description, properties, and degradation of selected volatile

65
Prepared in cooperation with the Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water— A Review of Selected Literature Open-File Report 2006-1338 U.S. Department of the Interior U.S. Geological Survey

Upload: trannguyet

Post on 31-Dec-2016

228 views

Category:

Documents


0 download

TRANSCRIPT

Prepared in cooperation with the Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services

Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water — A Review of Selected Literature

Open-File Report 2006-1338

U.S. Department of the InteriorU.S. Geological Survey

Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water — A Review of Selected Literature

By Stephen J. Lawrence

Prepared in cooperation with the Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services

Open-File Report 2006–1338

U.S. Department of the InteriorU.S. Geological Survey

U.S. Department of the InteriorDIRK KEMPTHORNE, Secretary

U.S. Geological SurveyMark D. Myers, Director

U.S. Geological Survey, Reston, Virginia: 2006

This report is a Web-only publication: http://pubs.usgs.gov/ofr/2006/1338/.

For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS

For more information on the USGS — The Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:Lawrence, S.J., 2006, Description, properties, and degradation of selected volatile organic compounds detected in ground water — A Review of Selected Literature: Atlanta, Georgia, U. S. Geological Survey, Open-File Report 2006-1338, 62 p., a Web-only publication at http://pubs.usgs.gov/ofr/2006/1338/.

Contents

Abbreviations and Acronyms.......................................................................................................... viConversion Factors ........................................................................................................................... viiAbstract .............................................................................................................................................. 1Introduction........................................................................................................................................ 1

Purpose and Scope ................................................................................................................. 1Available Literature Addressing Volatile Organic Compounds ........................................ 1

Naming Conventions and Descriptions of Volatile Organic Compounds in Ground Water ....................................................................................................................... 3

Sources of Volatile Organic Compounds Detected in Ground Water ........................................ 6Sources of Chlorinated Alkanes ............................................................................................ 6Sources of Chlorinated Alkenes and Benzenes ................................................................. 9Sources of Gasoline Compounds .......................................................................................... 9

BTEX Compounds (Benzene, Toluene, Ethylbenzene, and Xylene) ........................ 10Methyl Tert-butyl Ether .................................................................................................. 10

Basic Properties of Selected Volatile Organic Compounds ...................................................... 10Degradation of Selected Volatile Organic Compounds in Ground Water ............................... 10

Degradation of the Chlorinated Alkanes .............................................................................. 17Abiotic Transformation ................................................................................................... 17Aerobic Biodegradation ................................................................................................ 20Anaerobic Biodegradation ........................................................................................... 20

Degradation of the Chlorinated Alkenes .............................................................................. 21Aerobic Biodegradation ................................................................................................ 21Anaerobic Biodegradation ............................................................................................ 23

Degradation of the Chlorinated Benzenes .......................................................................... 24Degradation of the Gasoline Compounds ............................................................................ 25

Aerobic Biodegradation of BTEX Compounds .......................................................... 25Anaerobic Biodegradation of BTEX Compounds ...................................................... 27Aerobic Biodegradation of Methyl Tert-butyl Ether .................................................. 30Anaerobic Biodegradation of Methyl Tert-butyl Ether ............................................. 31

References Cited............................................................................................................................... 36Glossary .............................................................................................................................................. 50

    iii

Figures 1–19. Diagrams Showing—  1. Generic and International Union of Pure and Applied Chemistry naming

conventions for the same aliphatic compound .......................................................... 5 2. Relation between degree of chlorination and anaerobic reductive-

dechlorination, aerobic degradation and sorption onto subsurface material ...... 16 3. Laboratory-derived pathway for the abiotic degradation, anaerobic, and

methanogenic biodegradation of 1,1,2,2-tetrachloroethane; 1,1,2-trichloroethene; and 1,1,2-trichloroethane ........................................................ 18

4. Laboratory-derived pathway for the abiotic, aerobic, and anaerobic biodegradation of 1,1,1-trichloroethane ...................................................................... 19

5. Laboratory-derived pathway for the aerobic biodegradation of 1,2-dichloroethane ........................................................................................................... 20

6. Laboratory-derived pathways for the anaerobic biodegradation of tetrachloromethane (carbon tetrachloride) ................................................................ 21

7. Laboratory-derived pathways for the aerobic biodegradation of trichloroethene ............................................................................................................ 22

8. Laboratory-derived pathway for the anaerobic biodegradation of tetrachloroethene ....................................................................................................... 23

9. Laboratory-derived pathways for the aerobic and anaerobic biodegradation of 1,2,4-trichlorobenzene ................................................................................................ 24

10. Laboratory-derived pathway for the aerobic biodegradation of 1,4-dichlorobenzene ........................................................................................................ 25

11. Laboratory-derived pathway for the aerobic biodegradation of chlorobenzene and 1,2-dichlorobenzene. ................................................................... 26

  12. Laboratory-derived pathways for the aerobic biodegradation of benzene, o-, and m-xylene .............................................................................................................. 28

  13. Laboratory-derived pathways for the aerobic biodegradation of toluene ............ 29 14. Laboratory-derived pathways for the aerobic biodegradation of p-xylene .......... 30 15. Laboratory-derived pathway for the aerobic biodegradation of ethylbenzene .... 31 16. Field and laboratory-derived pathways for the anaerobic biodegradation of

the BTEX compounds — benzene, toluene, ethylbenzene, and xylene ................... 33 17. Laboratory-derived pathway for the aerobic biodegradation of methyl

tert-butyl ether ................................................................................................................. 34 18. Laboratory-derived pathway for the aerobic biodegradation of m-cresol ............ 35 19. Laboratory-derived pathways for the aerobic biodegradation of styrene ............ 35

iv   

Tables 1.  List of selected publications providing literature reviews and summaries of

volatile organic compound degradation and behavior in ground water ................ 2 2. Names and synonyms of volatile organic compounds commonly detected in

ground water .................................................................................................................... 4 3. The first four members of the straight-chain alkane series and associated

alkyl radical ....................................................................................................................... 5 4. Volatile organic compounds ranked by those frequently detected in ground

water near landfills and hazardous waste dumps in the United States and the Federal Republic of Germany ........................................................................................ 6

5. Volatile organic compounds detected in regional and national ground-water studies in the United States ........................................................................................... 7

6.  Volatile organic compounds detected in ground-water case studies at selected U.S. Department of Defense installations ................................................... 8

7. Major organic compounds in a typical gasoline blend ............................................. 9 8. Henry’s Law constants for selected volatile organic compounds detected in

ground water .................................................................................................................... 11 9.  Water-solubility data for selected volatile organic compounds detected in

ground water .................................................................................................................... 12 10. Density of selected volatile organic compounds detected in ground water

compared to the density of water at 20 degrees Celsius .......................................... 13 11. Octanol-water partition coefficients for selected volatile organic compounds

detected in ground water ............................................................................................... 14 12. Soil-sorption partition coefficients for selected volatile organic compounds

detected in ground water ............................................................................................... 15 13. Common abiotic and biotic reactions involving halogenated

aliphatic hydrocarbons ................................................................................................... 16 14. Laboratory half-lifes and by-products of the abiotic degradation (hydrolysis

or dehydrohalogenation) of chlorinated alkane compounds detected in ground water. ................................................................................................................... 18

15. Mean half-life in days for the anaerobic biodegradation of selected chlorinated alkane and alkene compounds ................................................................ 20

16. Laboratory or environmental half-lifes and by-products for the aerobic and anaerobic biodegradation of selected chlorinated benzene compounds detected in ground water ............................................................................................... 27

17. Average half-life for the aerobic biodegradation of the fuel compounds BTEX and methyl tert-butyl ether to carbon dioxide in an uncontaminated and contaminated matrix of aquifer sediments and ground water ......................... 32

18. Mean half-life in days for the anaerobic biodegradation of the fuel compounds BTEX, and methyl tert-butyl ether, tert-butyl alcohol under various reducing conditions .......................................................................................... 32

    v

Abbreviations and Acronyms

ATSDR AgencyforToxicSubstancesandDiseaseRegistryBTEX benzene,toluene,ethylbenzene,xylenesCA chloroethaneCAA CleanAirActCB chlorobenzeneCERCLA ComprehensiveEnvironmentalResponse,Compensation,andLiabilityActCDC CentersforDiseaseControlCO

2 carbondioxide

CSIA compound-specificisotopeanalysisCTET carbontetrachlorideCVOC chlorinatedvolatileorganiccompoundsDCA dichloroethane11-DCA 1,1-dichloroethane12-DCA 1,2-dichloroethane12-DCB 1,2-dichlorobenzene13-DCB 1,3-dichlorobenzene14-DCB 1,4-dichlorobenzeneDCE dichloroethene12-cDCE cis-1,2-dichloroethene12-tDCE trans-1,2-dichloroetheneDNA deoxyribonucleicacidDO dissolvedoxygenFDA U.S.FoodandDrugAdministrationgVOC volatilegasolinecompoundsH Henry’sLawconstantIUC InternationalUnionofChemistryIUPAC InternationalUnionofPureandAppliedChemistryK

oc soilorganiccarbonpartitioncoefficient

Kow

octanol-waterpartitioncoefficientMTBE methyltert-butyletherNAPL non-aqueousphaseliquidORD OfficeofResearchandDevelopmentPCA tetrachloroethanePCE tetrachloroethenePLFA phospholipidfattyacidRCRA ResourceConservationandRecoveryActRFG ReformulatedGasolineprogramRNA ribonucleicacidSMA signaturemetabolitesanalysisTBA tert-butylalcoholTCA trichloroethane112-TCA 1,1,2-trichloroethaneTCB trichlorobenzene123-TCB 1,2,3-trichlorobenzene124-TCB 1,2,4-trichlorobenzeneTCE 1,1,2-trichloroetheneTEA terminalelectronacceptor124-TMB 1,2,4-trimethylbenzeneUSEPA U.S.EnvironmentalProtectionAgencyUSGS U.S.GeologicalSurveyVC vinylchlorideVOC(s) volatileorganiccompound(s)

vi   

Conversion Factors

Multiply By To obtain

microgramperliter(µg/L) 6.243108 poundpercubicfoot

microgramperliter(µg/L) 1x10–3 milligramperliter(mg/L)

milligramperliter(mg/L) 6.243105 poundpercubicfoot

grammolepercubicmeter(gmol/m3) 6.243×105 poundpercubicfoot

kiloPascal(kPa) 9.869210–3 standardatmosphere

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F=(1.8×°C)+32

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C=(°F-32)/1.8

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or micrograms per liter (µg/L).

    vii

Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water —  A Review of Selected Literature

By Stephen J. Lawrence

AbstractThisreportprovidesabridgedinformationdescribing

themostsalientpropertiesandbiodegradationof27chlori-natedvolatileorganiccompoundsdetectedduringground-waterstudiesintheUnitedStates.Thisinformationiscon-densedfromanextensivelistofreports,papers,andliteraturepublishedbytheU.S.Government,variousStategovern-ments,andpeer-reviewedjournals.Thelistincludesliteraturereviews,compilations,andsummariesdescribingvolatileorganiccompoundsingroundwater.Thisreportcross-referencescommonnamesandsynonymsassociatedwithvolatileorganiccompoundswiththenamingconventionssupportedbytheInternationalUnionofPureandAppliedChemistry.Inaddition,thereportdescribesbasicphysicalcharacteristicsofthosecompoundssuchasHenry’sLawconstant,watersolubility,density,octanol-waterpartition(logK

ow),andorganiccarbonpartition(logK

oc)coefficients.

Descriptionsandillustrationsareprovidedfornaturalandlaboratorybiodegradationrates,chemicalby-products,anddegradationpathways.

IntroductionThepresenceofvolatileorganiccompounds(VOCs)

ingroundwaterisamajorconcerntoallwhousegroundwaterasadrinkingwatersourcebecausemanyofthesecompoundscanadverselyaffecthumanhealth.Likewise,concernaboutVOCsingroundwaterissharedbyStateandFederalregulatoryagenciesresponsibleforprotectingtheground-waterresourcefromcontaminantsandforprotect-inghumanhealth.ThisreportispreparedincooperationwithTheAgencyforToxicSubstancesandDiseaseRegistry,U.S.DepartmentofHealthandHumanServices(ATSDR)andprovidesunderonecoveranabridgeddescriptionofselectedproperties,andbiodegradationinformationpublishedinaca-demicandgovernmentliterature.Inaddition,thereportcrossreferencescommonlyusednameswithagenerallyacceptedinternationalnamingconventionfor27VOCsfrequentlydetectedingroundwater.

Purpose and Scope

Thepurposeofthisreportisto(1)list27VOCsfre-quentlydetectedingroundwater,(2)cross-referencecom-monVOCnamesandsynonymsassociatedwiththenamingconventionssupportedbytheInternationalUnionofPureandAppliedChemistry (IUPAC),(2)describethebasicchemicalpropertiesofselectedVOCsbysubclass,and(3)describethevariouspathwaysandchemicalby-productsassociatedwiththedegradationofselectedVOCsingroundwater.ThegoalofthereportisnottosupplantpreviouslypublishedliteraturereviewsonVOCsingroundwater,butrathertocondensethatinformation,andinformationfromotherpapers,intoa“digest”orabridgeddocumentthatdescribesonlythemostsalientandgenerallyacceptedscientificinformationregardingnomenclature,properties,anddegradationpathsfor27VOCsdetectedingroundwaterintheUnitedStates.

Available Literature Addressing  Volatile Organic Compounds

Theinformationforthisreportiscondensedfromselectedacademicandgovernmentliteraturepublishedwithinthelast30years(1975–2006)thatdescribelaboratoryandfieldexperimentsandground-waterstudiesofVOC.The27VOCsdescribedinthisreportareamongtheVOCscom-monlydetectedinaquifersandground-watersourcesofdrink-ingwaterintheUnitedStates(Zogorskiandothers,2006).

Theamountofacademic,government,andpopularlitera-tureaddressingvolatileorganiccompoundsingroundwaterisvastandscatteredamongpaperandelectronicvenues,somepublishedandsomeunpublished.Reviewingthisliteraturewouldbeadauntingtaskandcertainlybeyondthescopeforthisreport.Fortunately,anumberofpublishedpapersandreportsarereadilyavailablethatreviewed,compiled,orsummarizedtheproperties,chemistry,ordegradationpathsofVOCsingroundwater.Citationsforseveralofthesecompilationsandtheinformationsummarizedarelistedintable1.Unlessareportprovidednewlysynthesizedinformation,allfactsorinterpreta-tionsdescribedinsummaryreportsorliteraturereviewsarecitedusingtheprimarysourcereportedinthepublication.

Table 1.  List of selected publications providing literature reviews and summaries of volatile organic compound degradation and behavior in ground water.

[BTEX,benzene,toluene,ethylbenzene,xylenes;PCE,tetrachloroethylene;VOC,volatileorganiccompound;MTBE,methyl tert-butylether]

Publication citation Subject

Aronsonandothers,1999 AerobicbiodegradationratesforBTEX,PCE

AronsonandHoward,1997 AnaerobicbiodegradationratesforBTEX,naphthalene,styrene,chlorinatedaliphaticcompounds

Azadpour-Keeleyandothers,1999 MicrobialdegradationandnaturalattenuationofVOCsingroundwater

Beek,2001 NaturaldegradationprocessesandratesforVOCs

Christensenandothers,2000 Oxidation-reductionconditionsinground-watercontaminantplumes

Howardandothers,1991 Environmentaldegradationratesofchemicalcompounds

Vogelandothers,1987 ChemicalreactionsinvolvedinVOCdegradation

Vogel,1994 Biodegradationofchlorinatedsolvents

Washington,1995 HydrolysisratesofdissolvedVOCs

Wiedemeierandothers,1998 NaturalattenuationofVOCsingroundwater

Wilsonandothers,2005 NaturalattenuationofMTBEingroundwater

AlthoughalargeamountofthecitationsintheacademicorgovernmentliteratureorontheInternetarepublishedthroughreliableagenciesorentities,somecitationsreferenceobscuresourcesorsourcesthataregenerallyinaccessibletothepublic.Becauseofthisissue,theliteraturecitedinthisreportisconfinedtothebodyofworkthatisavailableandeasilyaccessedthroughmainstreamacademicjournals,StateorFederalagenciesusingvariouslibraries,oronlinedatabasesontheInternet.

Ingeneral,theacademicliteraturefocusesonVOCsfromtwoperspectives:(1)analyticalandphysicalchemistryand(2)environmentaloccurrence,transport,andfate.Theanalyti-calandphysicalchemistryliteratureprovideinformationonthephysico-chemicalpropertiesofVOCs—suchasexperi-mentalandcomputedHenry’sLawconstants,fugacity,watersolubility,organiccarbonsolubility,octanol-waterpartitioncoefficients,partitioningamongvariousphysicalphases(thatis,gas,liquid,solid),experimentallyderivedandcomputer-simulatedreactionrates,microbialdegradation,andreactiontypes(thatis,hydrolysis,oxidation-reduction,dehalogenation).Theliteraturedescribingtheenvironmentaloccurrence,trans-port,andfateofVOCsingroundwaterprimarilydealswithsite-specificcontamination,andtheabioticandmicrobialtrans-formation,attenuation,anddegradationobservedingroundwater.Someofthosedocumentsattempttoconfirmorapplyin vitro(laboratorymicrocosm)resultstocontaminatedareasinsituandmanyarewrittenfromaremediationperspective.

Thelocal,State,territorial,andU.S.Governmentlit-eratureonVOCsingroundwatertypicallyencompassissuesimportanttoitscitizenryinanenvironmentalorregulatorycontext.Thisliteraturecommonlyinvolveslargergeographi-calareasthanthoseofatypicalacademicpaper.Withsomeexceptions,publicationsoftheU.S.GeologicalSurvey(USGS)arelessattentivetosite-specificcontaminationingroundwaterandmoreattentivetocontaminationissuesofareal,regional,ornationalimportance(Grady,2003;Hamlinandothers,2002,2005;Moran,2006;Zogorskiandothers,

2006).OneexceptionistheUSGSToxicSubstancesHydrol-ogyProgram(http://toxics.usgs.gov/),whichroutinelypub-lishesUSGSreportsandscientificarticlesinrefereedjournals.Theprimaryfocusofthatprogramissite-specificfateandtransportstudiesinvolvingtracemetalandorganic(includingVOCs)contaminationingroundwater.

IncontrasttoUSGSreports,theliteratureproducedbytheU.S.EnvironmentalProtectionAgency(USEPA)primarilyfocusesonapplyingscientificresultstoregulatoryandreme-diationissuesincompliancewiththeCleanAirandCleanWaterActsandtheiramendments,andthosestatutesunder-writingtheResourceConservationandRecoveryAct(RCRA)andtheComprehensiveEnvironmentalResponse,Compensa-tion,andLiabilityAct(CERCLA).TheOfficeofResearchandDevelopment(ORD)isthescientificresearcharmoftheUSEPAthatroutinelypublishesreportsaddressingthefateandtransportofVOCsingroundwaterwithinaregulatorycontext.Moreover,eachStateandterritorywithintheUnitedStatespublishesscientificandregulatoryliteratureregardingtheoccurrenceofVOCsingroundwateranditstransport,fate,andimpactonhumanandecologicalhealththatarespecifictothoseStates.OthergovernmentagenciessuchastheCentersforDiseaseControl(CDC)andtheATSDRpublishprintedandelectronicliteraturerelatingthepotentialhuman-healtheffectsofVOCsindrinkingwater.

Paperandelectronicliteraturepublishedbythepopularpress,suchassportsandoutdoormagazines,andpublica-tionsofenvironmentalgroupssuchastheSierraClubandtheNatureConservancytypicallyuseacademicandgovernmentpublicationsassourcesfortheirarticles.Thesearticlesareintendedtoeducatetheirreadersandmembersonenvironmen-talcontaminationandregulatoryissues.Withtheexceptionofliteraturepublishedbythepopularpress,theliteratureselectedandusedinthisreportspansthevenuesdescribedinprecedingparagraphs.Mostofthisliterature,particularlytheenviron-mentalfateandtransportliterature,focusesonfewerthan30VOCsingroundwater.

�    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Naming Conventions and Descriptions of Volatile Organic Compounds in Ground Water

Thecompoundsaddressedinthisreportbelongtotheclassoforganicchemicalscalledvolatileorganiccompounds(VOCs).Dependingonthesource,aVOChastwodefini-tions—onewithinaphysico-chemicalcontextandtheotherwithinaregulatorycontext.Thephysico-chemicaldefinitionofaVOCasstatedbyAustralia’sNationalPollutantInventoryis:Any chemical compound based on carbon chains or rings (and also containing hydrogen) with a vapor pressure greater than 2 mm of mercury (mm Hg) at 25 degrees Celsius (°C). These compounds may contain oxygen, nitrogen and other ele-ments. Substances that are specifically excluded are: carbon dioxide, carbon monoxide, carbonic acid, carbonate salts, metallic carbides and methane (AustralianDepartmentofEnvironmentandHeritage,2003).Aphysico-chemicaldefini-tionofVOCasexplicitasthatfromAustraliaandoriginatingintheUnitedStateswasnotfoundduringextensiveInternetsearches.IntheUnitedStates,theregulatorydefinitionofVOCisprovidedbytheUSEPAundertheCleanAirActandpublishedintheCodeofFederalRegulations—Volatile organic compound (VOC) means any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participates in atmospheric photochemical reactions(U.S.EnvironmentalProtectionAgency,2000a).

Amongtheacademic,government,andpopularliterature,itiscommontofindaconfusingvarietyofnamesusedtoidentifyVOCs.Forexample,tetrachloroethene(IUPACname)isalsoknownasperchloroethylene,PCE,andtetrachloroeth-ylene(table2).Furthermore,somecompoundsareidentifiedusingthevariousbrandnamesunderwhichtheyaresold.Thenameusedtoidentifyanyparticularcompoundmaydependonanumberofvariables.Thesevariablesincludetheareaorregionwherethecompoundisused(forexample,Europe,UnitedStates,NortheasternUnitedStates,andsoforth),thetypeofpublicationreferringtothecompound(journalarticle,administrativereport,governmentreport,orpopularmaga-zine),thepopularityofthatnameinrecentlypublishedlit-erature,andtheprofessionofthepersonusingthename(thatis,analyticalchemist,environmentalscientist,environmentaltoxicologist,biologistorecologist,organicchemist,journalist,farmer,andsoforth).Becauseofthenumerousnamevaria-tionsforVOCs,attemptstomergeinformationfromavarietyofvenues“on-the-fly”foraparticularcompoundaretedious,confusing,andfraughtwitherror.Asearlyasthelate1800s,chemistsandothersrecognizedtheneedforaconsistentnam-ingconventionforallchemicalcompounds.

