration of the gain

    Calibration network

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    19/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 19

    0 0 .01 0 . 02 0 . 03 0 .0 4 0 .0 5 0 .0 6 0 .0 7 0 .0 80

    1 0

    2 0

    3 0

    4 0

    5 0

    6 0

    7 0

    8 0

    9 0

    10 0

    Yie ld for 6 b i t DAC with 15 , 14 an d 1 3 b it p rec is ion vs . r e la t ive a c c urac y

    S t d . dev. Un it y Cur ren t S our ce [% ]

    Yield[%]

    Current steering DAC requirements: random errors

    Current source sizing: std dev(I/I) = 0.027% for 13 bit linearity

    Vod = 0.76V ==> total current source DAC transistor area = 0.817 mm2

    Hierarchical symmetrical switching scheme used to compensate systematic errors

    Current Steering DAC

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    20/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 20

    Chip Layout

    Resolution 15 bitConversion rate 10Ms/sPower consumption 320 mWPower supply 2.7-3.3VInput range 1.1VSNDR 78.6 dB

    ENB 12.7 bitChip area 3.23 mm*4.75 mmCore area 2.8 mm * 4.3 mm

    Process technology 0.35 m CMOSsingle poly 5-metal

    Summary

  • 8/3/2019 Design Considerations for High Resolution Pipelined ADCs in Digital CMOS Technologies

    21/21

    ESPRIT Project 29 261 ESD-MSD Cluster, Malta 3 September 2001 21

    Conclusions

    Identification of the main noise contribution to highresolution pipeline ADCs.

    Some trade offs between noise and power were discussedfor single stage and two stage amplifiers.

    Noise limited stages can be optimized by chosing suitablecompensation capacitor as starting point of design.

    An example of a pipeline 15 bit architecture was discussed