In1889,aninternationalconsortiumofchemists,encouragedbytheneedforaconsistentnamingconventionforallchemicalcompounds,formedtheInternationalUnionofChemistry(IUC).During1892atameetinginGeneva,

Switzerland,theIUCwasformalizedwithagoaltocreateasystemofrulesfornamingchemicalcompounds(GenevaRules).TheGenevaRulesestablishedthefoundation,theframework,andtheinitialrulesforaconsistent,internationalnamingconventionforallchemicalcompounds,includingthecomplexorganiccompounds.Sincethisfirstmeeting,theIUChasevolvedintotheInternationalUnionofPureandAppliedChemistry(IUPAC),anorganizationresponsibleforcreatingnewrulesandkeepingestablishedrulescurrent(BrownandLeMay,1977,p.723).ThehistoryoftheIUPACorganiza-tionandtheGenevaRulesestablishprovenancefortheformalnamesgiventotheVOCsdescribedinthisreport.

UndertheIUPACnamingconvention,VOCsarecom-monlyassignedtotwogeneralgroups:(1)aliphatichydro-carbons(alkanes,alkenes),and(2)aromatichydrocarbons(BrownandLeMay,1977).Analkaneisastraightchainorcyclic(ring-like;suchascycloalkane)structurethatconsistsofcarbon-carbonandcarbon-hydrogensinglebonds.Achlori-natedalkanealsocontainsatleastonechlorine-carbonsinglebond.Achemicalbondistheelectricalattractionbetweentwoatoms,onethathasanegativechargeandtheotherapositivecharge.Inorganiccompounds,thesechemicalbondsarecova-lent,meaningthattwobondedatomsshareelectrons(BrownandLeMay,1977).Analkeneistypicallyastraight-chainstructurethatcontainsatleastonecarbon-carbondoublebond.Achlorinatedalkenealsocontainsatleastonechlorine-carbonsinglebond.Thesedoublebondsindicatestrongercovalentbondsbetweentwocarbonatomsandimpartmorestabilitytothecompoundthanthesinglebondinanalkanecompound.

Incontrasttothealiphaticcompounds,aromaticcom-poundsarethosewithalternatingcarbon-carbonsingleanddoublebondsarrangedinaringstructure.Benzeneisthemostcommonlyrecognizedaromaticcompound(BrownandLeMay,1977).Chlorinatedaromaticcompoundsalsocontainonechlorine-carbonsinglebond(forexample,chlorobenzene).Aromaticcompoundsaretypicallymoreresistanttodegrada-tion(morestable)thanthealkaneandalkenecompounds.

Thealiphaticandthearomatichydrocarbonsarecom-monlysubgroupedevenfurtherbasedonthepresenceofattachedhalogenatoms(chlorineaschloro,bromineasbromo,orfluorineasfluoro)orfunctionalgroupsincluding,butnotlimitedto,alkylradicals.TheVOCsubgroupsincludethealkylbenzenes(suchasmethylbenzene),chlorinatedalkanes(suchas1,2-dichloroethane),chlorinatedalkenes(suchas1,1-dichlo-roethene),andthechlorinatedaromatics(suchas1,2-dichlo-robenzene;table2).Thealkylradicalsarethelowermolecularweightalkanesminusonehydrogenatom(table3)andarehighlyreactivecompoundsthatcaneasilydisplaceahydrogenatomonanothermolecule.Halogenatedoralkylatedaromaticssuchaschlorobenzeneortoluenearemoreeasilydegradedthanbenzeneinaerobicandanaerobicgroundwaterbecausethestabilityofthebenzeneringisreducedandtheringisweak-ened(Bordenandothers,1997).Addinghalidesoralkylgroupstotheringstructuredispersestheelectricalchargesfromthecarbon-carbonbondsontheringandweakensthatbond.

Naming Conventions and Descriptions of Volatile Organic Compounds in Ground Water    �

Table �. Names and synonyms of volatile organic compounds commonly detected in ground water.[IUPAC,InternationalUnionofPureandAppliedChemistry;CAS,ChemicalAbstractServices;—,notapplicable]

IUPAC name 1 Common or alternative name (synonyms)� Other possible names� Predominant source

CAS  number1

Alkyl benzenes1,2-dimethylbenzene o-xylene TheXinBTEX,dimethyltoluene,Xylol gasoline 95-47-61,3-dimethylbenzene m-xylene 108-38-31,4-dimethylbenzene p-xylene 106-42-3

ethylbenzene — TheEinBTEX,Ethylbenzol,phenyl-ethane

gasoline 100-41-4

methylbenzene toluene TheTinBTEX,phenylmethane,Methacide,Toluol,Antisal1A

gasoline 108-88-3

1,2,4-trimethylbenzene pseudocumene pseudocumol,asymmetricaltrimethyl-benzene

gasoline 95-63-6

Aromatic hydrocarbonsbenzene — TheBinBTEX,coalnaphtha,1,3,5-cy-

clohexatriene,mineralnaphthagasoline 71-43-2

naphthalene naphthene — gasoline,organicsyn-thesis

91-20-3

stryrene vinylbenzene phenethylene gasoline,organicsyn-thesis

100-42-5

Ethers2-methoxy-2-

methylpropanemethyltert-butyl

ether,MTBEtert-butylmethylether fueloxygenate 1634-04-4

Chlorinated alkaneschloroethane ethylchloride,

monochloroethanehydrochloricether,muriaticether solvent 75-00-3

chloromethane methylchloride — solvent 74-87-3

1,1-dichloroethane ethylidenedichloride — solvent,degreaser 75-34-3

1,2-dichloroethane ethylidenedichloride glycoldichloride,Dutchoil solvent,degreaser 107-06-2

tetrachloromethane carbontetrachloride perchloromethane,methanetetrachloride solvent 56-23-5

1,1,1-trichloroethane methylchloroform — solvent,degreaser 71-55-6

Chlorinated alkeneschloroethene vinylchloride chloroethylene,monochloroethene,

monovinylchloride(MVC)organicsynthesis,

degradationproduct75-01-4

1,1-dichloroethene 1,1-dichloroethylene,DCE vinylidenechloride organicsynthesis,degradationproduct

75-35-4

cis-1,2-dichloroethene cis-1,2-dichloroethylene 1,2DCE,Z-1,2-dichloroethene solvent,degradationproduct

156-59-2

trans-1,2-dichloroethene trans-1,2-dichloroethylene 1,2DCE,E-1,2-dichloroethene solvent,degradationproduct

156-60-2

dichloromethane methylenechloride — solvent 74-09-2

Chlorinated alkenestetrachloroethene perchloroethylene,PCE,

1,1,2,2-tetrachloroethyleneethylenetetrachloride,carbondichloride,

PERC®,PERK®solvents,degreasers 127-18-4

1,1,2-trichloroethene 1,1,2-trichloroethylene,TCE acetylenetrichloroethylene solvents,degreasersorganicsynthesis

79-01-6

Chlorinated aromatics

chlorobenzene monochlorobenzene benzenechloride,phenylchloride solvent,degreaser 108-90-7

1,2-dichlorobenzene o-dichlorobenzene orthodichlorobenzol organicsynthesis 95-50-1

1,2,3-trichlorobenzene 1,2,6-trichlorobenzene — organicsynthesis 87-61-6

1,2,4-trichlorobenzene 1,2,4-trichlorobenzol — organicsynthesis 102-82-11InternationalUnionofPureandAppliedChemistry,20062U.S.EnvironmentalProtectionAgency,1995

�    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

ThesimplestIUPACrulesfornamingorganicchemi-calsarethoseforthealkanecompounds.First,thecompoundisnamedforthelongestcarbon-carbon(C-C)chaininthecompound.Ifthecompoundcontainsahalogenorabranchingalkylgroup,theneachcarboninthecompoundisnumberedstartingattheendthatisclosesttothehalogenoralkylgroup.Thelongestcarbonchainmayincludetheoriginalbranchingalkylgroupandresultinabranchingalkylgroupwithadiffer-entcarbonpositionandname.AfteridentifyingthelongestC-Cchaininthecompound,thenumericalpositionofthealkylgrouporhalogen,ifany,onaparticularcarbonisdetermined.Thealkylgroupisnamedbasedonthenum-berofcarbonatomsitcontainscorrespondingtoanameinthealkaneseries(table3).ToillustratetheIUPACnamingprocess,considerthefollowingexample:beforetheIUPACrules,aseven-carbonalkane(septane)withanethylfunctionalgroup(table3)onthesecondcarbonwouldbenamed2-ethylseptane(fig.1).UnderIUPACrules,however,thelongestcarbonchaininthisexamplebeginsatthefirstcarbonintheethylgroup.Thisnewcarbonchaincontainseightcarbonatomsratherthantheoriginalsevenandisnowcalledoctane.Moreover,theoctanecompoundnowhasamethylgroupbranchingfromitsthirdcarbon.Therefore,thenewIUPACnameis3-methyloctane(fig.1).

Table �. The first four members of the straight-chain alkane series and associated alkyl radical.1

[IUPAC,InternationalUnionofPhysicalandAppliedChemistry;C,carbonatom;H,hydrogenatom;n,normal;t,tertiary;°C,degreesCelsius]

Alkane series condensed formula (IUPAC name) �

Number of carbon atoms in chain

Alkyl group, condensed formula  (IUPAC name) �

Boiling point  (°C)

CH4(methane) 1 CH

3--[methyl] –161

CH3CH

3(ethane) 2 CH

3CH

2--[ethyl] –89

CH3CH

2CH

3(propane) 3 CH

3CH

2CH

2--[n-propyl]

--CHCH

3CH

3[isopropyl]

–44

CH3CH

2CH

2CH

3(butane) 4 CH

3CH

2CH

2CH

2--[n-butyl]

CH3

CH3C--[t-butyl]

CH3

–0.5

UnderIUPACnamingconventions,highermolecularweightalkanesarenottypicallypresentasalkylradicalsinvolatileorganiccompounds

1BrownandLeMay,1977,tables24.1,24.22InternationalUnionofPureandAppliedChemistry,2006

HH

HCCH H

1 2 3 4 5 6 7

2-ethyl septane

ethylgroup

H

C C3 4 5 6 7

3-methyl octane

methyl group

8

C C C C CC CH C C C C C

1

2

HH

HCCH H

GENERIC IUPAC

Figure 1. Generic and International Union of Pure and Applied Chemistry (IUPAC) naming conventions for the same aliphatic compound.

Naming Conventions and Descriptions of Volatile Organic Compounds in Ground Water    �

Sources of Volatile Organic Compounds Detected in Ground Water

ArelativelylargeamountofliteratureexiststhatdescribesVOCsingroundwateratspecific,knownareasofcontamination.Fewdocuments,however,describeVOCcontaminationinaregionalornationalcontext.OnereportbyArnethandothers(1989)liststhetop15VOCsdetectedingroundwaternearlandfillsintheUnitedStatesandinGer-many(table4).ThislistshowsthattheVOCscontaminatinggroundwaternearlandfillsaresimilarinbothcountries.MostoftheseVOCsarechlorinatedsolvents(CVOCs)andgasolinecompounds(gVOCs).Furthermore,thefrequencyofVOCsdetectedinrepresentativestudiescompletedonnational,regional,andsite-specificscalesintheUnitedStatesshowaremarkablesimilaritytothoseintable4(table5;DelzerandIvahnenko,2003;Moran,2006;Zogorskiandothers,2006).AlthoughthenumberofVOCsanalyzedinground-watersam-plesislargefornationalandregionalstudies,themostcom-monlydetectedcompounds,primarilyCVOCsandgVOCs,aresimilartothoseatsite-specificstudiescompletedatU.S.DepartmentofDefenseinstallations(table6).The10mostcommonlydetectedVOCsinthestudiessummarizedintables5and6aremethyltert-butylether(MTBE),tetrachlo-roethene(PCE),1,1,2-trichloroethene(TCE),methylbenzene

(toluene),1,1,1-trichloroethane(111-TCA),benzene,cis-1,2-dichloroethene(12-cDCE),1,1-dichloroethane(11-DCA),trans-1,2-dichloroethene(12-tDCE),thedimethyl-benzenes(m-,o-,p-xylenes)

Sources of Chlorinated AlkanesThechlorinatedsolventswithinthealkanegroupare

listedintable2.TheCVOCsaretypicallyusedinthemanu-facturingofindustrial,chemical,electronic,andconsumergoods(Smithandothers,1988;U.S.EnvironmentalProtectionAgency,2005b).Inaddition,thesecompoundsareheavilyusedassolventsincleaninganddegreasingproducts.Forexample,111-TCAisusedasasolventforadhesivesandinmetaldegreasing,pesticides,textileprocessing,cuttingfluids,aerosols,lubricants,cuttingoilformulations,draincleaners,shoepolishes,spotcleaners,printinginks,andstainrepellents.

Carbontetrachloride(CTET)wasusedasfeedstockfortheproductionofchlorofluorocarbongases,suchasdichlorodi-fluoromethane(F-12)andtrichlorofluoromethane(F-11),whichwereusedasaerosolpropellantsinthe1950sand1960s(Hol-brook,1992).During1974,theU.S.FoodandDrugAdminis-tration(FDA)bannedthesaleofCTETinanyproductusedinthehomeandtheUSEPAregulatedtheuseofchlorofluorocar-bongasesasaerosolsorpropellants.By2000,CTETproductionfornonfeedstockpurposeswasphased-outcompletely.

Table �. Volatile organic compounds ranked by those frequently detected in ground water near landfills and hazardous waste dumps in the United States and the Federal Republic of Germany.1

[IUPAC,InternationalUnionofPhysicalandAppliedChemistry;—,notapplicable]

Rank

United States of America Federal Republic of Germany

IUPAC  name � Common or alternative name IUPAC name � Common or alternative name

1 1,1,2-trichloroethene 1,1,2-trichloroethylene,TCE tetrachloroethene perchloroethylene,tetrachloro-ethylene,PCE

2 tetrachloroethene perchloroethylene,tetrachloroethylene,PCE

1,1,2-trichloroethene 1,1,2-trichloroethylene,TCE

3 cis-1,2-dichloroethene cis-1,2-DCE trans-1,2-dichloroethene trans-1,2-DCE

4 benzene benzene trichloromethane —

5 chloroethene vinylchloride 1,1-dichloroethene 1,1-dichloroethylene,DCE

6 trichloromethane — dichloromethane methylenechloride

7 1,1,1-trichloroethane methylchloroform 1,1,1-trichloroethane methylchloroform

8 dimethylbenzene xylene 1,1-dichloroethane ethylenedichloride

9 trans-1,2-dichloroethene trans-1,2-dichloroethylene 1,2-dichloroethane ethylenedichloride

10 methylbenzene toluene phenol —

11 ethylbenzene ethylbenzene acetone dimethylketone,2-propanone,andbeta-ketopropane

12 dichloromethane methylenechloride toluene methylbenzene

13 dichlorobenzene,total — bis-(2-ethylhexyl)-phthalate —

14 chlorobenzene chlorobenzene benzene benzene

15 tetrachloromethane carbontetrachloride chloroethene vinylchloride

1Arnethandothers,1989,p.3992InternationalUnionofPureandAppliedChemistry,2006

�    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Table �. Volatile organic compounds detected in regional and national ground-water studies in the United States.[µg/L,microgramsperliter;[12],percentageofsamplesabovetheanalyticalreportinglimit;<,lessthan;ND,notdetectedaboveanalyticalreportinglevel]

RankStatewide, ground water  

in Wisconsin1

Ground water in the Santa Ana  River Basin, California�

Ground-water and drinking-water supply wells in the United States  (concentrations greater than 0.� µg/L)�

Aquifer studies� Domestic water-supply wells� Public water-supply wells�

1 dichloromethane[16.3] 1,1,2-trichloroethene(TCE)[12] tetrachloroethene(PCE)[3.7] 2-methoxy-2-methylpropane(MTBE)[2.9]

2-methoxy-2-methylpropane(MTBE)[5.4]

2 1,1-dichloroethane[13.6] 1,1,1-trichloroethane[10.5] 2-methoxy-2-methylpropane(MTBE)[2.8]

tetrachloroethene(PCE)[2.0] tetrachloroethene(PCE)[5.3]

3 cis-1,2-dichloroethene,1,1-dichloro-ethane[13.6]

tetrachloroethene(PCE)[9.1] 1,1,2-trichloroethene(TCE)[2.6] 1,1,1-trichloroethane[1.4] 1,1,2-trichloroethene(TCE)[4.3]

4 1,1,2-trichloroethene(TCE)[13.3] 1,1-dichloroethene[5.7] methylbenzene[1.9] methylbenzene[1.0] 1,1,1-trichloroethane[2.2]

5 methylbenzene[11.6] 2-methoxy-2-methylpropane(MTBE)[5.3]

1,1,1-trichloroethane[1.7] chloromethane[.97] 1,1-dichloroethane[2.0]

6 tetrachloroethene(PCE)[9.8] cis-1,2-dichloroethene[4.3] chloromethane[1.1] 1,1,2-trichloroethene(TCE)[.92] cis-1,2-dichloroethene[1.5]

7 benzene[8.5] methylbenzene[3.8] trans-1,2-dichloroethene[0.91] dichloromethane[.67] 1,1-dichloroethene(DCE)[1.3]

8 chloroethene[8.0] 1,1-dichloroethane[2.9] dichloromethane[0.89] 1,2,4-trimethylbenzene[.32] trans-1,2-dichloroethene[1.0]

9 1,3-and1,4-dimethylbenzenes[7.9] benzene[1.4] 1,1-dichloroethane[0.86] 1,1-dichloroethane[.29] methylbenzene[1.0]

10 1,1,1-trichloroethane[7.8] 1,2-dimethylbenzene[1.4] 1,1-dichloroethene[0.66] benzene,1,2-dichloroethane[.21] tetrachloromethane[.73]

11 ethylbenzene[7.6] 1,3-and1,4-dimethylbenzene[1.4] benzene[.63] tetrachloromethane[.21] 1,3-and1,4-dimethylbenzene[0.60]

12 1,2,4-trimethylbenzene[7.1] trans-1,2-dichloroethene[<1] 1,2,4-trimethylbenzene[.63] 1,1-dichloroethene[.21] 1,2-dichloroethane[.56]

13 1,2-dimethylbenzene[6.8] dichloromethane[<1] 1,2-dichloroethane[.47] totalxylenes[0.21] 1,2-dimethylbenzene[.48]

14 chloromethane[6.7] ethylbenzene[<1] cis-1,2-dichloroethene[.42] cis-1,2-dichloroethene[.18] benzene,dichloromethane,ethylbenzene[.46]

15 naphthalene[6.5] naphthalene[<1] totalxylenes[.38] naphthalene[.15] chloromethane[.38]

16 chloroethane[6.3] tetrachloromethane[<1] tetrachloromethane[.31] ethylbenzene[.12] 1,2,4-trimethylbenzene[0.32]

17 chlorobenzene[4.3] 1,2,4-trimethylbenzene[<1] chloroethane[.29] chloroethane[.093] chloroethane[.28]

18 1,2-dichloroethane[3.7] chlorobenzene[ND] chloroethene[.26] chloroethene[.083] vinylbenzene[.19]

19 trans-1,2-dichloroethene[3.3] chloroethane[ND] ethylbenzene[.26] trans-1,2-dichloroethene[.045] chlorobenzene,1,2-dichlorobenzene[.18]

20 1,1-dichloroethene(DCE)[2.6] chloromethane[ND] chlorobenzene[.17] chlorobenzene[.042] chloroethene[.18]

21 1,2-dichlorobenzene[2.4] chloroethene[ND] naphthalene[.16] 1,2-dichlorobenzene[.042] naphthalene[.10]

22 2-methoxy-2-methylpropane(MTBE)[2.3]

1,2-dichlorobenzene[ND] 1,2-dichlorobenzene[.12] vinylbenzene[ND] 1,2,4-trichlorobenzene[ND]

23 tetrachloromethane[1.8] 1,2-dichloroethane[ND] vinylbenzene[ND] 1,2,4-trichlorobenzene[ND] 1,3-dichlorobenzene[ND]

24 vinylbenzene[1.2] 1,2,3-trichlorobenzene[ND] 1,2,3-trichlorobenzene[ND] 1,1,2-trichloroethane[ND] 1,1,2-trichloroethane[ND]

25 1,2,4-trichlorobenzene,1,1,2-trichloroethane[<1.0]

vinylbenzene[ND] 1,2,3-trichlorobenzene[ND] 1,2,3-trichlorobenzene[ND]

11,305–4,086samples(WisconsinDepartmentofNaturalResources,2000)29–112samples(Hamlinandothers,2002)3Zogorskiandothers,200641,710–3,498samples51,190–1,208samples6828–1,096samples

Sources of Volatile Organic Compounds Detected in Ground W

ater  

Chemicalmanufacturingisthelargestuseof11-DCAand1,2-dichloroethane(12-DCA).Bothcompoundsserveasanintermediateduringthemanufactureofchloroethene(vinylchloride,VC),111-TCA,andtoalesserextenthigh-vacuumrubber.BothDCAisomersalsoareusedasasolventforplastics,oils,andfats,andincleaningagentsanddegreasers(AgencyforToxicSubstancesandDiseaseRegistry,1990c,p.51;2001,p.160).About98percentofthe12-DCApro-ducedintheUnitedStatesisusedtomanufactureVC.Smalleramountsof12-DCAareusedinthesynthesisofvinylidenechloride,TCE,PCE,aziridines,andethylenediamines,andinotherchlorinatedsolvents(U.S.EnvironmentalProtectionAgency,1995).

Thecompound111-TCAwasinitiallydevelopedasasafersolventtoreplaceotherchlorinatedandflammablesolvents.Thecompoundisusedasasolventforadhesives(includingfoodpackagingadhesives)andinmetaldegreasing,pesticides,textileprocessing,cuttingfluids,aerosols,lubricants,cuttingoilformulations,draincleaners,shoepolishes,spotcleaners,print-

inginks,andstainrepellents,amongotheruses(AgencyforToxicSubstancesandDiseaseRegistry,2004,p.181).TheotherTCAisomer,1,1,2-trichloroethane(112-TCA),haslimiteduseasacommon,general-usesolventbutisusedintheproductionofchlorinatedrubbers(Archer,1979).Insomecases,112-TCAmaybesoldforuseinconsumerproducts(AgencyforToxicSubstancesandDiseaseRegistry,1989,p.59).

Before1979,thesinglelargestuseofchloroethanewasintheproductionoftetraethyllead.Asrecentlyas1984,thedomesticproductionoftetraethylleadaccountedforabout80percentofthechloroethaneconsumedintheUnitedStates;whereasabout20percentwasusedtoproduceethylcellulose,andusedinsolvents,refrigerants,topicalanesthetics,andinthemanufactureofdyes,chemicals,andpharmaceuticals.Sincethe1979banontetraethylleadingasolineanditssub-sequentphaseoutinthemid-1980,theproductionofchloro-ethaneinrecentyearshasdeclinedsubstantiallyintheUnitedStates(AgencyforToxicSubstancesandDiseaseRegistry,1998,p.95).

Table �.  Volatile organic compounds detected in ground-water case studies at selected U.S. Department of Defense installations.

[[43.3],percentageofsampleswithadetectedconcentration;ND,notdetectedaboveanalyticalreportinglevel]

RankDover Air Force  Base, Maryland 1

U.S. Army Armament Research  and Development Center,  

Picatinny, New Jersey, 19�8 – 8� �

U.S. Naval Undersea  Warfare Center,  

Washington, D.C. �

Wright-Patterson Air Force Base, Ohio, 

199�  –  9� �

1 2-methoxy-2-methylpropane(MTBE)[25.5]

1,1,2-trichloroethene(TCE)[58.5]

chloroethene[64] 1,1,2-trichloroethene(TCE)[12.5]

2 cis-1,2-dichloroethene[21.7] tetrachloroethene(PCE)[24.9] cis-1,2-dichloroethene[59] tetrachloroethene(PCE)[5.8]

3 1,1,2-trichloroethene(TCE)[20.3] trans-1,2-dichloroethene(DCE)[18.6]

trans-1,2-dichloroethene[44.8]

1,1,1-trichloroethane[2.3]

4 tetrachloroethene(PCE)[13.7] 1,1,1-trichloroethane[16.8] 1,1,2-trichloroethene(TCE)[40.4]

chloromethane[2.3]

5 benzene[10.4] 1,1-dichloroethane[9.6] totalBTEXcompounds[40.1] cis-andtrans-1,2-dichloroethene[1.2]

6 methylbenzene[6.6] cis-1,2-dichloroethene(DCE)[9.6]

1,1-dichloroethane[37.2] chloroethene[.9]

7 dimethylbenzenes(m-,p-xylene)[3.7]

methylbenzene(toluene)[4.4] chloroethane[33.9] dichloromethane[.9]

8 ethylbenzene[2.3] benzene[2.6] 1,1-dichloroethene[31.3] methylbenzene[.6]

9 chloroethene[ND] — tetrachloroethene(PCE)[9.6] benzene[.3]

10 — — 1,1,1-trichloroethane[6.9] chloroethane[.3]

11 — — — tetrachloromethane[.3]1212samples(BarbaroandNeupane,2001;Guertalandothers,2004)

2607samples(Sargentandothers,1986)

3121–179samples(Dinicolaandothers,2002)

4343samples(Schalkandothers,1996)

8    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Sources of Chlorinated Alkenes and Benzenes

Thechlorinatedalkeneslistedintable2includetwoofthemostwidelyusedanddistributedsolventsintheUnitedStatesandEurope.Thesesolvents,PCEandTCE,alsoareamongthemostcommoncontaminantsingroundwater(tables5and6).ThetextileindustryusesthelargestamountofPCEduringtheprocessing,finishingofrawandfinishedtextiles,andforindustrialandconsumerdrycleaning(U.S.EnvironmentalProtectionAgency,2005b,Webpage:http://www.epa.gov/opptintr/chemfact/f_perchl.txt,accessedMay23,2006).MostoftheTCEusedintheUnitedStatesisforvapordegreasingofmetalpartsandsometextiles(U.S.EnvironmentalProtectionAgency,2005b,Webpage:http://www.epa.gov/OGWDW/dwh/t-voc/trichlor.html,accessedMay23,2006).OtherusesofPCEandTCEincludemanufacturingofpharmaceuticals,otherorganiccompounds,andelectroniccomponents,andinpaintandinkformulations(Smithandothers,1988).

Fourchlorinatedbenzenescommonlydetectedinground-watercontaminationstudiesincludechlorobenzene(CB),1,2-dichlorobenzene(12-DCB),andtwoisomersoftrichlo-robenzene,1,2,3-trichlorobenzene(123-TCB)and1,2,4-tri-chlorobenzene(124-TCB;tables5and6).Chlorobenzeneiscommonlyusedasasolventforpesticideformulations,inthemanufacturingofdi-isocyanate,asadegreaserforauto-mobileparts,andintheproductionofnitrochlorobenzene.Solventusesaccountedforabout37percentofchlorobenzeneconsumptionintheUnitedStatesduring1981(AgencyforToxicSubstancesandDiseaseRegistry,1990a,p.45).Thecompound12-DCBisusedprimarilytoproduce3,4-dichloro-anilineherbicides(AgencyforToxicSubstancesandDiseaseRegistry,1990b,p.263).Thetwotrichlorobenzeneisomersareprimarilyusedasdyecarriersinthetextileindustry.Otherusesincludeseptictankanddraincleaners,theproductionofherbicidesandhigherchlorinatedbenzenes,aswoodpreserva-tives,andinheat-transferliquids(U.S.EnvironmentalProtec-tionAgency,2005b,Webpage:http://www.epa.gov/OGWDW/dwh/t-voc/t-124-tric.html,accessedMay23,2006).

Sources of Gasoline CompoundsAtabasiclevel,gasolineproductionissimplyaprocessof

sequentialdistillationsthatseparate,byvaporization,volatilehydrocarbonsfromcrudeoil.Typically,thesehydrocarbonsarethelowermolecularweightcompoundsthatcommonlyarethemostvolatilecompoundsincrudeoil.Moreadvancedmethodssuchasheat“cracking”areusedtobreakdownthecomplexaromatichydrocarbonsincrudeoilintosmaller,morevolatilecompoundsthatareeasilydistilled.Oncethehydrocarbonsareinavaporform,acondensationprocesscoolsthevaporandthe

resultingliquidiscollectedforfurtherrefining.Thehydro-carboncompositionofgasolinedependsonthesourceofthecrudeoilused,therefiningprocess,therefiner,theconsumerdemand,thegeographiclocationoftherefinery,andthedistri-butionalareaofthegasoline(HarperandLiccione,1995).

Gasolineistypicallyamixtureofvarioushydrocarbonsthatincludealkanes,cycloalkanes,cycloalkenes,akylben-zenes,andaromaticcompounds,andsomeoxygenatedalcoholadditives(table7).Manyofthehydrocarbonsingasolineareadditivesandblendingagentsintendedtoimprovetheperformanceandstabilityofgasoline.Theseadditivestypi-callyconsistofoxygenatessuchasmethyltert-butylether(MTBE),ethanol,ormethanol,antiknockagents,antioxidants,metaldeactivators,leadscavengers,antirustagents,anti-icingagents,upper-cylinderlubricants,detergents,anddyes.Attheendoftherefiningprocess,finishedgasolinecommonlycontainsmorethan150separatecompounds;however,someblendsmaycontainasmanyas1,000compounds(HarperandLiccione,1995).

Table �. Major organic compounds in a typical gasoline blend.1

[n,C5-C

13carbonchain;MTBE,methyltert-butylether;

TBA,tert-butylalcohol]

Major compounds Percent composition by weight

n-alkanes 17.3

Branchedalkanes 32.0Cycloalkanes 5.0Olefins 1.8Aromatichydrocarbons 30.5 Benzene 3.2 Toluene 4.8 Ethylbenzene 1.4 Xylenes 6.6 Otherbenzenes 11.8 Otheraromatics 2.7

Other possible additives

Octaneenhancers:MTBE,TBA,ethanolAntioxidants:N,N'-dialkylphenylenediamines,di-andtri-

alkylphenols,butylatedmethyl,ethylanddimethylphenolsMetaldeactivators:variousN,N'-disalicylidenecompoundsIgnitioncontrollers:tri-o-cresylphosphate(TOCP)Detergents/dispersants:alkylaminephosphates,poly-isobutene

amines,long-chainalkylphenols,alcohols,carboxylicacids,andamines

Corrosioninhibitors:phosphoricacids,sulfonicacids,carboxylicacids

1HarperandLiccione,1995

Sources of Volatile Organic Compounds Detected in Ground Water    9

BTEX Compounds (Benzene, Toluene, Ethylbenzene, and Xylene)

About16percentofatypicalgasolineblendconsistsofBTEXcompounds(collectively,benzene,toluene,ethlyben-zene,andthreexylenecompounds;table7).Ofthedifferentcomponentscontainedingasoline,BTEXcompoundsarethelargestgroupassociatedwithhuman-healtheffects.Becauseoftheadverseimpactonhumanhealth,BTEXcompoundsaretypicallythefuelcomponentsanalyzedinground-watersamplescollectedfromfuel-contaminatedaquifers.Further-more,threeminorcomponentsofgasoline:naphthalene,vinylbenzene(styrene),and1,2,4-trimethylbenzene(124-TMB)arecommonlydetectedalongwithBTEXcompoundsandMTBEincontaminatedgroundwater(tables5and6).AlthoughtheindividualBTEXcompoundsarewidelyusedassolventsandinmanufacturing(Swoboda-Colberg,1995),gasolineleaksfromundergroundstoragetanksanddistributionpipelinesistheprimarycontributorofBTEXcontaminationingroundwater(U.S.EnvironmentalProtectionAgency,2000b;U.S.EnvironmentalProtectionAgency,2005a).

Methyl Tert-butyl EtherMethyltert-butylether(MTBE;IUPAC2-methoxy-2-

methylpropane)isagasolineadditivewithintheclassoffueloxygenates.Oxygenatesareorganiccompoundsthatenrichgasolinewithoxygentoimprovethecombustionefficiencyofgasolineandreducecarbonmonoxideemissionsinvehicleexhaust.Sincethelate1980s,gasolineshippedtoareasoftheUnitedStatesthatfallundertheReformulatedGasoline(RFG)andOxygenatedFuel(Oxyfuel)ProgramsoftheCleanAirAct(CAA)anditsamendmentshascontainedoxygenates(Moranandothers,2004).Moreover,30percentofthegaso-lineusedintheUnitedStatessince1998containedoxygen-atesincompliancewithRFGrequirementswhile4percentofthegasolineusedcompliedwiththeOxyfuelrequirements(U.S.EnvironmentalProtectionAgency,1998).Reformulatedgasolinecontainsabout11percentMTBEbyvolume(DelzerandIvahnenko,2003).

Basic Properties of Selected  Volatile Organic Compounds

Volatileorganiccompoundshaveanumberofuniquepropertiesthatbothinhibitandfacilitateground-watercon-tamination.Tables8through12listbasicphysicalpropertiesof27VOCsdetectedingroundwater.Physicalpropertiesuniquetoeachcompoundtypicallyaregovernedbythenumberofcarbonsandthecovalentbondinginthecompound,thenumberandlocationofchlorineatoms,andthenumber,locationandtypeofalkylgroups.ThephysicalpropertiesaddressedinthisreportincludetheHenry’sLawconstant(H),watersolubil-ity,density,octanol-waterpartitioning(LogK

ow),andorganic

carbonpartitioning(LogKoc

)ofthenon-aqueousphaseliquid(NAPL).ModelsthatestimatethefateandtransportofVOCsingroundwaterdependontheaccuracyandreliabilityofphys-icalpropertymeasurements.Somemodels,suchasthefugacitymodels,alsousethesepropertiestopredictacompound’srateofmovementintoandoutofenvironmentalcompart-ments(soil,water,air,orbiota;Mackay,2004).Predictingtheenvironmentalfateofacompoundingroundwaterdependsondatathatquantifies:(1)thecompound’stendencytovolatilize(gaseousphase),(2)todissolveinwater(aqueousphase),(3)tofloatonorsinkbeneaththewatersurface,(4)todissolveinorsorbtootherorganiccompounds(includingnaturalorganicmatter),and(5)thecompound’saffinityforionicallychargedsurfacessuchasclayorsoilparticles.Fugacitymodelsofvaryingcomplexityareincommonuseandrelyonthephysi-calpropertiesofthesecompoundstoestimateplumemigrationandpersistence,andtoguidetheremediationofcontaminatedgroundwater(Mackayandothers,1996;InstituteforEnviron-mentalHealth,2004;SaichekandReddy,2005).

Degradation of Selected Volatile Organic Compounds in Ground Water

Underspecificconditions,mostorganiccompoundsdegradeataparticularrateduringagivenlengthoftime.Thespeedofthedegradationdependsonthepresenceandactivityofmicrobialconsortia(bacteriaandfungispecies),environmentalconditions(temperature,aquifermaterials,organicmattercon-tent),andtheavailabilityandconcentrationofcarbonsources(primarysubstrate)availabletothemicrobialconsortia.Thepri-marysubstratecanbeaVOCororganiccarbonfounddissolvedinwaterorsorbedtoaquifersediments.Whenprimarysubstrateconcentrationsaresmall,themicrobialpopulationissmallandbiodegradationratesarerelativelyslow.Asthesubstratecon-centrationsincrease,themicrobialpopulationgrowsandthedegradationrateincreasesconcomitantly(BradleyandChapelle,1998).Themicrobialpopulationwillgrowuntiltheyreachamaximumgrowthrate(Aronsonandothers,1999).

ThedegradationofVOCsingroundwaterisatransfor-mationofaparentcompoundtodifferentcompoundscom-monlycalleddaughterproducts,degradates,ordegradationby-products.Thesetransformationscanbegroupedintotwogeneralclasses:(1)thosethatrequireanexternaltransferofelectrons,calledoxidation-reductionreactions;and(2)thosethatdonotinvolveatransferofelectrons,calledsubstitutionsanddehydrohalogenations(Vogelandothers,1987).Table13summarizesthesereactions.Oxidation-reductionreactionsarethedominantmechanismsdrivingVOCdegradationandmostofthesereactionsarecatalyzedbymicroorganisms(Wiedemeierandothers,1998;Azadpour-Keeleyandothers,1999).Substitutionreactionsthatcanremovechlorineatoms,suchashydrolysis,candegradesomechlorinatedalkanes(trichloroethane)tononchlorinatedalkanes(ethane)withorwithoutamicrobialpopulationcatalyzingthereaction(Vogel

10    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

andothers,1987;Olaniranandothers,2004).Typically,thepolychlorinatedcompounds(forexample,PCEandTCE)eas-ilydegradeunderanaerobicconditionsandarelessmobileinsoilandaquifermaterialsthanthedi-andmono-chlorinatedcompounds(fig.2).Degradationpathwaysareillustratedin

figures3through19forasubsetofthecompoundslistedintable2.ThesefiguresaremodificationsofpathwaysdescribedintheUniversityofMinnesota’sbiodegradation/biocatalysisdatabase(Ellisandothers,2006)accessibleviatheInternetathttp://umbbd.msi.umn.edu,accessedMay23,2006.

Table 8. Henry’s Law constants for selected volatile organic compounds detected in ground water.

[IUPAC,InternationalUnionofPhysicalandAppliedChemistry;kPa,kilopascals;m3,cubicmeter;mol,mole;°C,degreesCelsius;—,notapplicable]

IUPAC name1 Common or alternative name� Henry’s Law� constant (H) (kPa m� mol–1 at ��°C)

tetrachloromethane carbontetrachloride 2.99

Incr

easi

ngte

nden

cyf

ora

com

poun

dto

mov

efr

omth

ew

ater

ph

ase

toth

eva

por

phas

ew

hen

ine

quili

briu

mw

ithp

ure

wat

er

chloroethene vinylchloride,chloroethylene 2.68

1,1-dichloroethene 1,1-dichloroethylene,DCE 2.62

1,1,1-trichloroethane methylchloroform 1.76

tetrachloroethene perchloroethylene,tetrachloroethylene,PCE 1.73

chloroethane ethylchloride,monochloroethane 41.11

1,1,2-trichloroethene 1,1,2-trichloroethylene,TCE 1.03

trans-1,2-dichloroethene trans-1,2-DCE,trans-1,2-dichloroethylene .960

chloromethane methylchloride 5.920

ethylbenzene — .843

1,3-dimethylbenzene m-xylene .730

1,4-dimethylbenzene p-xylene .690

methylbenzene toluene .660

1,1-dichloroethane 1,1-ethylidenedichloride .630

benzene — .557

1,2-dimethylbenzene o-xylene .551

1,2,4-trimethylbenzene pseudocumene .524

cis-1,2-dichloroethene cis-1,2-dichloroethylene,cis-1,2-DCE .460

chlorobenzene monochlorobenzene .320

stryrene vinylbenzene .286

1,2,4-trichlorobenzene 1,2,4-trichlorobenzol .277

1,2,3-trichlorobenzene 1,2,6-trichlorobenzene .242

1,2-dichlorobenzene o-dichlorobenzene .195

1,2-dichloroethane 1,2-ethylidenedichloride,glycoldichloride .140

1,1,2-trichloroethane methylchloroform .092

2-methoxy-2-methylpropane methyltert-butylether,MTBE .070

naphthalene naphthene .043

1InternationalUnionofPureandAppliedChemistry,20062U.S.EnvironmentalProtectionAgency,19953Lide,20034Gossett,19875NationalCenterforManufacturingSciences,2006

Degradation of Selected Volatile Organic Compounds in Ground Water    11

Table 9.  Water-solubility data for selected volatile organic compounds detected in ground water.

[IUPAC,InternationalUnionofPureandAppliedChemistry;mg/L,milligramsperliter;°C,degreesCelsius;—,notapplicable]

IUPAC name1 Common or alternative name� Water solubility�  (mg/L at ��°C)

2-methoxy-2-methylpropane methyltert-butylether,MTBE 36,200

Incr

easi

nga

mou

nto

fno

n-aq

ueou

sph

ase

liqui

dth

atc

and

isso

lve

inw

ater

1,2-dichloroethane 1,2-ethylidenedichloride,glycoldichloride 8,600

chloromethane methylchloride 45,320

chloroethane ethylchloride,monochloroethane 56,710

cis-1,2-dichloroethene cis-1,2-dichloroethylene 6,400

1,1-dichloroethane 1,1-ethylidenedichloride 5,000

1,1,2-trichloroethane methylchloroform 4,590

trans-1,2-dichloroethene trans-1,2-dichloroethylene 4,500

chloroethene vinylchloride,chloroethylene 2,700

1,1-dichloroethene 1,1-dichloroethylene,DCE 2,420

benzene — 1,780

1,1,1-trichloroethane methylchloroform 1,290

1,1,2-trichloroethene 1,1,2-trichloroethylene,TCE 1,280

tetrachloromethane carbontetrachloride 1,200

methylbenzene toluene 531

chlorobenzene — 495

stryrene vinylbenzene 321

tetrachloroethene perchloroethylene,tetrachloroethylene,PCE 210

1,2-dimethylbenzene o-xylene 207

1,4-dimethylbenzene p-xylene 181

1,3-dimethylbenzene m-xylene 161

ethylbenzene — 161

1,2-dichlorobenzene o-dichlorobenzene 147

1,2,4-trimethylbenzene pseudocumene 57

1,2,4-trichlorobenzene 1,2,4-trichlorobenzol 37.9

naphthalene naphthene 631.0

1,2,3-trichlorobenzene 1,2,6-trichlorobenzene 30.9

1InternationalUnionofPureandAppliedChemistry,2006

2U.S.EnvironmentalProtectionAgency,1995

3Lide,2003

4NationalCenterforManufacturingSciences,2006

5Horvath,1982

6Lyman,1982

1�    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Table 10. Density of selected volatile organic compounds detected in ground water compared to the density of water at 20 degrees Celsius.

[IUPAC,InternationalUnionofPureandAppliedChemistry;g/cm,gramspercentimeter;°C,degreesCelsius;—,notapplicable]

IUPAC name1 Common or alternative name� Density �  (g/cm�, �0°C)

1,2,3-trichlorobenzene 1,2,6-trichlorobenzene 41.690

Incr

easi

ngd

ensi

ty(

heav

ier

than

wat

er)

tetrachloroethene perchloroethylene,tetrachloroethylene,PCE 1.623

tetrachloromethane carbontetrachloride 1.594

1,1,2-trichloroethene 1,1,2-trichloroethylene,TCE 1.464

1,2,4-trichlorobenzene 1,2,4-trichlorobenzol 41.45

1,1,2-trichloroethane methylchloroform 1.44

1,1,1-trichloroethane methylchloroform 1.339

1,2-dichlorobenzene o-dichlorobenzene 1.306

cis-1,2-dichloroethene cis-1,2-dichloroethylene 1.284

trans-1,2-dichloroethene trans-1,2-dichloroethylene 1.256

1,2-dichloroethane 1,2-ethylidenedichloride,glycoldichloride 1.235

1,1-dichloroethene 1,1-dichloroethylene,DCE 1.213

1,1-dichloroethane 1,1-ethylidenedichloride 1.176

chlorobenzene monochlorobenzene 1.106

purewaterat20°C 1.000

naphthalene naphthene .997

Dec

reas

ing

dens

ity(

light

erth

anw

ater

)

chloromethane methylchloride .991

chloroethane ethylchloride .920

chloroethene vinylchloride,chloroethylene 4.910

stryrene vinylbenzene .906

1,2-dimethylbenzene o-xylene .880

benzene — .876

ethylbenzene — .867

1,2,4-trimethylbenzene pseudocumene .876

methylbenzene toluene .867

1,3-dimethylbenzene m-xylene .864

1,4-dimethylbenzene p-xylene .861

2-methoxy-2-methylpropane methyltert-butylether,MTBE .740

1InternationalUnionofPureandAppliedChemistry,2006

2U.S.EnvironmentalProtectionAgency,1995

3Lide,2003

4Chiouandothers,1983

Degradation of Selected Volatile Organic Compounds in Ground Water    1�

Table 11. Octanol-water partition coefficients for selected volatile organic compounds detected in ground water.

[IUPAC,InternationalUnionofPureandAppliedChemistry;Kow

,octanol-waterpartitioncoefficient;—,notapplicable]

IUPAC name1 Common or alternative name� Octanol/ water partition coefficient � (Log Kow)

1,2,3-trichlorobenzene 1,2,6-trichlorobenzene 44.07

In

crea

sing

aff

inity

for

org

anic

mat

ter

and

lipid

s

1,2,4-trichlorobenzene 1,2,4-trichlorobenzol 44.04

1,2,4-trimethylbenzene pseudocumene 3.65

1,2-dichlorobenzene o-dichlorobenzene 3.46

naphthalene naphthene 3.36

1,3-dimethylbenzene m-xylene 3.20

ethylbenzene ethylbenzene 3.15

1,4-dimethylbenzene p-xylene 3.15

1,2-dimethylbenzene o-xylene 3.12

stryrene vinylbenzene 3.05

tetrachloroethene perchloroethylene,tetrachloroethylene,PCE 2.88

chlorobenzene monochlorobenzene 42.84

methylbenzene toluene 2.73

tetrachloromethane carbontetrachloride 42.64

1,1,2-trichloroethene 1,1,2-trichloroethylene,TCE 32.53

1,1,1-trichloroethane methylchloroform 42.49

1,1,2-trichloroethane methylchloroform 2.38

1,1-dichloroethene 1,1-dichloroethylene,DCE 2.13

benzene — 2.13

trans-1,2-dichloroethene trans-1,2-dichloroethylene 1.93

cis-1,2-dichloroethene cis-1,2-dichloroethylene 1.86

1,1-dichloroethane 1,1-ethylidenedichloride 41.79

1,2-dichloroethane 1,2-ethylidenedichloride,glycoldichloride 41.48

chloroethane ethylchloride 1.43

chloroethene vinylchloride,chloroethylene 1.38

2-methoxy-2-methylpropane methyltert-butylether,MTBE .94

chloromethane methylchloride .91

1InternationalUnionofPureandAppliedChemistry,2006

2U.S.EnvironmentalProtectionAgency,1995

3Sangster,1989

4Mackayandothers,1992a

1�    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Table 1�. Soil-sorption partition coefficients for selected volatile organic compounds detected in ground water.

[IUPAC,InternationalUnionofPureandAppliedChemistry;Koc

,soilorganiccarbonpartitioncoefficient;—,notapplicable]

IUPAC name1 Common or alternative name� Soil-sorption coefficient (Log Koc in soil)

1,2,4-trimethylbenzene pseudocumene 33.34

Incr

easi

nga

ffin

ityf

ors

oilo

rgan

icm

atte

r

1,2,3-trichlorobenzene 1,2,6-trichlorobenzene 43.18–33.42

naphthalene naphthene 32.98

1,2,4-trichlorobenzene 1,2,4-trichlorobenzol 52.94

vinylbenzene styrene 22.72–2.74

1,2-dichlorobenzene o-dichlorobenzene 62.46–52.51

tetrachloroethene perchloroethylene,tetrachloroethylene,PCE 72.37

ethylbenzene — 52.22

1,1-dichloroethene 1,1-dichloroethylene,DCE 22.18

1,3-dimethylbenzene m-xylene 72.11–2.46

1,1,1-trichloroethane methylchloroform 82.03

1,1,2-trichloroethene 1,1,2-trichloroethylene,TCE 72.00

chlorobenzene monochlorobenzene 51.91

1,1,2-trichloroethane methylchloroform 71.78–2.03

tetrachloromethane carbontetrachloride 91.78

methylbenzene toluene 71.75–102.28

chloroethene vinylchloride,chloroethylene 21.75

1,2-,1,4-dimethylbenzene o-xylene,p-xylene 21.68–1.83

chloroethane ethylchloride 41.62

cis-1,2-dichloroethene cis-1,2-dichloroethylene 21.56–1.69

1,2-dichloroethane 1,2-ethylidenedichloride,glycoldichloride 61.52

trans-1,2-dichloroethene trans-1,2-dichloroethylene 21.56–1.69

1,1-dichloroethane 1,1-ethylidenedichloride 121.52

benzene — 51.49–71.73

methyltert-butylether MTBE 111.09

chloromethane methylchloride 3.778

1InternationalUnionofPureandAppliedChemistry,2006

2U.S.EnvironmentalProtectionAgency,1995

3Boydandothers,1990

4SchwarzenbachandWestall,1981

5Chiouandothers,1983

6Chiouandothers,1979

7Seipandothers,1986

8Frieselandothers,1984

9Kileandothers,1996

10GarbariniandLion,1986

11U.S.EnvironmentalProtectionAgency,1994

12U.S.EnvironmentalProtectionAgency,2005b

Degradation of Selected Volatile Organic Compounds in Ground Water    1�

Table 1�. Common abiotic and biotic reactions involving halogenated aliphatic hydrocarbons.1

[+,plus;Cl,chloride]

Reactions Potential reaction products

Substitution

abiotichydrolysis alcoholthenanacidordiol(chloroethanolchloroaceticacid)

biotichydrolysis alcoholthenanacidordiolviamicrobialenzymes(hydrolasesorglutathioneS-transferases;(chloroethanolchloroaceticacid)

conjugationornucleophilicreactions(biotic) freehalideplusanewcompoundwiththenucleophileorconjugate

Dehydrohalogenation

dehydrohalogenation halogenatedacid(chloroaceticacid),alkanetoalkene(dichloroethanechloroethane)

Oxidation

α-hydroxylation monochlorinatedalkanetoamonochlorinatedalcohol(chloroethanechloroethanol)

halosyloxidation monohalogenatedalkanetoanonhalogenatedalkane(chloroethaneethane+Cl)

epoxidation halogenatedepoxidecompound

biohalogenation nonhalogenatedalkenetoamonohalogenatedalcohol(ethene+Clchloroethanol)

Reduction

hydrogenolysis freehalideandnonhalogenatedcompound(chloroethaneCl+ethane)

dihaloelimination dihalogenatedalkanetoanonhalogenatedalkene(dichloroethane ethene)

coupling combiningoftwohalogenatedcompoundsintoonehalogenatedcompound

1Vogelandothers,1987,figure1

Aerobic degradation

Sorption

Reductive dechlorination rate

DEGREE OF CHLORINATION

PolychlorinatedMonochlorinated

DEGR

ADAT

ION

RAT

E

Sorp

tion

onto

sub

surfa

ce m

ater

ial

0.25 4

Figure �. Relation between degree of chlorination and anaerobic reductive-dechlorination, aerobic degradation and sorption onto subsurface material (modified from Norris and others, 1993, p. 10–19). Degree of chlorination is number of chloride atoms divided by number of carbon atoms.

1�    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Aquiferconditions(aerobicandanaerobic)andmicrobialmetabolism(respiration,fermentation,andco-metabolism)controltheenvironmentaldegradationofVOCsingroundwater.Inaerobicenvironments,oxygenservesastheterminalelectronacceptor(TEA)andcompoundssuchasMTBEandBTEXaresubsequentlydegraded(oxidized)toothercompounds(Azad-pour-Keeleyandothers,1999).Furthermore,underaerobiccon-ditionsCVOCscanbeinadvertentlydegraded(co-metabolized)vianonspecificenzymes(oxygenases)producedbymicroor-ganismsduringthemetabolismofothercompoundsservingasprimarysubstrates(forexample,BTEX,methane,propane,toluene,ammonia,ethene,ethane).AlthoughtheaerobicmineralizationofmostVOCsultimatelyyieldscarbondioxideandwater,co-metabolicbiodegradationofCVOCsgenerallyproceedsviaanunstableepoxideintermediatethatspontane-ouslydecomposestocarbondioxide,chloride,orotherorganicby-productssuchasacetate(Robertsandothers,1986).

Anaerobicdegradationistypicallyaseriesofdecarbox-ylationsandoxidation-reduction(redox)reactionscatalyzedeitherbysinglemicroorganismsorbyaconsortiumofmicroorganisms(Dolfing,2000).Duringanaerobicdegra-dation,CVOCsfunctionasterminalelectronacceptorsinaprocesscalledreductivedechlorination(Vogelandoth-ers,1987).Theoretically,reductivedechlorinationisthesequentialreplacementofonechlorineatomonachlorinatedcompoundwithahydrogenatom.Thereplacementcontin-uesuntilthecompoundisfullydechlorinated.Forexample,PCEcanundergoreductivedechlorinationtoless-chlorinatedcompounds,suchasTCEor12-DCE,ortononchlorinatedcompoundssuchasethene,ethane,ormethane(methano-genesis).Eachsuccessivestepinthedechlorinationprocessistheoreticallyslowerthantheprecedingstep.Thedechlo-rinationprocessslowsbecauseaschlorinesareremovedtheenergycoststoremoveanotherchlorineatomincreases(freeenergyofthereactiondecreases;Dolfing,2000).Asaresult,biodegradationmaynotproceedtocompletioninsomeaquifersleavingintermediatecompounds(forexample,dichloroethenesandvinylchloride)toaccumulateingroundwater(Azadpour-Keeleyandothers,1999).Otherconstraintsonbiodegradationsuchasareductioninorlossofprimarysubstrate,ormicrobialsuppressionalsocanplayaroleintheaccumulationofintermediatecompounds.ThisisaparticularconcernwithVCbecauseitisaknownhumancarcinogen(AgencyforToxicSubstancesandDiseaseRegistry,2005)anditsaccumulationmaycreateahealthissuethatmightnotbeaconcernduringtheearlystagesofground-watercon-taminatedbyTCE.

Degradation of the Chlorinated Alkanes

ThedegradationofchlorinatedVOCsisfundamentallydifferentfromthatofBTEXcompounds(Wiedemeierandothers,1995).Thechlorinatedalkanescanbedegradedbyabioticprocessesthroughhydrolysisordehydrohalogenationorbybioticprocessesthroughreductivedechlorinationordichloroelimination.Thesedegradationprocessescanproceedundereitheraerobicoranaerobicconditions(figs.3–6;VogelandMcCarty,1987a;Vogel,1994).AccordingtoMcCarty(1997),111-TCAistheonlychlorinatedcompoundthatcanbedegradedingroundwaterwithin20yearsunderalllikelyground-wateroraquiferconditions.

Abiotic TransformationHydrolysisanddehydrohalogenationaretwoabiotic

processesthatmaydegradechlorinatedethanesundereitheraerobicoranaerobicconditions.Thetendencyforachlori-natedethanetodegradebyhydrolysisdependsontheratioofchlorinetocarbonatoms(fig.2)orthelocationofchlorineatomsonthenumber2carboninthecompound.Chlorinatedalkanesaremoreeasilyhydrolyzedwhenthechlorine-carbonratioislessthantwoorwhenchlorineatomsareonlylocatedonthenumber1carbonatom(VogelandMcCarty,1987b;Vogel,1994).Forexample,chloroethaneand111-TCAhavehalf-lifesthataremeasuredindaysormonths(Vogelandoth-ers,1987;Vogel,1994;table14).Conversely,themorechlo-rinatedethanessuchas1,1,1,2-tetrachloroethane(PCA)andthosewithchlorineatomsonthenumber2carbontendtohavehalf-lifesmeasuredindecadesorcenturies(table14).Dehy-drohalogenationistheremovalofoneortwohalogenatomsfromanalkane(VogelandMcCarty,1987a).Thedehydroha-logenationoftwochlorineatomsiscalleddichloroelimination.

Chenandothers(1996)showthatPCAcanbeabioticallytransformedtoTCEundermethanogenicconditions(fig.3).Inaddition,theabioticdegradationof111-TCAhasbeenwellstudiedinthescientificliterature(fig.4;Jeffersandothers,1989;McCartyandReinhard,1993;Chenandothers,1996;McCarty,1997).McCartyandReinhard(1993)indicatethatthetransformationof111-TCAbyhydrolysisisaboutfourtimesfasterthanbydehydrochlorination.Duringabioticdeg-radation,about80percentof111-TCAistransformedtoaceticacidbyhydrolysis(McCarty,1997),andtheremaining20per-centistransformedto11-DCEbydehydrochlorination(table7;VogelandMcCarty,1987b;McCarty,1997).Thepresenceof11-DCEincontaminatedgroundwaterisprobablytheresultofthedehydrochlorinationof111-TCA(McCarty,1997).

Degradation of Selected Volatile Organic Compounds in Ground Water    1�

1,1,2-trichloroethene (TCE)

1,2-dichloro-ethene, cis

1,2-dichloro-ethene, trans

chloroethene(vinyl chloride)

ethene

ethane

chloroethane

1,1,2,2-tetrachloroethane (PCA) 1,1,2-trichloroethane (112-TCA)

1,2-dichloroethane (12-DCA)

(1) Chen and others, 1996(2) McCarty, 1997(3) Grostern and Edwards, 2006

(1)

(1)

(1)

(1)(1)

(1)(1)

(1)

(1, 3) (1)

(1, 3)

(1)

(1)

(2)

Microorganism catalyzing reactionDehalobactor sp.

Dehalococcoides sp.Dehalococcoides sp.

Dehalobactor sp.

Dehalobactor sp.

EXPLANATION

Literature reference describing reaction pathway

Proven microbe-catalyzed anaerobic dechlorination

Proven methanogenic dechlorination

Proven biotic dichloro- elimination

Proven abiotic dehydro- chlorination

Figure �. Laboratory-derived pathway for the abiotic degradation, anaerobic, and methanogenic biodegradation of 1,1,2,2-tetrachloroethane; 1,1,2-trichloroethene; and 1,1,2-trichloroethane (modified from Chen and others, 1996).

Table 1�. Laboratory half-lifes and by-products of the abiotic degradation (hydrolysis or dehydrohalogenation) of chlorinated alkane compounds detected in ground water.

[IUPAC,InternationalUnionofPureandAppliedChemistry;—,notapplicable]

Compound  (IUPAC name)1 Degradation by-products Half-life Literature reference

chloroethane ethanol 44days Vogelandothers,1987

1,1-dichloroethane — 61years Jeffersandothers,1989

1,2-dichloroethane — 72years Jeffersandothers,1989

1,1,1-trichloroethane aceticacid;1,1-dichloroethane 1.1–2.5years MabeyandMill,1978;Jeffersandothers,1989;VogelandMcCarty,1987a,b

1,1,2-trichloroethane 1,1-dichloroethane 140years Jeffersandothers,1989

1,1,1,2-tetrachloroethane trichloroethene 47–380years MabeyandMill,1978;Jeffersandothers,1989

1,1,2,2-tetrachloroethane 1,1,2-trichloroethane;trichloroethene 146–292days MabeyandMill,1978;Jeffersandothers,1989

1InternationalUnionofPureandAppliedChemistry,2006

18    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Figure �. Laboratory-derived pathway for the abiotic, aerobic, and anaerobic biodegradation of 1,1,1-trichloroethane (modified from Sands and others, 2005; Whittaker and others, 2005).

(1) Egli and others, 1987(2) Gälli and McCarty, 1989(3) De Best and others, 1999(4) Yagi and others, 1999(5) Oldenhuis and others, 1989(6) Newman and Wackett, 1997(7) Motosugi and others, 1982(8) Jun Oh, 2005(9) De Wever and others, 2000(10) McCarty, 1997

1,1,1-trichloroethane(Clostridium spp.,

Dehalobacter strain TCA1)

1,1-dichloroethane

chloroethane

acetaldehyde

(1, 2)

(2)

(3)

Anaerobic pathway

1,1,1-trichloroethane(Methylosinus trichosporium OB3b,

Mycobacterium spp. TA5, 27)

2,2,2-trichloroethanol

(4, 5)

2,2,2-trichloroacetate(Pseudomonas sp.)

oxalatecarbondioxide

(6)

(7)(8)

Aerobic pathway

2,2-dichloroacetate

(9)

1,1,1-trichloroethane

1,1-dichloroethene acetic acid

(10)

Abiotic pathway

EXPLANATION

Literature reference describing reaction pathway

Proven dehydrochlorination

Hydrolosis

Co-metabolism

Proven microbe-catalyzed

Proven abiotic hydrolysis

Methylosinustrichosporium Microorganism catalyzing reaction

Degradation of Selected Volatile Organic Compounds in Ground Water    19

Aerobic BiodegradationAccordingtothedegradationpathwayconstructedby

Sandsandothers(2005)andWhittakerandothers(2005),thedichloroethanesarenotaby-productof111-TCAor112-TCAbiodegradationunderaerobicconditions(fig.4).Apparently,theonlysourceof11-DCAand12-DCAviaadegradationpathwayisthereductivedechlorinationof111-TCAand112-TCA,respectively,underanaerobicconditions(figs.3and4).Underaerobicconditions,however,12-DCAcanbedegradedwhenusedasacarbonsourcebymicroorganisms.Theintermediateby-productofthisdegradationischloroetha-nol,whichisthenmineralizedtocarbondioxideandwater(fig.5;Stuckiandothers,1983;Janssenandothers,1985;Kimandothers,2000;Hageandothers,2001).

Anaerobic Biodegradation Whileresearchingthescientificliteraturefortheirreport,

Wiedemeierandothers(1998)didnotfindpublishedstudiesdescribinganaerobicbiodegradationofchlorinatedethanesingroundwater.SincethepublicationofWiedemeierandothers(1998),however,numerouspublishedstudiesdescribetheanaerobicbiodegradationofchlorinatedethanes.McCarty(1997)indicatesthatcarbontetrachloridewastransformedtochloroformunderdenitrifyingconditionsandmineralizedtocarbondioxideandwaterundersulfate-reducingcondi-tions(fig.6).AdamsonandParkin(1999)showthatunderanaerobicconditions,carbontetrachlorideand111-TCAtendtoinhibitthedegradationofeachother.AdamsonandParkin(1999)alsoshowthatcarbontetrachloridewasrapidlydegradedbyco-metabolismwhenacetatewasthecarbonsource.

Chenandothers(1996)describehowmethanogenicconditionsinamunicipalsludgedigesterallowed the degra-dationof PCAto112-TCA,and112-TCAto12-DCAthrough dehydrohalogenation(fig.3).DeBestandothers(1999)reportthatco-metabolictransformationsof112-TCAwill-occurundermethanogenicconditions.Inthisstudy,112-TCAwasdegradedtochloroethanewhensufficientamountsofthecarbonsourcewerepresent(fig.3).Thistransformationwasinhibitedbythepresenceofnitrate,butnotnitrite.

Dolfing(2000)discussesthethermodynamicsofreduc-tivedechlorinationduringthedegradationofchlorinatedhydrocarbonsandsuggeststhatfermentationofchloroethanestoethaneoracetatemaybeenergeticallymorefavorablethan“classic”dechlorinationreactions.Moreover,polychlorinatedethanesmaydegradepreferentiallybyreductivedechlorina-tionunderstronglyreducingconditions.Dichloroelimination,however,mayactuallybethedominantdegradationreactionforpolychlorinatedethanesbecausemoreenergyisavailabletomicroorganismsthanisavailableduringreductivedechlo-rination(Dolfing,2000).During anaerobicbiodegradation,themeanhalf-lifesofthechloroethanecompoundscanbeasshortasthreedays,inthecaseof111-TCA,oraslongas165days,inthecaseof12-DCA(table15).

Table 1�. Mean half-life in days for the anaerobic biodegradation of selected chlorinated alkane and alkene compounds.1

[(27),numberofsamplesusedtoderivethemeanvalue;—,notavailable)

Compound All studies Field/in situ studies

chloroethene 0.018(27) 0.0073(19)

1,2-dichloroethane 63-165(2) 63–165(2)

tetrachloroethene(PCE) 239–3,246(36) 239(16)

tetrachloromethane 47(19) 40(15)

1,1,1-trichloroethane 2.3–2.9(28) —

1,1,2-trichloroethane 47–139(1) —

trichloroethene(TCE) 1,210(78) 277(30)1AronsonandHoward,1997,p.111

1,2-dichloroethane, aerobic(xanthobacter autotrophicus GJ10,

Ancylobacter aquaticus Ad20, AD25, AD27)

2-chloroethanol

choroacetaldehyde

chloroacetic acid

glycolate

intermediarymetabolism

(1)

(2)

(3)

(4, 5)

(1) Verschueren and others, 1993(2) Xia and others, 1996(3) Liu and others, 1997(4) Janssen and others, 1985(5) Hisano and others, 1996

EXPLANATION

Literature reference describing reaction pathway

Proven microbe-catalyzed oxidation reaction

Microorganism catalyzing reactionxanthobacterautotrophicus

Figure �. Laboratory-derived pathway for the aerobic biodegradation of 1,2-dichloroethane (modified from Renhao, 2005).

�0    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

carbon tetrachloride

Pathway 1 Pathway 2 Pathway 3

(Pseudomonas stutzeri KC, Methanosarcina barkeri,Desulfobacterium autotrophicum, Moorella thermoacetica,

Methanoabacterium thermoautotrophicum)

chloroform

dichloromethane

methyl chloride

methane

C1 metabolic cycle

carbonmonoxide

(Methylococcuscapsulatus;

Pseudomonasaeruginosa)

carbondioxide

formate

phosgenethiophosgene

carbondioxide

(1)

(1)

(1)

(1)

(1)

(1)

(2)

(2) (1)

(3) (4)

(1)

(1) Lee and others, 1999(2) Krone and others, 1991(3) Eggen and others, 1991(4) Lamzin and others, 1992

thiophosgene

Pseudomonasstutzeri

EXPLANATION

Proven microbe-catalyzed dechlorination

Postulated intermediate compound

Postulated microbe-catalyzed reductive pathway

Literature reference describing reaction pathway

Proven microbe-catalyzed reductive pathway

Microorganism catalyzing reaction

Figure �. Laboratory-derived pathways for the anaerobic biodegradation of tetrachloromethane (carbon tetrachloride; modified from Ma and others, 2005; Sands and others, 2005).

Degradation of the Chlorinated Alkenes

Theprimarydegradationofthemostcommonchlorinatedalkenesismicrobialreductivedechlorinationunderanaerobicconditions.However,biodegradationofcertainchlorinatedcompounds—suchastrichloroethene,thedichloroethenes,vinylchloride,orchloroethane—canalsoproceedviaoxida-tivepathwaysunderaerobicconditions.Twoforms(isomers)ofdichloroetheneoccuringroundwateraschemicalby-prod-uctsofPCEandTCEbiodegradation(Wiedemeierandothers,1998;Olaniranandothers,2004).AbioticdegradationofPCAtoTCEcanoccurinPCA-contaminatedgroundwater(fig.3;Chenandothers,1996).

Aerobic Biodegradation

Severalstudieshaveshownthatchlorinatedethenes,withtheexceptionofPCE,candegradeunderaerobicconditionsbyoxidation(HartmansandDeBont,1992;Klierandothers,1999;HopkinsandMcCarty,1995;Colemanandothers,2002)andbyco-metabolicprocesses(MurrayandRichardson,1993;Vogel,1994;McCartyandSemprini,1994).Studiesdescrib-ingthedegradationofPCEunderaerobicconditionswerenotfoundinthepeer-reviewedliterature.Inonestudy,aerobicbiodegradationofPCEwasnotmeasurablebeyondanalyti-calprecisionafter700daysofincubation(Robertsandothers,1986).Furthermore,Aronsonandothers(1999)indicatethat

Degradation of Selected Volatile Organic Compounds in Ground Water    �1

PCEisnotdegradedwhendissolvedoxygen(DO)isgreaterthan1.5mg/L,theapproximateboundarybetweenaerobicandanaerobicconditions(StummandMorgan,1996).Chenandothers(1996)suggestthestructureandoxidativestateofPCEpreventsitsaerobicdegradationinwater.

Accordingtotheaerobicbiodegradationpathwaycon-structedbyWhittakerandothers(2005),thedichloroethenesarenotaby-productofTCEdegradationunderaerobiccondi-tions(fig.4).Rather,TCEisdegradedalongthreedifferentpathwaysbydifferentmicroorganisms(fig.7).Thesepathwaysdonotformanyofthedichlorothenecompoundsandtheonlyapparentsourceof12-DCEisbythereductivedechlorinationofTCEunderanaerobicconditions(figs.3and8).Thecom-pounds12-DCEandVC,however,canbedegradedunderaero-bicconditionsbymicroorganismsutilizingthecompoundsasaprimarycarbonsource(fig.5;BradleyandChapelle,1998).

AlthoughPCEisnotknowntodegradethroughco-metabolismunderaerobicconditions,co-metabolismisknowntodegradeTCE,thedichloroethenes,andVC.Therateofco-metabolismincreasesasthedegreeofchlorinationdecreasesontheethenemolecule(Vogel,1994).Duringaerobicco-metabolism,thechlorinatedalkeneisindirectlydechlorinatedbyoxygenaseenzymesproducedwhenmicroorganismsuseothercompounds,suchasBTEXcompounds,asacarbonsource(Wiedemeierandothers,1998).Theco-metabolicdeg-radationofTCE,however,tendstobelimitedtolowconcen-trationsofTCEbecausehighconcentrationsinthemilligramperliterrangearetoxictomicrobescatalyzingthisreaction(Wiedemeierandothers,1998).InfieldstudiesbyHopkinsandMcCarty(1995),VCisshowntodegradebyco-metabo-lismunderaerobicconditionswhenphenolandtoluenewereusedasacarbonsource.

trichloroethene (TCE)(Methylosinus trichosporium OB3b)

trichloroethene (TCE)(Burkholderia cepacia G4)

trichloroethene (TCE)(Pseudomonas putida F1)

chloral hydrate

trichloroacetate(Pseudomonas sp.)

trichloroethene epoxide glyoxylate

formatetrichloroethanol

dichloroacetate(Pseudomonas sp.)

glyoxylate

carbon monoxide(Methylococcus capsulatus,Pseudomonas aeruginosa)

carbon dioxide

oxalatecarbondioxide

(1)

(2)

(2)

(2)

(3)(4)

(1) (8)(8)(5)

(1) (6)

(6)

(6)

(7)

(1) Rosenzweig and others, 1993(2) Newman and Wackett, 1991(3) Motosugi and others, 1982(4) Jun Oh, 2005(5) Newman and Wackett, 1995(6) Newman and Wackett, 1997(7) Weightman and others, 1985(8) Li and Wackett, 1992(9) Eggen and others, 1991

(9)

C1 metabolic cycle

EXPLANATION

Literature reference describing reaction pathway

Dechlorination

Hydrolysis

Proven microbe-catalyzed

Methylosinustrichosporium Microorganism catalyzing reaction

Figure �. Laboratory-derived pathways for the aerobic biodegradation of trichloroethene (modified from Whittaker and others, 2005).

��    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Anaerobic BiodegradationManylaboratoryandfieldstudieshaveshownthat

microorganismsdegradechlorinatedethenesunderanaerobicconditions(Bouwerandothers,1981;Bouwer,1994,Dolfing,2000).Groundwaterisconsideredanoxicwhenthedissolvedoxygenconcentrationfallsbelow1.0–1.5mg/L(StummandMorgan,1996;Christensenandothers,2000).Underanoxicconditions,anaerobicorfacultativemicrobeswillusenitrateasanelectronacceptor,followedbyiron(III),thensulfate,andfinallycarbondioxide(methanogenesis;Chapelleandoth-ers,1995;Wiedemeierandothers(1998).Astheconcentrationofeachelectronacceptorsequentiallydecreases,theredoxpotentialofthegroundwaterbecomesgreater(morenegative)andbiodegradationbyreductivedechlorinationisfavored.

Anaerobicconditionsingroundwatercanbedeterminedbymeasuringtheverticalandspatialconcentrationsofoxy-gen,iron(II),manganese(II),hydrogensulfide,ormethaneingroundwaterandusingthatdataasaqualitativeguidetotheredoxstatus(StummandMorgan,1996;Christensenandothers,2000).Othermeasurementsofanaerobicconditionsinvolvingmicroorganismbiomarkersincludevolatilefattyacids,ester-linkedphospholipidfattyacid(PLFA),deoxyribo-nucleicacid(DNA),andribonucleicacid(RNA)probes,andTEAPbioassay(Christensenandothers,2000).Thereductionofiron(III)toiron(II),manganese(IV)tomanganese(II),sulfatetohydrogensulfide,andcarbondioxidetomethaneduringthemicrobialreductionofchlorinatedVOCscanhaveamajorinfluenceonthedistributionofiron(II),manganese(II),hydrogensulfide,andmethaneconcentrationsingroundwater(StummandMorgan,1996;Lovley,1991;Higgoandothers,1996;Braun,2004).

Thehighlychlorinatedalkenesarecommonlyusedaselectronacceptorsduringanaerobicbiodegradationandarereducedintheprocess(Vogelandothers,1987).TheprimaryanaerobicprocessdrivingdegradationofCVOCs,exceptVC,isreductivedechlorination(figs.3and8;Bouwerandothers,1981;Bouwer,1994).TetrachloroetheneandTCEarethemostsusceptibletoreductivedechlorinationbecausetheyarethemostoxidizedofthechlorinatedethenes;however,themorereduced(leastoxidized)degradationby-productssuchasthedichloroethenesandvinylchloridearelesspronetoreductivedechlorination.Themainby-productofanaerobicbiodegra-dationofthepolychlorinatedethenesisVC(fig.8),whichismoretoxicthananyoftheparentcompounds(AgencyforToxicSubstancesandDiseaseRegistry,2004).Therateofreductivedechlorinationtendstodecreaseasthereduc-tivedechlorinationofdaughterproductsproceeds(VogelandMcCarty,1985;Bouwer,1994).MurrayandRichardson(1993)suggestthattheinverserelationbetweenthedegreeofchlorinationandtherateofreductivedechlorinationmayexplaintheaccumulationof12-DCEandVCinanoxicgroundwatercontaminatedwithPCEandTCE.Inaddition,theanaerobicreductionofVCtoetheneisslowandinefficientunderweakreducingconditions,whichfavorsthepersistenceofVCinanoxicgroundwater(FreedmanandGossett,1989).

Reductivedechlorinationhasbeendemonstratedundernitrate-andiron-reducingconditions(Wiedemeierandothers,1998).ReductivedechlorinationoftheCVOCs,however,maybemorerapidandmoreefficientwhenoxidation-reduction(redox)conditionsarebelownitrate-reducinglevels(Azad-pour-Keeleyandothers,1999).Sulfate-reducingandmetha-nogenicground-waterconditionscreateanenvironmentthatfacilitatesnotonlybiodegradationforthegreatestnumberofCVOCs,butalsomorerapidbiodegradationrates(Bouwer,1994).ReductivedechlorinationofDCEandVCismostapparentundersulfatereducingandmethanogeniccondi-tions(Wiedemeierandothers,1998).Anaerobicbiodegradationratesforthechlorinatedalkenescanbeasshortas45minutes,inthecaseofVC,toaslongas9yearsforPCE(table15).

(1) Neumann and others, 1996(2) Maymo-Gatell and others, 1997(3) Magnuson and others, 1998

tetrachloroethene (PCE)(Dehalococcoides ethenogenes 195,

Dehalospirillum multivorans, Sporomusa ovata,Dehalobacter restrictus TEA, Desulfitobacterium sp. PCE-S)

trichloroethene (TCE)(Dehalococcoides ethenogenes 195)

cis-1,2-dichloroethene trans-1,2-dichloroethene

chloroethene(vinyl chloride)

ethene

(1)

(2) (2)

(2) (2)

(2)

(3)

EXPLANATION

Literature reference describing reaction pathway

Proven microbe-catalyzed dechlorination

Microorganism catalyzing reactionDehalococcoidesethenogenes

Figure 8. Laboratory-derived pathway for the anaerobic biodegradation of tetrachloroethene (modified from Ellis and Anderson, 2005).

Degradation of Selected Volatile Organic Compounds in Ground Water    ��

Degradation of the Chlorinated BenzenesSeveralstudieshaveshownthatchlorinatedbenzenecom-

poundscontaininguptofourchlorineatomscanbedegradedbymicroorganismsunderaerobicconditions(ReinekeandKnackmuss,1984;SpainandNishino,1987;Sanderandoth-ers,1991).Underaerobicconditions,1,2,4-trichlorobenzene(124-TCB;Haiglerandothers,1988)andchlorobenzene(CB;Sanderandothers,1991)areusedasaprimarycarbonsourceduringbiodegradationbymicroorganismssuchasBurkholdiaandRhodococcusspecies(RappandGabriel-Jürgens,2003).Duringbiodegradation,thesecompoundsarecompletelymineralizedtocarbondioxide(CO

2)(vandeMeerandothers,

1991).RappandGabriel-Jürgens(2003)alsoindicatethatallofthedichlorobenzeneisomerswerebiodegradedbytheRhodococcusbacterium.Thebiodegradationpathwaysfor124-TCB,14-DCB,12-DCB,andCB,underaerobiccondi-tionsareshowninfigures9to11,respectively.Thesepathwaysaresimilartothatofbenzene,exceptthatonechlorineatomiseventuallyeliminatedthroughhydroxylationofthechlorinatedbenzenetoformachlorocatechol,thenorthocleavageofthebenzenering(vanderMeerandothers,1998).

Calculatedandpublisheddegradationhalf-lifesforthechlorobenzenesunderaerobicconditionsareshownintable16.Thecompounds124-TCB,12-DCB,andCBlose50percentoftheirinitialmasswithin180days(table16).Conversely,DermietzelandVieth(2002)showthatchlorobenzenewasrapidlymineralizedtoCO

2inlaboratoryandinsitumicrocosm

studies,withcompletemineralizationrangingfrom8hourstoabout17days.Inaddition,thecompound14-DCBwascompletelymineralizedwithin25days.Nevertheless,undertheaerobicconditionsofDermietzelandVieth(2002)study,124-TCB,12-DCB,and13-DCBwereonlypartiallydegradedafter25days.Inanotherlaboratory-microcosmstudybyMon-ferranandothers(2005),allisomersofDCBweremineralizedtoCO

2within2daysbytheaerobeAcidovorax avenae.

AlthoughWiedemeirandothers(1998)indicatethatfewstudiesexistedthatdescribedtheanaerobicdegradationofthechlorobenzenecompounds,astudybyRamanandandothers(1993)didsuggestthat124-TCBcouldbebiodegradedtochlo-robenzenewith14-DCBasanintermediatecompoundunderanaerobicconditions.Moreover,Middeldorpandothers(1997)showthat124-TCBwasreductivelydechlorinatedto14-DCB,thentochlorobenzeneinamethanogeniclaboratorymicrocosminwhichchlorobenzene-contaminatedsedimentwasenrichedwithlactate,glucose,andethanol.Thesecompoundsservedascarbonsources.Furthermore,themicrobialconsortiafacilitat-ingthedechlorinationof124-TCBalsowasabletodegradeisomersoftetrachlorobenzenetootherisomersofTCBand12-DCB.Morerecentstudies showthatastrainofthebacterium,Dehalococcoides,canreductivelydechlorinate124-TCBunderanaerobicconditions(Holscherandothers,2003;Grieblerandothers,2004a).Inaddition,Adrianandothers(1998)suggestthatfermentationistheprimarydegradationprocessforthechlorobenzenesunderanaerobicconditions.Thisstudyalsoshowedthattheco-metabolismof124-TCBwasinhibitedbythepresenceofsulfate,sulfite,andmolybdate.

1,2,4-trichlorobenzene(Burkholderia sp. P51, PS12)

3,4,6-trichlorocatechol

2,5-dichloro-carboxymethylenebut-2-en-4-olide

2-chloro-3-oxoadipate

(1)

(1)

(3)

(1)

(2)

(1) van der Meer and others, 1991(2) Kasberg and others, 1995(3) Reineke and Knackmuss, 1988(4) Middeldorp and others, 1997(5) National Institute for Resources and Environment, 2001

3,4,6-trichloro-cis-1,2-dihydroxy-cyclohexa-3,5-diene

2,3,5-trichloro-cis,cis-muconate

(1)

2,5-dichloro-4-oxohex-2-enedioate

chloroacetatesuccinate

1,2-dichloroethanepathway (fig. 5)

1,2,4-trichlorobenzenemethanogenic microbial consortium

1,4-dichloro-benzene

1,2-dichloro-benzene

(4) (5)

(5)

60 percent 10 percent

chlorobenzene

(4)

chlorobenzenepathway(fig. 11)

EXPLANATION

Literature reference describing reaction pathway

Proven microbe-catalyzed

Burkholderia sp. Microorganism catalyzing reaction

Anaerobic pathwayAerobic pathway

Oxidation reaction

Dechlorination

Hydrolysis

Figure 9. Laboratory-derived pathways for the aerobic and anaerobic biodegradation of 1,2,4-trichlorobenzene (modified from Yao, 2006).

��    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

1,4-dichlorobenzene(Xanthobacter flavus 14pl ;Alcaligenes sp. strain A175;

Pseudomonas sp.)

3,6-dichloro-cis- 1,2-dihydroxycyclohexa-3,5-diene

3,6-dichlorocatechol

2,5-dichloro-cis,cis-muconate

trans-2-chlorodienelactone

(1)

(1)

(1)

(2)

(1) Spiess and others, 1995(2) Sommer and Görisch, 1997

EXPLANATION

Literature reference describing reaction pathway

Proven microbe-catalyzed oxidation reaction

Alcaligenes sp. Microorganism catalyzing reaction

Figure 10. Laboratory-derived pathway for the aerobic biodegradation of 1,4-dichlorobenzene (modified from Liu, 2006).

Furthermore,Ramanandandothers(1993)showthat124-TCBhaddeclinedby63percentwithin30daysunderanaerobicconditions.DermietzelandVieth(2002)showthattheanaerobicbiodegradationof14-DCBwasmarkedlyslowerunderiron-reducingconditionsthanunderaerobicconditions.Ingeneral,itappearsthatthebiodegradationofthechlorinatedbenzenesisslowerunderanaerobicthanunderaerobicconditions.

Degradation of the Gasoline Compounds

Laboratoryandfieldstudieshaveshownthatmicroorgan-ismsmediatethedegradation(biodegradation)ofthecommongasolinecompounds(MTBEandBTEX)underbothaerobicandanaerobicconditions.Aerobicmicroorganismsread-ilyoxidizeBTEXcompoundswhileusingthemasprimarysubstrates.ThebiodegradationofBTEXcompoundsundervariousredoxconditionsiswelldocumentedinthescientificliterature(VogelandGrbić-Galić,1986;Kuhnandothers,1988;LovleyandLonergan,1990;Evansandothers,1991a,b;Hutchinsandothers,1991;Rabusandothers,1993;EdwardsandGrbić-Galić,1994;Friesandothers,1994;RabusandWiddel,1995;Andersonandothers,1998).

AlthoughearlystudiesconcludedthatMTBEwasrecalcitranttoaerobicbiodegradation(Squillaceandothers,1997),morerecentstudiesshowthat,onceinitiated,theaerobicbiodegradationofMTBEisrelativelyrapid(Deebandothers,2000),butmarkedlyslowerthanBTEXdegradation.Inaddition,theanaerobicbiodegradationofMTBEisknowntoproceed,althoughslowly,underavarietyofredoxcondi-tions.Untilrecently,however,littlewasknownaboutspecificpathwaysinvolvedintheanaerobicdegradationofMTBE.

Aerobic Biodegradation of BTEX Compounds Laboratoryandfieldstudiesshowthatmicroorgan-

ismsmediatethebiodegradationofBTEXcompoundsunderaerobicconditions(table17;Aronsonandothers,1999).ThemicrobiallycatalyzedoxidationreactionbetweendissolvedoxygenandBTEXisthermodynamicallyfavoredbecauseBTEXcompoundsareinahighlyreducedstateandthepre-ferredterminalelectronacceptor(TEA)isoxygen(Brownandothers,1996).ThemicrobiallycatalyzedoxidationofBTEXcompoundsrequires3.1milligramsperliter(mg/L)ofdis-solvedoxygen(DO)to1mg/LofaBTEXcompound(Aron-sonandHoward,1997).SomestudiesshowthattherateofbiodegradationtendstoslowwhenDOconcentrationsarelessthanabout1–2partspermillion(ppm;equaltomilligramsperliter,mg/L;Chiangandothers,1989;Salanitro,1993).DuringlaboratorystudiesinwhichtheinitialDOconcentra-tionwasatleast8mg/L,individualBTEXcompoundsoraBTEXmixturebiodegradedrapidlytolowconcentrationsuntiltheDOconcentrationwaslessthan2mg/L;Atthisthreshold,biodegradationwasratelimited,ratherthansubstratelimited,becauseofthelowDOconcentration(Salanitro,1993).

Degradation of Selected Volatile Organic Compounds in Ground Water    ��

Chlorobenzene(Pseudomonas sp.

P51, JS150, RHO1, JS6)

1,2-dichlorobenzene(Pseudomonas sp.)

3-chloro-cis-1,2-dihydroxy-cyclohexa-3,5-diene

3-chlorocatechol

2-chloro-cis,cis-muconate 3-chloro-2-hydroxymuconic

semialdehyde

trans-4-carboxymethylene-but-2-en-4-olide

maleylacetate

3-oxoadipate

(1)o-dichlorobenzine dihydrodiol

(8)

3,4-dichlorocatechol

(8)

2,3-dichloro-cis-cis-muconic acid

(8)

5-chloro-4-carboxy-methylene-but-2-en-4-olide

(8)

5-chloromaleylacetic acid

(8)

trans-2-chlorodienelactone2-chloromaleylacetate

(8)

(8)(9)

(2)

(3) (4)

(5)

(6)

(7)

(1) Werlen and others, 1996(2) Mason and Geary, 1990(3) Broderick and O’Halloran, 1991(4) Riegert and others, 1998(5) Hammer and others, 1993(6) Pathak and Ollis, 1990(7) Kaschabek and Reineke, 1995(8) Haigler and others, 1988(9) Vollmer and others, 1993

EXPLANATION

Literature reference describing reaction pathway

Proven microbe-catalyzed

Microorganism catalyzing reaction

Pseudomonas sp.

Oxidation reaction

Dechlorination

Hydrolysis

Hydration

Figure 11. Laboratory-derived pathway for the aerobic biodegradation of chlorobenzene and 1,2-dichlorobenzene (modified from McLeish, 2005).

AerobicmicroorganismsreadilyoxidizeBTEXcom-poundswhileusingthemasprimarysubstrates.Theoxida-tionofBTEXcompoundscanproceedviaseveralpathways(figs.12–16).Inonelaboratorycolumnstudy,methanolwasaddedtoaBTEXmixturetoidentifypossibleco-metabolicpathways.ThemethanolwasnotusedastheprimarysubstrateandappearedtodepressthebiodegradationofBTEXcom-pounds(Hubbardandothers,1994).ThisstudyshowedthatBTEXdegradationwasnotaresultofco-metabolism.Ben-zenehasbeenshowntodegradecompletelytocarbondioxide(mineralization;Gibsonandothers,1968; GibsonandSubra-manian,1984;EdwardsandGrbić-Galić,1992).Morerecentlaboratoryexperimentsshowthatcatecholisanintermediatecompoundinthebenzenepathway(fig.12).Fiveseparate

degradationpathwayshavebeenidentifiedfortolueneunderaerobicconditions(fig.13).Oneofthesepathwayssharesacommonintermediatecompound(3-methylcatechol)withthedegradationofo-andm-xylene(figs.12and13).Thepathwayforp-xylenefollowsasimilarpattern,butdiffersintheinter-mediatecompoundsformed.Thisdifferenceiscausedbythepositionofthemethylgrouponthebenzeneringofp-xylene(fig.14).Theaerobicbiodegradationofethylbenzenefollowsthreepathwaysdependingonthemicroorganismusingethyl-benzeneasitscarbonsource(fig.15).Basedonlaboratoryandfieldmicrocosmstudies,biodegradationofBTEXunderaero-bicconditionsismorerapidingasoline-contaminatedaquifersedimentsthaninuncontaminatedaquifersediments(Aronsonandothers,1999;table17).

��    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

AnationwidesurveyofVOCsingroundwatershowedthattoluene,representingBTEXcompounds,wasdetectedmorefrequentlyinoxicratherthaninanoxicgroundwater(SquillaceandMoran,2006).Inotherstudies,thelossofBTEXcompoundsalongground-waterflowpathswasinverselyrelatedtodissolved-oxygenconcentration,indicat-ingthatmicrobialactivity(respiration)wasrelatedtoBTEXdegradation(Donaldsonandothers,1990;HuesemannandTruex,1996).

Moraschandothers(2001,2002),usingstableisotopefractionationdata,concludedthatquantifyingaerobicmicro-bialdegradationofBTEXinoxicenvironmentsmaynotbepossible.Moreover,laboratorystudieshaveshownthatethylbenzenecaninhibitthemicrobialdegradationofbenzene,toluene,andthexylenesanddoessountilalloftheethylben-zeneisdegraded(DeebandAlvarez-Cohen,2000).

Anaerobic Biodegradation of BTEX Compounds

Duringanaerobicbiodegradation,BTEXcompoundsareusedmetabolicallyaselectrondonors(carbonsource,primarysubstrate)byselectmicrobialpopulationstoproducetheenergyforcellgrowth(AronsonandHoward,1997).BTEXdegradationcanbelimitedbytheavailabilityofterminalelectronacceptorssuchasnitrate,sulfate,carbondioxide,oriron(III)intheaquifer(Lovleyandothers,1989;Lovleyandothers,1995).Theseelectronacceptors,however,commonlyexistingroundwateratsufficientlevelsforthesereactionstoproceed(LovleyandLonergan,1990;Kuhnandothers,1988).Figure16showstheanaerobicbiodegradationpathwaysforBTEXcompounds.

Anaerobicbiodegradationofbenzeneappearstobemoreaquiferspecificthanthatfortheothermonoaromatichydro-carbons.Currentdataindicatesthatbiodegradationmaynotoccuratallsites(AronsonandHoward,1997).Someofthesestudiesshowthatbenzeneresistsanaerobicmetabolisminthefield(Reinhardandothers,1984;Barbaroandothers,1992)andinlaboratoryenrichmentsestablishedwithsewagesludge,aquifersediments,andcontaminatedsoils(Krumholzandoth-ers,1996;Barbaroandothers,1992).

Conversely,severalground-waterstudieshaveshownthatBTEXdegradationratesdeclineinasequencefrommildlyreducingconditions(nitratereductionzone,Hutchinsandoth-ers,1991)tostronglyreducingconditions(methanogenesis)inshallowaquifers(Kazumiandothers,1997;Luandothers,1999;RoychoudhuryandMerrett,2005).Furthermore,otherstudiesshowthatwhenconditionsarefavorable,benzene(andotherBTEXcompounds)canbeoxidizedtocarbondioxideunderhighlyreducingconditions.Forexample,benzenewasrapidlymineralizedundersulfate-reducingconditionsinmarineandfreshwatersediments,andinaquifersediments(LovleyandLonergan,1990;EdwardsandGrbić-Galić,1992;Lovleyandothers,1995;Phelpsandothers,1996;Coatesandothers,1996a,b;WeinerandLovley,1998).

TherateofanaerobicbiodegradationofBTEXcom-poundswasquickestundersulfate-reducingconditionsinlaboratoryandfield/insitustudies(Bellerandothers,1992a,b;table18).TheanaerobicbiodegradationofBTEXcompoundsingroundwaterwasconclusivelyshowninsitubyGrieblerandothers(2004b)usingcompound-specificisotopeanaly-sisandsignaturemetabolitesanalysis.Figure16showstheanaerobicpathwayforBTEXcompoundsdevelopedfromtheintermediatecompoundsidentifiedinground-watersamplesbyGrieblerandothers(2004b).

Table 1�. Laboratory or environmental half-lifes and by-products for the aerobic and anaerobic biodegradation of selected chlorinated benzene compounds detected in ground water.

[IUPAC,InternationalUnionofPureandAppliedChemistry;CO2,carbondioxide;DCB,dichlorobenzene]

Compound (IUPAC name)1

Degradation  by-products

Half-life  (days)

Literature  reference

Aerobic conditions

chlorobenzene 3-chlorocatechol,CO2

69–150 Rathbun,1998;McLeish,2005

1,2-dichlorobenzene chlorobenzene 28–180 Rathbun,1998

1,4-dichlorobenzene chlorobenzene 28–180 Rathbun,1998

1,2,4-trichlorobenzene succinate,chloroacetate 28–180 Rathbun,1998;Renhao,2005;Yao,2006

Anaerobic conditions

chlorobenzene CO2

280–580 Rathbun,1998;Monferranandothers,2005

1,2-dichlorobenzene CO2

119–722 Rathbun,1998

1,4-dichlorobenzene chlorobenzene 112–722 Rathbun,1998;Yao,2006

1,2,4-trichlorobenzene 1,4-DCB,chlorobenzene 112–722 Rathbun,1998;Yao,20061InternationalUnionofPureandAppliedChemistry,2006

Degradation of Selected Volatile Organic Compounds in Ground Water    ��

3-methylcatechol +carbon dioxide (CO2)

cis,cis-2-hydroxy-6-oxohept-2,4-dienoate

cis-2-hydroxypenta-2,4-dienoate 4-hydroxy-2-oxovalerate

acetaldehyde

o-xylene(Burkholderia cepacia MB2)

2-methylbenzyl alcohol

2-methylbenzaldehyde

o-methylbenzoate

1,2-dihydroxy-6-methycyclohexa-3,5-dienecarboxylate

m-xylene(Sphingomonas yanoikutae B1,

Pseudomonas putida mt-2)

3-methylbenzyl alcohol

3-methylbenzaldehyde

m-methylbenzoate

1,2-dihydroxy-3-methycyclohexa-3,5-dienecarboxylate

(7)

(7)

(7)

(8)

(8)

(9)

(6)(6)

(10)

(11)

(12)

(13)

(14)

(8) Higson and Focht, 1992(9) Kukor and Olsen, 1991(10) Suzuki and others, 1991(11) Katagiri and others, 1967(12) Chalmers and Fewson, 1989(13) Harayama and others, 1986(14) Neidle and others, 1992

EXPLANATION

Literature reference describing reaction pathway

benzene

cis-dihydrobenzenediol

catechol

2-hydroxy-cis,cis-muconate semialdehyde

(1)

(2)

formate

cis,cis-muconate

(3)(4)

(5)

(5)

pyruvate

(1) Zamanian and Mason, 1987(2) Mason and Geary, 1990(3) Ngai and others 1990(4) Cerdan and others 1994(5) Horn and others, 1991(6) Lau and others, 1994(7) Jorgensen and others, 1995

(6)(6)

Proven microbe-catalyzed

Burkholderiacepacia

Microorganism catalyzing reaction

Oxidation reaction

Hydrolysis

Hydration

Reaction, unspecified

Figure 1�. Laboratory-derived pathways for the aerobic biodegradation of benzene, o-, and m-xylene (modified from Hyatt and Jun Oh, 2005; Jun Oh, 2005).

�8    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

toluene(Pseudomonas mendocina)

toluene(Pseudomonas pickettii)

toluene(Pseudomonas putida)

benzyl alcohol 2-hydroxy-toluene toluene-cis-dihydrodiol3-hydroxy-toluene(m-cresol)

4-hydroxy-toluene

3-methylcatechol + carbon dioxide (CO2)

cis, cis-2-hydroxy-6-oxohept-2,4-dienoate

cis-2-hydroxypenta-2,4-dienoate

4-hydroxy-2-oxovalerate

acetaldehyde + pyruvate

benzaldehyde

benzoate

benzoatepathway

toluene(Pseudomonas mendocina)

4-hydroxy-benzaldehyde

4-hydroxy-benzoate

vanillin pathway

m-cresol pathway(fig. 17)

(1)

(2)

(3)

(4)

(4)

(5)

(5)

(6)

(7)

(8)

(8)

(9)

(10)

(11)

(12)

(13)

(1) Shaw and Harayama, 1992(2) Shaw and others, 1993(3) Inoue and others, 1995(4) Shields and others, 1995(5) Olsen and others, 1994(6) Kukor and Olsen, 1991(7) Menn and others, 1991

toluene

EXPLANATION

Literature reference describing reaction pathwayProven microbe-catalyzed

(8) Lau and others, 1994(9) Wackett and others, 1988(10) Simpson and others, 1987(11) Yen and others, 1991(12) McIntire and others, 1986(13) Bossert and others, 1989Microorganism catalyzing

reactionPseudomonas

mendocina

Oxidation reaction

Hydrolysis

Hydration

Figure 1�. Laboratory-derived pathways for the aerobic biodegradation of toluene (modified from Wackett and Zeng, 2004).

Degradation of Selected Volatile Organic Compounds in Ground Water    �9

Aerobic Biodegradation of Methyl Tert-butyl Ether

Thecompoundmethyltert-butylethercontainsetherbondsandbranchedhydrocarbonskeletons(tert-butylbranch)thatarecommontocompoundsthatpersistintheenvironment(Smithandothers,2003;Alexander,1973).AlthoughearlystudiesconcludedthatMTBEwasrecalcitranttobiodegrada-tion(Squillaceandothers,1997),morerecentstudiesshowthat,onceinitiated,theaerobicbiodegradationofMTBEisrelativelyrapid(Deebandothers,2000),butmarkedlyslowerthanBTEXdegradation(table17).MTBEmayappeartopersistincontaminatedgroundwaterifground-waterstudiesareconcludedtooquickly,especiallyinareaswhereMTBEisanewcontaminant.ThistimelagbeforedegradationbeginsisthetimeittakesthemicroorganismsintheaquifertoadaptandbegintouseMTBEasacarbonsource(DrogosandDiaz,2000;Wilsonandothers,2000,2005).Wilsonandothers(2005),usingdatafromvariousstudies,showthatmicroorgan-ismscapableofdegradingMTBEtakefrom10to500timeslongertodoubletheirpopulationthandothosemicrobesthatdegradeBTEXcompounds.Therefore,thecapacityforthenaturalattenuationofMTBEdependsontheageofthecontaminationandthepresenceofmicroorganismscapableofassimilatingMTBE.

AlthoughsomestudiesconcludedthatMTBEdegradesslowlyinaerobicenvironments(Squillaceandothers,1997),othermorerecentstudiesshowthatMTBEiseasilydegradedundertheproperconditions.Forexample,inalaboratorystudyoflakeandstreambedsedimentscollectedfrom11 sitesacrosstheUnitedStates,MTBEcompletelydegradedwithin50days(Bradleyandothers,1999,2001).AstudybyLand-meyerandothers(2001)clearlyshowsthatMTBEwasrecalcitrantunderanaerobicconditionsduring2weeksofmonitoring,butrapidlydegradedwhenoxygenwasaddedtoasmall,discreteflowpathinshallowgroundwater.

AlthoughthreedifferentbacteriaareabletoaerobicallydegradeMTBEviatwodifferentpathways(fig.17;PedersenandEssenberg,2005),theexactmechanismsdrivingMTBEdegradationarenotwellknown.Tert-butylalcohol(TBA)isacommonlydetectedby-productofaerobicMTBEdegradation(Steffanandothers,1997).AerobicbiodegradationratesforMTBEaredifficulttofindintheliterature,butthosethatarepublishedindicatethattheratesaresubstantiallyslowerthanthoseforBTEXcompounds(table17).SomestudiesindicatethatthedegradationofMTBEmaybeinhibitedbythepres-enceofBTEXcompounds(DeebandAlvarez-Cohen,2000);however,othersindicatethatBTEXcompoundsdonotinhibitMTBEdegradation(Aronsonandothers,1999;DrogosandDiaz,2000;Kaneandothers,2001;Sedranandothers,2002).

p-xylene(Pseudomonas putida mt-2)

p-methylbenzyl alcohol

p-tolualdehyde

p-toluate

4-methycyclohexa-3, 5-diene-1, 2-cis-diol-1-carboxylic acid

4-methylcatechol

2-hydroxy-5-methyl-cis,cis-muconic semialdehyde

(1) Shaw and Harayama, 1992(2) Biegert and others, 1995(3) Shaw and Harayama, 1990(4) Walsh and others, 1983(5) Whited and others, 1986(6) Cerdan and others, 1994

3-methyl-cis, cis-hexadienedioate

4-methylmucono-lactone2-oxohex-trans-4-enoate

4-hydroxy-2-oxohexanoate

pyruvate

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

propanol

(9)

EXPLANATION

Literature reference describing reaction pathway

(7) Diaz and Timmis, 1995(8) Harayama and others, 1989(9) Platt and others, 1995(10) Murakami and others, 1997(11) Helin and others, 1995

Pseudomonasputida Microorganism catalyzing reaction

Proven microbe-catalyzedOxidation reaction

Hydrolysis

Hydration

Reaction, unspecified

Figure 1�. Laboratory-derived pathways for the aerobic biodegradation of p-xylene (modified from Mili and Stephens, 2006).

�0    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

ethylbenzene(Peudomonas putida 39/D,

Pseudomonas sp. NCIB 10643)

ethylbenzene(Pseudomonas sp. NCIB 9816-4)

cis-2,3-dihydroxy-2,3-dihydroethylbenzene

2,3-dihydroxyethylbenzene

2-hydroxy-6-oxoocta-2,4-dienoate

propanoate cis-2-hydroxypenta-2,4-dienoate

4-hydroxy-2-oxovalerate

acetaldehyde pyruvate

styrene (S)-1-phenylethanol

acetophenone

2-hydroxyaceto-phenone

(1)

(1)

(2)

(2) (2)

(3)

(3)(3)

To thestyrenepathway(fig. 19)

(1) Gibson and others, 1973(2) Jindrova and others, 2002(3) Lau and others, 1994(4) Lee and Gibson, 1996

(4) (4)

(4)

(4)

EXPLANATION

Literature reference describing reaction pathway

Microorganism catalyzing reactionPeudomonas putida

Proven microbe-catalyzedOxidation reaction

Hydrolysis

Hydration

Figure 1�. Laboratory-derived pathway for the aerobic biodegradation of ethylbenzene (modified from McLeish, 2005).

Inasix-stateground-waterstudy,Kolhatkarandothers(2000)observedthedegradationofMTBEandTBAinanoxiczonesnear76gasstations.Usingdatafromfourofthosesites,degradationrateswerecalculatedforMTBEandTBA.Thesedegradationratesrangedfrom0.0011to0.0271day–1forMTBEand0.0151to0.0351day–1forTBA.MTBEandTBAdegradationwereobservedonlyatsitesthatweremethano-genic(dissolvedmethane>0.5mg/L).Furthermore,thesesitesweredepletedinsulfaterelativetobackgroundconcentra-tions.Kolhatkarandothers(2002)confirmedtheanaerobicdegradationofMTBEandTBAinanoxicgroundwaterusingstablecarbonisotopeanalysis.ThisstudyalsoconcludesthattheanaerobicbiodegradationratesofMTBEandTBAmayexceedthoseestimatedforaerobicbiodegradation.

Anaerobic Biodegradation of Methyl Tert-butyl Ether

TheanaerobicbiodegradationofMTBEisknowntoproceed,althoughslowly,undermethanogenic(Wilsonandothers,2000;Wilsonandothers,2005),sulfate-reducing(Somsamakandothers,2001),iron-reducing(FinneranandLovley,2001),andnitrate-reducing(Bradleyandothers,2001)conditions.Littleispresentlyknown,however,aboutthepath-wayofMTBEbiodegradationunderanyoftheseconditions,althoughithasbeensuggestedthatanaerobicbiodegradationcouldbeinitiatedbyahydrolyticmechanism(O’Reillyandothers,2001;Kuderandothers,2005).

Degradation of Selected Volatile Organic Compounds in Ground Water    �1

Table 1�. Average half-life for the aerobic biodegradation of the fuel compounds BTEX and methyl tert-butyl ether to carbon dioxide in an uncontaminated and contaminated matrix of aquifer sediments and ground water.1

[—,nostudiesreferenced;<,lessthan]

CompoundMedian1 primary degradation rate 

(day – 1)

Average half-life in  uncontaminated matrix (days)

Average half-life in  contaminated matrix (days)

Field  setting �

Laboratory  

column �Laboratory  microcosm

Field  setting

Laboratory  

column �In situ  

microcosm

benzene 0.096 238 1.5 408 558 31 – 2.3 6,103 – 31

toluene .20 8135 – 238 4–7 8,940 – 60 75 2.3 64.5 – 7

ethylbenzene .113 238 — 960 – 139 — 2.3 13,1111

m-,p-xylene .054 238 — 8,931 – 60 — .350 12,113.5 – 11

o-xylene .054 238 1–4 912 – 25 — 2.3 6,1014 – 83

methyltert-butylether 12.0039 — — — — — 13<365

1Aronsonandothers,1999

2AmericanPetroleumInstitute,1994

3Alvarezandothers,1998

4Anidandothers,1993

5Kemblowskiandothers,1987

6Nielsenandothers,1996

7McCartyandothers,1998

8Barkerandothers,1987

9Hubbardandothers,1994

10Holmandothers,1992

11Thomasandothers,1990

12Laboratorymicrocosm

13Fennerandothers,2000

Table 18. Mean half-life in days for the anaerobic biodegradation of the fuel compounds BTEX, and methyl tert-butyl ether, tert-butyl alcohol under various reducing conditions.1

[(46),numberofsamplesusedtoderivethemeanvalue;MTBE,methyltert-butylether;TBA, tert-butylalcohol;—,notavailable]

Environmental condition Benzene Toluene Ethylbenzene o-Xylene m-Xylene p-Xylene MTBE TBA

Field/insitustudies 210(41) 12(46) 46(37) 33(33) 43(34) 46(26) — —

Nitrate-reducingstudies 97(38) 13(42) 104(28) 108(46) 113(35) 108(29) — —

Iron-reducingstudies 140(11) 516(10) 1,828(4) 1,822(8) 1,822(8) 1,822(8) — —

Sulfate-reducingstudies 50(9) 61(14) 197(7) 109(9) 141(8) 198(5) — —

Methanogenicstudies 61(16) 50(24) 229(8) 304(14) 317(10) 406(7) 2,330–7,302 2,315–5021AronsonandHoward,1997,p.16

2Kolhatkarandothers,2000

3Wilsonandothers,2005

��    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

benzene toluene(Azoarcus sp. strain T,Thauera aromatica )

o-xylene m-xylene p-xylene

phenol

benzyl-succinate

E-phenyl-itaconyl-

CoA

2-methyl-benzyl-

succinic acid

3-methyl-benzyl-

succinic acid

4-methyl-benzyl-

succinic acid

1-phenyl-ethyl-

succinic acid

1-phenyl-ethanol

4-phenyl-pentanoic

acid

acetophenone

2-methyl-phenyl-

itaconic acid

3-methyl-phenyl-

itaconic acid

4-methyl-phenyl-

itaconic acid

o-toluic acid m-toluic acid p-toluic acid

phthalicacid

isophthalicacid

terraphthalicacid

3-carboxybenzyl-succinic acid

Stable co-metabolic end members

o-toluic acid m-toluic acid p-toluic acid

benzoyl-CoA

benzoyl acetate

acetyl-CoA

(2)

(3)

ethylbenzene(unclassified Protobacteria

strain EB1)

benzoyl acetate Postulated compound from other experiments

Postulated microbe-catalyzed reductive pathway

(1) Beller and Spormann, 1997(2) Kniemeyer and Heider, 2001(3) Ball and others, 1996(4) Ulrich and others, 2005

(1)

(1)

(1)

benzylsuccinyl-CoA

(1)

(3)(3)

(4)

(4)

EXPLANATION

Literature reference describing reaction pathwayReductive pathway

Proven microbe-catalyzed

Microorganism catalyzing reactionAzoarcus sp.

Figure 1�. Field and laboratory-derived pathways for the anaerobic biodegradation of the BTEX compounds — benzene, toluene, ethylbenzene, and xylene (modified from Edwards and Grbić-Galić,1994; and Griebler and others, 2004b).

Degradation of Selected Volatile Organic Compounds in Ground Water    ��

methyl tert-butyl ether(Mycobacterium vaccae JOB5,

Mycobacterium austroafricanum IFP 2012)

hydroxymethyl tert-butyl ether

tert-butyl formate tert-butyl alcohol

2-methyl-2-hydroxy-1-propanol

2-hydroxyisobutyrate

2-propanolmethacrylate 2,3-dihydroxy-

2-methyl propionate

2-hydroxy-2-methyl-1,3-dicarbonate

l-lactate

carbon dioxide

formate

C1 metaboliccycle

methyl tert-butyl ether(Norcardia sp. ENV425)

hydroxymethyl tert-butyl ether

formaldehyde

C1 metaboliccycle

carbon dioxide

(1)

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)(2) (2)

(2) (2)

(2)

(2)(1) Smith and others, 2003(2) Steffan and others, 1997

spontaneous reaction

EXPLANATION

Literature reference describing reaction pathway

Microorganism catalyzing reactionMycobacteriumvaccae

Proven microbe-catalyzedOxidation reaction

Hydrolysis

Hydration

Reaction, unspecified

Figure 1�. Laboratory-derived pathway for the aerobic biodegradation of methyl tert-butyl ether (modified from Pedersen and Essenberg, 2005).

��    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

(1) Keat and Hopper, 1978a(2) Keat and Hopper, 1978b(3) Hopper and Taylor, 1975(4) Poh and Bayly, 1980(5) Nakazawa and Hayashi, 1978

m-cresol (3-hydroxytoluene)(Pseudomonas alcaligenes NCIB 9867,

Pseudomonas putida NCIB 9869)

3-hydroxybenzyl alcohol

3-hydroxybenzaldehyde

3-hydroxybenzoate

3,4-dihydroxy-benzoate (Protocatechuate)

2,5-dihydroxy-benzoate(Gentisate)

2,4-dichlorobenzoate pathway

(1)

(2)

(3)

(4) (5)

toluene pathway(fig. 13)

Literature reference describing reaction pathway

Oxidation reaction

Hydroxylation reaction

Reaction, unspecified

Proven microbe-catalyzed

EXPLANATION

Microorganism catalyzing reactionPseudomonasalcaligenes

Figure 18. Laboratory-derived pathway for the aerobic biodegradation of m-cresol (modified from Sakai and others, 2005).

styrene(Exophiala jeanselmei,

Pseudomonas putida CA-3)

styrene oxide

phenylacetaldehyde

phenylacetate

2-hydroxyphenylacetate

homogentisate

4-maleylacetoacetate

fumarylacetoacetate

fumarate acetoacetate

(1)

(1)

(1)

(2)

(2)

(3)

(4)

(5)

styrene(Rhodococcus rhodochrous

NCIMB 13259)

styrene cis-glycol

3-vinylcatechol

2-hydroxy-6-oxo-octa-trienoate

acrylate 2-hydroxypenta-2,4-dienoate

4-hydroxy-2-oxovalerate

acetaldehyde pyruvate

(6)

(6)

(6)

(7)

(7)

(1) Cox and others, 1996(2) Olivera and others, 1994(3) Fernandez-Canon and Penalva,1995(4) Hagedorn and Chapman,1985(5) Crawford,1976(6) Warhurst and others, 1994(7) Lau and others, 1994

EXPLANATION

Literature reference describing reaction pathway

Microorganism catalyzing reactionExophialajeanselmei

Proven microbe-catalyzedOxidation reaction

Hydroxylation reaction

Hydrolysis

Hydration

Figure 19. Laboratory-derived pathways for the aerobic biodegradation of styrene (modified from Kraus and others, 2005).

Degradation of Selected Volatile Organic Compounds in Ground Water    ��

References CitedAdamson,D.T.,andG.F.Parkin,1999,Biotransformation

ofmixturesofchlorinatedaliphatichydrocarbonsbyanacetate-grownmethanogenicenrichmentculture:WaterResearch,v.33,no.6,p.1482–1494.

Adrian,Lorenz,WernerManz,UlrichSzewzyk,andHelmutGorisch,1998,Physiologicalcharacterizationofabacterialconsortiumreductivelydechlorinating1,2,3-and1,2,4-trichlorobenzene:AppliedandEnvironmentalMicrobiology,v.64,no.2,p.496–503.

AgencyforToxicSubstancesandDiseaseRegistry,1989,Toxicologicalprofileof1,1,2-trichloroethane:U.S.Depart-mentofHealthandHumanServices,PublicHealthService,Atlanta,Georgia,109p.,onlineat http://www.atsdr.cdc.gov/toxprofiles/tp148.html,accessedJune14,2006.

AgencyforToxicSubstancesandDiseaseRegistry,1990,Toxicologicalprofileofchlorobenzene:U.S.DepartmentofHealthandHumanServices,PublicHealthService,Atlanta,Georgia,99p.,onlineathttp://www.atsdr.cdc.gov/toxprofiles/tp131.html,accessedJune14,2006.

AgencyforToxicSubstancesandDiseaseRegistry,1990b,Toxicologicalprofilefor1,4-dichlorobenzene:U.S.Depart-mentofHealthandHumanServices,PublicHealthService,Atlanta,Georgia,478p.,onlineat http://www.atsdr.cdc.gov/toxprofiles/tp10.html,accessedJune14,2006.

AgencyforToxicSubstancesandDiseaseRegistry,1990c,Toxicologicalprofilefor1,1-dichloroethane:U.S.Depart-mentofHealthandHumanServices,PublicHealthService,Atlanta,Georgia,115p.,onlineat http://www.atsdr.cdc.gov/toxprofiles/tp133.html,accessedJune14,2006.

AgencyforToxicSubstancesandDiseaseRegistry,1998,Toxicologicalprofileforchloroethane:U.S.DepartmentofHealthandHumanServices,PublicHealthService,Atlanta,Georgia,162p.,onlineat http://www.atsdr.cdc.gov/toxprofiles/tp105.html,accessedJune14,2006.

AgencyforToxicSubstancesandDiseaseRegistry,2001,Toxicologicalprofileof1,2-dichloroethane:U.S.Depart-mentofHealthandHumanServices,PublicHealthService,Atlanta,Georgia,297p.,onlineathttp://www.atsdr.cdc.gov/toxprofiles/tp38.html,accessedJune14,2006.

AgencyforToxicSubstancesandDiseaseRegistry,2004,Drafttoxicologicalprofilefor1,1,1-trichloroethane:U.S.DepartmentofHealthandHumanServices,PublicHealthService,Atlanta,Georgia,382p.,onlineathttp://www.atsdr.cdc.gov/toxprofiles/tp70.html,accessedJune14,2006.

AgencyforToxicSubstancesandDiseaseRegistry,2005,Drafttoxicologicalprofileforbenzene:U.S.DepartmentofHealthandHumanServices,PublicHealthService,Atlanta,Georgia,147p.,onlineathttp://www.atsdr.cdc.gov/toxprofiles/tp3.html,accessedJune14,2006.

Alexander,Michael,1973,Nonbiodegradableandotherrecal-citrantmolecules:BiotechnologyandBioengineering,v.15,p.611–647.

AlvarezP.J.J.,L.A.Cronkhite,andC.S.Hunt,1998,UseofbenzoatetoestablishreactivebufferzonesforenhancedattenuationofBTXmigration—Aquifercolumnexperi-ments:EnvironmentalScienceandTechnology,v.32,no.8,p.509–515.

AmericanPetroleumInstitute,1994a,Transportandfateofdissolvedmethanol,methyl-tertiary-butyl-ether,andmono-aromatichydrocarbonsinashallowsandaquifer:AmericanPetroleumInstitute,HealthEnvironmentalScienceDepart-ment,APIPublicationNumber4601,338p.

Anderson,R.T.,J.N.Rooney-Varga,C.V.Gaw,andD.R.Lov-ley,1998,AnaerobicbenzeneoxidationintheFe(III)reduc-tionzoneofpetroleum-contaminatedaquifers:Environmen-talScienceandTechnology,v.32,no.9,p.1222–1229.

Anid,P.J.,P.J.J.Alvarez,andT.M.Vogel,1993,Biodegrada-tionofmonoaromatichydrocarbonsinaquifercolumnsamendedwithhydrogenperoxideandnitrate:WaterResearch,v.27,no.4,p.685–691.

Archer,W.L.,1979,Otherchloroethanes,inKirk-OthmerEncyclopediaofchemicaltechnology,3rded.,v.5,p.722–742.

Arneth,J.D.,GeraldMilde,H.Kerndorff,andR.Schleyer,1989,The15mostfrequentlydetectedorganiccompoundsingroundwateratwastedisposalsitesinGermanyandtheU.S,inBaccini,Peter,ed.,TheLandfill—ReactorandFinalStorage,SwissWorkshoponLandDisposalofSolidWastesGerzensee,March14–17,1988:LectureNotesinEarthSci-ences,NewYork,N.Y.,Springer–Verlag,Inc.,p.399.

Aronson,Dallas,MarioCitra,KirstenShuler,HeatherPrintup,andP.H.Howard,1999,Aerobicbiodegradationoforganicchemicalsinenvironmentalmedia—Asummaryoffieldandlaboratorystudies:PreparedfortheU.S.EnvironmentalProtectionAgencybyEnvironmentalScienceCenter,SyracuseResearchCorporation,NorthSyracuse,N.Y.,SRCTR99-002,189p.

Aronson,Dallas,andP.H.Howard,1997,Anaerobicbio-degradationoforganicchemicalsingroundwater—Asummaryoffieldandlaboratorystudies:FinalreportpreparedfortheAmericanpetroleumInstitutebyEnviron-mentalScienceCenter,SyracuseResearchCorporation,NorthSyracuse,N.Y.,262p.

AustralianDepartmentofEnvironmentandHeritage,2003,NationalPollutantInventory,volatileorganiccompounddefinitionandinformation,version2.4:DepartmentofEnvironmentandHeritage,CommonwealthofAustralia,4p.,onlineathttp://www.npi.gov.au/handbooks/pubs/voc.pdf,accessedFebruary23,2006.

��    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Azadpour-Keeley,Ann,H.H.Russell,andG.W.Sewell,1999,Microbialprocessesaffectingmonitorednaturalattenua-tionofcontaminantsinthesubsurface:Ada,Okla.,NationalRiskManagementResearchLaboratory,SubsurfaceProtec-tionandRemediationDivision,RobertS.KerrEnvironmen-talResearchCenter,EPA/540/S-99/001,18p.

Ball,H.A.,H.A.Johnson,MartinReinhard,andA.M.Spor-mann,1996,Initialreactionsinanaerobicethylbenzeneoxidationbyadenitrifyingbacterium,strainEB1:JournalofBacteriology,v.178,no.19,p.5755–5761.

Barbaro,J.R.,J.F.Barker,L.A.Lemon,andC.I.Mayfield,1992,BiotransformationofBTEXunderanaerobic,denitrifyingconditions—Fieldandlaboratoryobservations:JournalofContaminantHydrology,v.11,p.245–272.

Barbaro,J.R.,andP.P.Neupane,2001,DistributionandmasslossofvolatileorganiccompoundsinthesurficialaquiferatsitesFT03,LF13,andWP14/LF15,DoverAirForceBase,Delaware,November2000–February2001:U.S.GeologicalSurveyWater-ResourcesInvestigationsReport02-4121,68p.

Barker,J.F.,G.C.Patrick,andD.Major,1987,Naturalattenuationofaromatichydrocarbonsinashallowsandaquifer:GroundWaterMonitoringandRemediation,v.7,no.1,p.64–72.

Beek,Bernd(volumeeditor),2001,Biodegradationandpersistence,inHutzinger,Otto,ed.,2001,Reactionsandprocesses—TheHandbookofEnvironmentalChemistry,v.2k:Berlin,Germany,Springer–Verlag,320p.

Beller,H.R.,andA.M.Spormann,1997,Anaerobicactiva-tionoftolueneando-xylenebyadditiontofumarateindenitrifyingstrainT:JournalofBacteriology,v.179,no.3,p.670–676.

Beller,H.R.,DunjaGrbić-Galić,andMartinReinhard,1992a,Microbialdegradationoftolueneundersulfate-reducingconditionsandtheinfluenceofironontheprocess:AppliedandEnvironmentalMicrobiology,v.58,no.3,p.786–793.

Beller,H.R.,MartinReinhard,andDunjaGrbić-Galić,1992b,Metabolicby-productsofanaerobictoluenedegradationbysulfate-reducingenrichmentcultures:AppliedandEnviron-mentalMicrobiology,v.58,no.9,p.3192–3195.

Biegert,Thomas,UweAltenschmidt,ChristophEckerskorn,andGeorgFuchs,1995,Purificationandpropertiesofben-zylalcoholdehydrogenasefromadenitrifyingThauerasp.:ArchivesofMicrobiology,v.163,no.6,p.418–423.

Borden,R.C.,J.H.Melody,M.B.Shafer,andM.A.Barlaz,1997,AnaerobicbiodegradationofBTEXinaquifermaterial:U.S.EnvironmentalProtectionAgency,EPA/600/S-97/003,9p.

Bossert,I.D.,GregWhited,D.T.Gibson,andL.Y.Young,1989,Anaerobicoxidationofp-cresolmediatedbyapar-tiallypurifiedmethylhydroxylasefromadenitrifyingbac-terium:JournalofBacteriology,v.171,no.6,p.2956–2962.

Bouwer,E.J.,1994,Bioremediationofchlorinatedsolventsusingalternateelectronacceptors,inNorris,R.D.,R.E.Hinchee,RichardBrown,P.L.McCarty,LewisSem-prini,J.T.Wilson,D.H.Kampbell,MartinReinhard,E.J.Bouwer,R.C.Borden,T.M.Vogel,J.M.Thomas,andC.H.Ward,eds.,Groundwatercleanupthroughbioremedia-tion,HandbookofBioremediation:BocaRaton,Fla.,LewisPublishers,p.149.

Bouwer,E.J.,B.E.Rittman,andR.L.McCarty,1981,Anaero-bicdegradationofhalogenated1-and2-carbonorganiccompounds:EnvironmentalScienceandTechnology,v.15,no.5,p.596–599.

Boyd,S.A.,JinXiangcan,andJ.F.Lee,1990,Sorptionofnonionicorganiccompoundsbycornresiduesfromano-tillagefield:JournalEnvironmentalQuality,v.19,no.4,p.734–738.

Bradley,P.M.,andF.H.Chapelle,1998,EffectofcontaminantconcentrationonaerobicmicrobialmineralizationofDCEandVCinstream-bedsediments:EnvironmentalScienceandTechnology,v.32,no.5,p.553–557.

Bradley,P.M.,J.E.Landmeyer,andF.H.Chapelle,1999,AerobicmineralizationofMTBEandtert-butylalcoholbystream-bedsedimentmicroorganisms:EnvironmentalScienceandTechnology,v.33,no.11,p.1877–1879.

Bradley,P.M.,J.E.Landmeyer,andF.H.Chapelle,2001,WidespreadpotentialformicrobialMTBEdegradationinsurface-watersediments:EnvironmentalScienceandTech-nology,v.35,no.4,p.658–662.

Braun,C.L.,2004,Reductivedechlorinationofchlorinatedethenesunderoxidation-reductionconditionsandpotentio-metricsurfacesintwotrichloroethene-contaminatedzonesattheDoubleEagleandFourthStreetSuperfundSitesinOklahomaCity,Oklahoma:U.S.GeologicalSurveyScien-tificInvestigationsReport2004–5050,20p.

Broderick,J.B.,andT.V.O’Halloran,1991,Overproduction,purification,andcharacterizationofchlorocatecholdioxy-genase,anon-hemeirondioxygenasewithbroadsubstratetolerance:Biochemistry,v.30,no.29,p.7349–7358.

Brown,R.A.,R.E.Hinchee,R.D.Norris,andJ.T.Wilson,1996,Bioremediationofpetroleumhydrocarbons—Aflex-ible,variablespeedtechnology:BioremediationJournal,v.6,no.4,p.95–108.

Brown,T.L.,andH.E.LeMay,Jr.,1977,Chemistry—Thecentralscience:EnglewoodCliffs,NewJersey,Prentice-Hall,Inc,p.718–746.

References Cited    ��

Cerdan,Pascale,AlainWasserfallen,MoniqueRekik,K.N.Timmis,andShigeakiHarayama,1994,Substratespecificityofcatechol2,3-dioxygenaseencodedbyTOLplasmidpWW0ofPseudomonas putidaanditsrelation-shiptocellgrowth:JournalofBacteriology,v.176,no.19,p.6074–6081.

Chalmers,R.M.,andC.A.Fewson,1989,PurificationandcharacterizationofbenzaldehydedehydrogenaseIfromAcinetobacter calcoaceticus:BiochemicalJournal,v.263,no.3,p.913–919.

Chapelle,F.H.,P.B.McMahon,N.M.Dubrovsky,R.F.Fujii,E.T.Oaksford,andD.A.Vroblesky,1995,Deducingthedistributionofterminalelectron-acceptingprocessesinhydrologicallydiversegroundwatersystems:WaterResourcesResearch,v.31,p.359–371.

Chen,Chun,J.A.Puhakka,andJ.F.Ferguson,1996,Trans-formationof1,1,2,2-tetrachloroethaneundermethanogenicconditions:EnvironmentalScienceandTechnology,v.30,no.2,p.542–547.

Chiang,C.Y.,J.P.Salanitro,E.Y.Chai,J.D.Colthart,andC.L.Klein,1989,Aerobicbiodegradationofbenzene,toluene,andxyleneinasandyaquifer—Dataanalysisandcomputermodeling:GroundWater,v.27,no.6,p.823–834.

Chiou,C.T.,L.J.Peters,andV.H.Freed,1979,Aphysicalconceptofsoil-waterequilibriafornonionicorganiccom-pounds:Science,v.206,p.831–832.

Chiou,C.T.,P.E.Porter,andD.W.Schmedding,1983,Parti-tionequilibriaofnonionicorganiccompoundsbetweensoilorganicmatterandwater:EnvironmentalScienceandTechnology,v.17,no.4,p.227–231.

Christensen,T.H.,P.L.Bjerg,S.A.Banwart,RasmusJako-bsen,GormHeron,andHans-JørgenAlbrechtsen,2000,Characterizationofredoxconditionsingroundwatercon-taminantplumes:JournalofContaminantHydrology,v.45,p.165–241.

Coates,J.D.,R.T.Anderson,andD.R.Lovley,1996a,Oxida-tionofpolycyclicaromatichydrocarbonsundersulfate-reducingconditions:AppliedandEnvironmentalMicrobiol-ogy,v.62,no.3,p.1099–1101.

Coates,J.D.,R.T.Anderson,J.C.Woodward,E.J.P.Phillips,andD.R.Lovley,1996b,Anaerobichydrocarbondegrada-tioninpetroleum-contaminatedharborsedimentsundersulfate-reducingandartificiallyimposediron-reducingconditions:EnvironmentalScienceandTechnology,v.30,no.9,p.2784–2789.

Coleman,N.V.,T.E.Mattes,J.M.Gossett,andJ.C.Spain,2002,Phylogeneticandkineticdiversityofaerobicvinyl-chloride-assimilatingbacteriafromchlorinated-ethenecon-taminatedsites:AppliedandEnvironmentalMicrobiology,v.68,no.12,p.6162–6171.

Cox,H.H.,B.W.Faber,W.N.VanHeiningen,H.Radhoe,H.J.Doddema,andWimmHarder,1996,Styrenemetabo-lisminExophiala jeanselmeiandinvolvementofacyto-chromeP-450-dependentstyrenemonooxygenase:AppliedandEnvironmentalMicrobiology,v.62,no.4,p.1471–1474.

Crawford,R.L.,1976,DegradationofhomogentisatebystrainsofBacillus and Moraxella:CanadianJournalofMicrobiology,v.22,no.2,p.276–280.

DeBest,J.H.,A.Hage,H.J.Doddema,D.B.Janssen,andW.Harder,1999,Completetransformationof1,1,1-trichloroethanetochloroethanebyamethanogenicmixedpopulation:AppliedMicrobiologyandBiotechnol-ogy,v.51,p.277–283.

Deeb,R.A.,A.J.Stocking,LisaAlvarez-Cohen,andM.C.Kavanaugh,2000,MTBEandTBAbiodegrada-tion:Acurrentreview,inProceedingsofthe2000Petro-leumHydrocarbonsandOrganicChemicalsinGroundWater:Prevention,Detection,andRemediation,SpecialFocus—NaturalAttenuationandGasolineOxygenates,November15–17,2000:Anaheim,Calif.,NationalGroundWaterAssociation,p.50–51(abstract).

Deeb,R.A.,andLisaAlvarez-Cohen,2000,Aerobicbio-transformationsofgasolinearomaticsinmulticomponentmixtures:BioremediationJournal,v.4,no.1,p.1–9.

Delzer,G.C.,andTamaraIvahnenko,2003,Occurrenceandtemporalvariabilityofmethyltert-butylether(MTBE)andothervolatileorganiccompoundsinselectsourcesofdrink-ingwater—Resultsofthefocusedsurvey:U.S.GeologicalSurveyWater-ResourcesInvestigationsReport02-4084,65p.

Dermietzel,Jürgen,andAndreaVieth,2002,Chloroaromaticsingroundwater—Chancesofbioremediation:Environmen-talGeology,v.41,no.6,p.683–689.

DeWever,Helene,J.R.Cole,M.R.Fettig,D.A.Hogan,andJ.M.Tiedje,2000,Reductivedehalogenationoftrichloro-aceticacidbyTrichlorobacter thiogenesgen.nov.,sp.nov.:AppliedandEnvironmentalMicrobiology,v.66,no.6,p.2297–2301.

Diaz,Eduardo,andK.N.Timmis,1995,Identificationoffunctionalresiduesina2-hydroxymuconicsemialdehydehydrolase—Anewmemberoftheα/β hydrolase-foldfam-ilyofenzymeswhichcleavescarbon-carbonbonds:JournalofBiologicalChemistry,v.270,no.11,p.6403–6411.

Dinicola,R.S.,S.E.Cox,J.E.Landmeyer,andP.M.Bradley,2002,NaturalattenuationofchlorinatedvolatileorganiccompoundsingroundwateratOperableUnit1,NavalUnderseaWarfareCenter,DivisionKeyport,Washington:U.S.GeologicalSurveyWater-ResourcesInvestigationsReport02-4119,115p.

�8    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Dolfing,James,2000,Energeticsofanaerobicdegradationpathwaysofchlorinatedaliphaticcompounds:MicrobialEcology,v.40,p.2–7.

Donaldson,S.G.,C.M.Miller,andW.W.Miller,1990,Vola-tilizationofgasolineconstituentsfromsoil—Aremedialinvestigation, inProceedingsoftheNationalOutdoorActionConferenceonAquiferRestoration:GroundWaterMonitoringandGeophysicalMethods4,p.721–735.

Drogos,D.L.,andA.F.Diaz,2000,Exploringtheenvironmen-talissuesofmobile,recalcitrantcompoundsingasoline:Preprintsofextendedabstracts,AmericanChemicalSocietySymposium,SanFrancisco,Calif.,March26–30,2000,v.40,no.1,p.238–240.

Edwards,E.A.,andDunjaGrbić-Galić,1992,Completemineralizationofbenzenebyaquifermicroorganismsunderstrictlyanaerobicconditions:AppliedandEnvironmentalMicrobiology,v.58,no.8,p.2663–2666.

Edwards,E.A.,andDunjaGrbić-Galić,1994,Anaerobicdegradationoftolueneando-xylenebyamethanogenicconsortium:AppliedandEnvironmentalMicrobiology,v.60,no.1,p.313–322.

Eggen,R.I.,A.C.Geerling,M.S.Jetten,W.M.deVos,1991,Cloning,expression,andsequenceanalysisofthegenesforcarbonmonoxidedehydrogenaseofMethanothrix soehngenii:JournalofBiologicalChemistry,v.266,no.11,p.6883–6887.

Egli,Christine,RudolfScholtz,A.M.Cook,andThomasLeis-inger,1987,Anaerobicdechlorinationoftetrachlorometh-aneand1,2-dichloroethanetodegradableproductsbypureculturesofDesulfobacteriumsp.andMethanobacteriumsp.:FEMSMicrobiologyLetters,v.43,p.257–261.

Ellis,L.B.M.,DaveRoe,andL.P.Wackett,2006,UniversityofMinnesotabiocatalysis/biodegradationdatabase:Thefirstdecade,nucleicacidsresearch,v.34,Databaseissue,p.D517–D521.

Ellis,Lynda,andSeanAnderson,2005,Tetrachloroethenepathwaymap(anaerobic):UniversityofMinnesotabioca-talysis/biodegradationdatabaseathttp://umbbd.msi.umn.edu/tce2/tce2_map.html,accessedApril10,2006.

Evans,P.J.,D.T.Mang,K.S.Kim,andL.Y.Young,1991a,Anaerobicdegradationoftoluenebyadenitrifyingbac-terium:AppliedandEnvironmentalMicrobiology,v.57,no.4,p.1139–1145.

Evans,P.J.,D.T.Mang,andL.Y.Young,1991b,Degradationoftolueneandm-xyleneandtransformationofo-xylenebydenitrifyingenrichmentcultures:AppliedandEnvironmen-talMicrobiology,v.57,no.2,p.450–454.

Fenner,Kathrin,MartinScheringer,andKonradHüngerbuhler,2000,PersistenceofparentcompoundsandtransformationproductsinalevelIVmultimediamodel:EnvironmentalScienceandTechnology,v.34,no.17,p.3809–3817.

Fernandez-Canon,J.M.,andM.A.Penalva,1995,Molecu-larcharacterizationofageneencodingahomogentisatedioxygenasefromAspergillus nidulansandidentificationofitshumanandplanthomologues:JournalofBiologicalChemistry,v.270,no.36,p.21199–21205.

Finneran,K.T.,andD.R.Lovley,2001,Anaerobicdegrada-tionofmethyl-tert-butylether(MTBE)andtert-butylether(TBA):EnvironmentalScienceandTechnology,v.35,no.10,p.1785–1790.

Freedman,D.L.,andJ.M.Gossett,1989,Biologicalreductivedechlorinationoftetrachloroethyleneandtrichloroethylenetoethyleneundermethanogenicconditions:AppliedandEnvironmentalMicrobiology,v.55,no.9,p.2144–2151.

Fries,M.R.,JizhongZhou,JoanneChee-Sanford,andJ.M.Tiedje,1994,Isolation,characterization,anddistribu-tionofdenitrifyingtoluenedegradersfromavarietyofhabitats:AppliedandEnvironmentalMicrobiology,v.60,no.8,p.2802–2810.

Friesel,Peter,GeraldMilde,andBerndSteiner,1984,Inter-actionsofhalogenatedhydrocarbonswithsoils:FreseniusZeitschriftfuerAnalytischeChemie,v.319,p.160–164.

Gälli,Rene,andP.L.McCarty,1989,Biotransformationof1,1,1-trichloroethane,trichloromethane,andtetrachloro-methanebyaClostridiumsp.:AppliedandEnvironmentalMicrobiology,v.55,no.4,p.837–844.

Garbarini,D.R.,andL.W.Lion,1986,Influenceofthenatureofsoilorganicsonthesorptionoftolueneandtrichloro-ethylene:EnvironmentalScienceandTechnology,v.20,no.12,p.1263–1269.

Gibson,D.T.,BrigitteGschwendt,W.K.Yeh,andV.M.Kobal,1973,InitialreactionsintheoxidationofethylbenzenebyPseudomonas putida:Biochemistry,v.12,no.8,p.1520–1528.

Gibson,D.T.,J.R.Koch,andR.E.Kallio,1968,Oxidativedegradationofaromatichydrocarbonsbymicroorganisms—I.Enzymaticformationofcatecholfrombenzene:Biochem-istry,v.7,no.7,p.2653–2662.

Gibson,D.T.,andVaidyanathanSubramanian,1984,Micro-bialdegradationofaromatichydrocarbons,inGibson,D.T.,ed.,Microbialdegradationoforganiccompounds:NewYork,N.Y.,MarcelDekker,Inc.,p.181–252.

Gossett,J.M,1987,MeasurementofHenry’sLawconstantsforC

1andC

2chlorinatedhydrocarbons:EnvironmentalSci-

enceandTechnology,v.28,no.2,p.202–208.

References Cited    �9

Grady,S.J.,2003,Anationalsurveyofmethyltert-butyletherandothervolatileorganiccompoundsindrinking-watersources—Resultsoftherandomsurvey:U.S.GeologicalSurveyWater-ResourcesInvestigationsReport02-4079,85p.

Griebler,Christian,LorenzAdrian,R.U.Meckenstock,andH.H.Richnow,2004a,Stablecarbonisotopefractionationduringaerobicandanaerobictransformationoftrichlo-robenzene:FEMSMicrobiologyEcology,v.48,no.3,p.313–321.

Griebler,Christian,MichaelSafinowski,AndreaVieth,H.H.Richnow,andR.U.Meckenstock,2004b,Combinedapplicationofstablecarbonisotopeanalysisandspecificmetabolitesdeterminationforassessingin-situdegradationofaromatichydrocarbonsinataroil-contaminatedaqui-fer:EnvironmentalScienceandTechnology,v.38,no.2,p.617–631.

Grostern,Ariel,andE.A.Edwards,2006,GrowthofDeha-lobacterandDehalococcoidesspp.duringdegradationofchlorinatedethanes:AppliedandEnvironmentalMicro-biology,v.72,no.1,p.428–436.

Guertal,W.R.,MarieStewart,J.R.Barbaro,andT.J.McHale,2004,Analyticalresultsfromground-watersamplingusingadirect-pushtechniqueattheDoverNationalTestSite,DoverAirForceBase,Delaware,June–July2001:U.S.GeologicalSurveyOpen-FileReport03-380,31p.

Hage,J.C.,F.D.Kiestra,andSypeHartmans,2001,Co-metabolicdegradationofchlorinatedhydrocarbonsbyPseudomonassp.strainDCA1:AppliedMicrobiologyandBiotechnology,v.57,no.4,p.548–554.

Hagedorn,S.R.,andP.J.Chapman,1985,Glutathione-independentmaleylacetoacetateisomeraseingram-positivebacteria:JournalofBacteriology,v.163,no.2,p.803–805.

Haigler,B.E.,S.F.Nishino,andJ.C.Spain,1988,Degradationof1,2-dichlorobenzenebyaPseudomonassp.:AppliedandEnvironmentalMicrobiology,v.54,no.2,p.294–301.

Hamlin,S.N.,KennethBelitz,SarahKraja,andBarbaraDawson,2002,Ground-waterqualityintheSantaAnawatershed,California—OverviewandDataSummary:U.S.Geologi-calSurveyWater-ResourcesInvestigationsReport02-4243,137p.

Hamlin,S.N.,KennethBelitz,andTylerJohnson,2005,OccurrenceanddistributionofvolatileorganiccompoundsandpesticidesingroundwaterinrelationtohydrogeologiccharacteristicsandlanduseintheSantaAnaBasin,South-ernCalifornia:U.S.GeologicalSurveyScientificInvestiga-tionsReport2005-5032,40p.

Hammer,Angela,ThomasHildenbrand,HelgaHoier,Ka-LeungNgai,MichaelSchlömann,andJ.J.Stezowski,1993,CrystallizationandpreliminaryX-raydataofchlo-romuconatecycloisomerasefromAlcaligeneseutrophusJMP134(pJP4):JournalofMolecularBiology,v.232,no.1,p.305–307.

Harayama,Shigeaki,MoniqueRekik,K.L.Ngai,andL.N.Ornston,1989,Physicallyassociatedenzymesproduceandmetabolize2-hydroxy-2,4-dienoate,achemi-callyunstableintermediateformedincatecholmetabolismviametacleavageinPseudomonas putida:JournalofBacte-riology,v.171,no.11,p.6251–6258.

Harayama,Shigeaki,MoniqueRekik,andK.N.Timmis,1986,Geneticanalysisofarelaxedsubstratespecificityaromaticringdioxygenase,toluate1,2-dioxygenase,encodedbyTOLplasmidpWW0ofPseudomonas putida:MolecularandGeneralGenetics,v.202,no.2,p.226–234.

Harper,Carolyn,andJ.J.Liccione,1995,Toxicologicalprofileforgasoline:U.S.DepartmentofHealthandHumanSer-vices,PublicHealthService,AgencyforToxicSubstancesandDiseaseRegistry,p.107,onlineathttp://www.atsdr.cdc.gov,accessedMay26,2006.

Hartmans,Sybe,andJ.A.DeBont,1992,Aerobicvinylchlo-ridemetabolisminMycobacteriumaurumL1:AppliedandEnvironmentalMicrobiology,v.58,no.4,p.1220–1226.

Helin,Sari,P.C.Kahn,B.L.Guba,D.G.Mallows,andAdrianGoldman,1995,TherefinedX-raystructureofmuconatelactonizingenzymefromPseudomonas putidaPRS2000at1.85Aresolution:JournalofMolecularBiol-ogy,v.254,no.5,p.918–941.

Higgo,J.J.W.,P.H.Nielsen,M.P.Bannon,IanHarrison,andT.H.Christensen,1996,Effectofgeochemicalconditionsonfateoforganiccompoundsingroundwater:EnvironmentalGeology,v.27,no.4,p.335–346.

Higson,F.K.,andD.D.Focht,1992,Degradationof2-methyl-benzoicacidbyPseudomonas cepacia MB2:AppliedandEnvironmentalMicrobiology,v.58,no.1,p.194–200.

Hisano,Tamao,YasuoHata,TomomiFujii,Ji-QuanLiu,TatsuoKurihara,NobuyoshiEsaki,andKenjiSoda,1996,CrystalstructureofL-2-haloaciddehalogenasefromPseu-domonas sp.YL:JournalofBiologicalChemistry,v.271,no.34,p.20322–20330.

Holbrook,M.T.,1992,Carbontetrachloride,inKroschwitz,J.I.,andM.Howe-Grant,eds.,Kirk-Othmerencyclopediaofchemicaltechnology,v.5,4thed.:NewYork,N.Y.,JohnWiley&Sons,p.1062–1072.

�0    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

HolmP.E.,P.H.Nielsen,H-J.Albrechtsen,andT.H.Chris-tensen,1992,Importanceofunattachedbacteriaandbacteriaattachedtosedimentindeterminingpotentialsfordegradationofxenobioticorganiccontaminantsinanaerobicaquifer:AppliedandEnvironmentalMicrobiology,v.58,no.9,p.3020–3026.

Holscher,Tina,HelmutGorisch,andLorenzAdrian,2003,ReductivedehalogenationofchlorobenzenecongenersincellextractsofDehalococcoidessp.,strainCBDB1:AppliedandEnvironmentalMicrobiology,v.69,no.5,p.2999–3001.

Hopkins,G.D.,andP.L.McCarty,1995,Fieldevaluationofinsituaerobiccometabolismoftrichloroethyleneandthreedichloroethyleneisomersusingphenolandtolueneastheprimarysubstrates:EnvironmentalScienceandTechnology,v.29,no.6,p.1628–1637.

Hopper,D.J.,andD.G.Taylor,1975,Pathwaysforthedeg-radationofm-cresolandp-cresolbyPseudomonas putida:JournalofBacteriology,v.122,no.1,p.1–6.

Horn,J.M.,ShigeakiHarayama,andK.N.Timmis,1991,DNAsequencedeterminationoftheTOLplasmid(pWW0)xylGFJgenesofPseudomonas putida —Implicationsfortheevolutionofaromaticcatabolism:MolecularMicrobiology,v.5,no.10,p.2459–2474.

Horvath,A.L.,1982,Halogenatedhydrocarbons—Solubility-miscibilitywithwater:NewYork,N.Y.,MarcelDekker,Inc.,p.494–495.

Howard,P.H.,R.S.Boethling,W.F.Jarvis,W.M.Meylan,andE.M.Michalenko,1991,Handbookofenvironmentaldegradationrates:Chelsea,Mich.,LewisPublishers,2ndprinting,725p.

Hubbard,C.E.,J.F.Barker,andM.Vandegriendt,1994,Transportandfateofdissolvedmethanol,methyl-tertiary-butyl-ether,andmonoaromatichydrocarbonsinashallowsandaquifer,AppendixH—Laboratorybiotransformationstudies:Washington,D.C.,AmericanPetroleumInstitute,HealthEnvironmentalScienceDepartment,APIPublicationNumber4601,338p.

Huesemann,M.H.,andM.J.Truex,1996,Theroleofoxygendiffusioninpassivebioremediationofpetroleumcontaminatedsoils:JournalofHazardousMaterials,v.51,no.1–3,p.93–113.

Hutchins,S.R.,G.W.Sewell,D.A.Kovacs,andG.A.Smith,1991,Biodegradationofaromatichydrocarbonsbyaquifermicroorganismsunderdenitrifyingconditions:Environmen-talScienceandTechnology,v.25,no.1,p.68–76.

Hyatt,B.A.,andDongJunOh,2005,m-Xylenepathwaymap:UniversityofMinnesotabiocatalysis/biodegradationdata-base,onlineathttp://umbbd.msi.umn.edu/mxy/mxy_map.html,accessedApril3,2006.

Inoue,Jun,J.P.Shaw,MoniqueRekik,andShigeakiHarayama,1995,Overlappingsubstratespecificitiesofbenzaldehydedehydrogenase(thexylCgeneproduct)and2-hydroxymu-conicsemialdehydedehydrogenase(thexylGgeneproduct)encodedbyTOLplasmidpWW0ofPseudomonas putida:JournalofBacteriology,v.177,no.5,p.1196–1201.

InstituteforEnvironmentalHealth,2004,Ascreeningmethodforrankingchemicalsbytheirfateandbehaviorintheenvironmentandpotentialtoxiceffectsinhumansfollow-ingnon-occupationalexposure(WebReportW14):Leices-ter,UnitedKingdom,MRCInstituteforEnvironmentandHealth,39p.,onlineathttp://www.silsoe.cranfield.ac.uk/ieh/,accessedonMarch28,2006.

InternationalUnionofPureandAppliedChemistry,2006,Compendiumofchemicalterminology:Onlineathttp://www.iupac.org/publications/compendium/index.html,accessedAugust8,2006.

Janssen,D.B.,AlexScheper,LubbertDijkhuizen,andBernardWitholt,1985,DegradationofhalogenatedaliphaticcompoundsbyXanthobacter autotrophicusGJ10:AppliedandEnvironmentalMicrobiology,v.49,no.3,p.673–677.

Jeffers,P.M.,L.M.Ward,L.M.Woytowitch,andN.L.Wolfe,1989,Homogeneoushydrolysisrateconstantsforselectedchlorinatedmethanes,ethanes,ethenes,andpropanes:Envi-ronmentalScienceandTechnology,v.23,no.8,p.965–969.

Jindrova,Eva,MartinaChocová,KatarinaDemnerová,andVladimirBrenner,2002,Bacterialaerobicdegradationofbenzene,toluene,ethylbenzeneandxylene:FoliaMicrobio-logica(Praha),v.47,no.2,p.83–93.

Jorgensen,Christian,BenNielsen,B.K.Jensen,andElinMortensen,1995,Transformationofo-xylenetoo-methylbenzoicacidbyadenitrifyingenrichmentcultureusingtolueneastheprimarysubstrate:Biodegradation,v.6,no.2,p.141–146.

JunOh,Dong,2005,o-Xylenepathwaymap:UniversityofMinnesotabiocatalysis/biodegradationdatabase,onlineathttp://umbbd.msi.umn.edu/oxy/oxy_map.html,accessedApril4,2006.

Kane,S.R.,H.R.Beller,T.C.Legler,C.J.Koester,H.C.Pinkart,R.U.Halden,andA.M.Happel,2001,Aerobicbiodegrada-tionofmethyltert-butyletherbyaquiferbacteriafromleak-ingundergroundstoragetanksites:AppliedandEnviron-mentalMicrobiology,v.67,no.12,p.5824–5829.

Kasberg,Thomas,D.L.Daubaras,A.M.Chakrabarty,D.Kinzelt,andWalterReineke,1995,Evidencethatoperonstcb,tfd,andclcencodemaleylacetatereductase,thefourthenzymeofthemodifiedorthopathway:JournalofBacteriology,v.177,no.13,p.3885–3889.

References Cited    �1

Kaschabek,S.R.,andWalterReineke,1995,MaleylacetatereductaseofPseudomonassp.strainB13—Specificityofsubstrateconversionandhalideelimination:JournalofBacteriology,v.177,no.2,p.320–325.

Katagiri,Masanao,ShigeruTakemori,KazuNakazawa,HiroetsuSuzuki,andKazuoAkagi,1967,Benzylalcoholdehydrogenase,anewalcoholdehydrogenasefromPseudomonassp:BiochimicaetBiophysicaActa,v.139,no.1,p.173–176.

Kazumi,Junko,M.E.Caldwell,J.M.Suflita,D.R.Lovley,andL.Y.Young,1997,Anaerobicdegradationofbenzeneindiverseanoxicenvironments:EnvironmentalScienceandTechnology,v.31,no.3,p.813–818.

Keat,M.J.,andD.J.Hopper,1978a,p-cresoland3,5-xylenolmethylhydroxylasesin Pseudomonas putidaN.C.I.B.9896:BiochemistryJournal,v.175,no.2,p.649–658.

Keat,M.J.,andD.J.Hopper,1978b,ThearomaticalcoholdehydrogenasesinPseudomonas putidaN.C.I.B.9869grownon3,5-xylenolandp-cresol:BiochemistryJournal,v.175,no.2,p.659–667.

Kemblowski,M.W.,J.P.Salanitro,G.M.Deeley,andC.C.Stanley,1987,Fateandtransportofresidualhydrocar-boningroundwater—Acasestudy, inProceedingsofthePetroleumHydrocarbonsandOrganicChemicalsinGroundWaterConference:NationalWaterWellAssociationandAmericanPetroleumInstitute,Houston,Tex.,p.207–231.

Kile,D.E.,C.T.Chiou,HuaidongZhou,HuiLi,andOuyongXu,1996,Partitionofnonpolarorganicpollutantsfromwatertosoilandsedimentorganicmatters:Environ-mentalScienceandTechnology,v.29,no.5,p.1401–1406.

Kim,Young,D.J.Arp,andLewisSemprini,2000,Chlorinatedsolventcometabolismbybutane-grownmixedculture:Jour-nalofEnvironmentalEngineering,v.126,p.934–942.

Klier,N.J.,R.J.West,andP.A.Donberg,1999,Aerobicbio-degradationofdichloroethylenesinsurfaceandsubsurfacesoils:Chemosphere,v.38,no.5,p.1175–1188.

Kniemeyer,Olaf,andJohannHeider,2001,Ethylbenzenedehydrogenase,anovelhydrocarbon-oxidizingmolybde-num/iron-sulfur/hemeenzyme:JournalofBiologicalChem-istry,v.276,no.24,p.21381–21386.

Kolhatkar,Ravi,J.T.Wilson,andL.E.Dunlap,2000,EvaluatingnaturalbiodegradationofMTBEatmultipleUSTsites,inProceedingsofthe2000PetroleumHydro-carbonsandOrganicChemicalsinGroundWater:Preven-tion,detection,andremediation—Specialfocus,Naturalattenuationandgasolineoxygenates,November15–17,2000:Anaheim,Calif.,NationalGroundWaterAssociation(abstract),p.32–49.

Kolhatkar,Ravi,TomaszKuder,PaulPhilp,JonAllen,andJ.T.Wilson,2002,Useofcompound-specificstablecarbonisotopeanalysestodemonstrateanaerobicbio-degradationofMTBEingroundwateratagasolinereleasesite:EnvironmentalScienceandTechnology,v.36,no.23,p.5139–5146.

Kraus,Dean,K.E.Lind,AndreaMarconi,andRyanMcLeish,2005,Styrenepathwaymap:UniversityofMinnesotabioca-talysis/biodegradationdatabase,onlineathttp://umbbd.msi.umn.edu/sty/sty_map.html,accessedApril10,2006.

Krone,U.E.,R.K.Thauer,H.P.C.Hogenkamp,andKarinSteinbach,1991,ReductiveformationofcarbonmonoxidefromCCl4andFREONs11,12,and13catalyzedbycorrinoids:Biochemistry,v.30,no.10,p.2713–2719.

Krumholz,L.R.,M.E.Caldwell,andJ.M.Suflita,1996,Biodegradationof“BTEX”hydrocarbonsunderanaero-bicconditions,inCrawford,R.L.,Crawford,D.L.,eds.,Bioremediation—PrinciplesandApplications:CambridgeUniversityPress,NewYork,N.Y.,p.61–99.

Kuder,Tomasz,J.T.Wilson,PhilKaiser,RaviKolhatkar,PaulPhilp,andJonAllen,2005,Enrichmentofstablecar-bonandhydrogenisotopesduringanaerobicbiodegradationofMTBE—Microcosmandfieldevidence:EnvironmentalScienceandTechnology,v.39,no.23,p.213–220.

Kuhn,E.P.,JosefZeyer,PetraEicher,andR.P.Schwarzen-bach,1988,Anaerobicdegradationofalkylatedbenzenesindenitrifyinglaboratoryaquifercolumns:AppliedandEnvironmentalMicrobiology,v.54,no.2,p.490–496.

Kukor,J.J.,andR.H.Olsen,1991,Geneticorganizationandregulationofametacleavagepathwayforcatecholsproducedfromcatabolismoftoluene,benzene,phenol,andcresolsby Pseudomonas pickettiiPK01:JournalofBacteri-ology,v.173,no.15,p.4587–4594.

Lamzin,V.S.,A.E.Aleshin,B.V.Strokopytov,M.G.Yukh-nevich,V.O.Popov,E.H.Harutyunyan,andK.S.Wilson,1992,CrystalstructureofNAD-dependentformatedehy-drogenase:EuropeanJournalofBiochemistry,v.206,no.2,p.441–452.

Landmeyer,J.E.,F.H.Chapelle,H.H.Herlong,andP.M.Brad-ley,2001,Methyltert-butyletherbiodegradationbyindig-enousaquifermicroorganismsundernaturalandartificialoxicconditions:EnvironmentalScienceandTechnology,v.35,no.6,p.1118–1126.

Lau,P.C.K.,HeleneBergeron,DianeLabbé,YangWang,RolandBrousseau,andD.T.Gibson,1994,SequenceandexpressionofthetodGIHgenesinvolvedinthelastthreestepsoftoluenedegradationbyPseudomonas putidaF1:Gene,v.146,no.1,p.7–13.

��    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Lee,Chang-Ho,T.A.Lewis,AndrzejPaszczynski,andR.L.Crawford,1999,IdentificationofanextracellularcatalystofcarbontetrachloridedehalogenationfromPseudomonas stutzeristrainKCaspyridine-2,6-bis(thiocarboxylate):BiochemicalandBiophysicalResearchCommunications,v.261,no.3,p.562–566.

Lee,Kyoung,andD.T.Gibson,1996,Tolueneandethylben-zeneoxidationbypurifiednaphthalenedioxygenasefromPseudomonassp.strainNCIB9816-4:AppliedandEnvi-ronmentalMicrobiology,v.62,no.9,p.3101–3106.

Li,Shijie,andL.P.Wackett,1992,Trichloroethyleneoxida-tionbytoluenedioxygenase:BiochemicalandBiophysicalResearchCommunication,v.185,no.1,p.443–451.

Lide,D.R.,2003,CRCHandbookofchemistryandphysics,84thed.:NewYork,N.Y.,CRCPressLtd.,p.8-93–8-115,15-14–15-18.

Liu,Jiangbi,2006,1,4-dichlorobenzenepathwaymap:Uni-versityofMinnesotaBiocatalysis/biodegradationdatabase,onlineathttp://umbbd.msi.umn.edu/dcz/dcz_map.html,accessedOctober25,2006.

Liu,Z.J.,Y.J.Sun,JohnRose,Y.J.Chung,C.D.Hsiao,W.R.Chang,IhyuanKuo,JohnPerozich,RogerLindahl,JohnHempel,andB.C.Wang,1997,ThefirststructureofanaldehydedehydrogenaserevealsnovelinteractionsbetweenNADandtheRossmannfold:NatureStructuralBiology,v.4,no.4,p.317–326.

Lovley,D.R.,andD.J.Lonergan,1990,Anaerobicoxida-tionoftoluene,phenol,andp-cresolbythedissimilatoryiron-reducingorganism,GS-15:AppliedandEnvironmental

Microbiology,v.56,no.6,p.1858–1864.

Lovley,D.R.,1991,DissimilatoryFe(III)andMn(IV)reduc-tion:MicrobiologicalReview,v.55,no.2,p.259–287.

Lovley,D.R.,J.D.Coates,J.C.Woodward,andE.J.P.Phillips,1995,Benzeneoxidationcoupledtosulfatereduction:AppliedandEnvironmentalMicrobiology,v.61,no.3,p.953–958.

Lovley,D.R.,M.J.Baedecker,D.J.Lonergan,I.M.Cozzarelli,E.J.P.Phillips,andD.I.Siegel,1989,Oxidationofaromaticcontaminantscoupledtomicrobialironreduction:Nature(London),v.339,p.297–299.

Lu,Guoping,T.P.Clement,ChunmiaoZheng,andT.H.Wie-demeier,1999,NaturalattenuationofBTEXcompounds:Modeldevelopmentandfield-scaleapplication:GroundWater,v.37,no.5,p.707–715.

Lyman,W.J.,1982,Adsorptioncoefficientforsoilsandsedi-ments,inLyman,W.J.,W.F.Reehl,andD.H.Rosenblatteds.,Handbookofchemicalpropertyestimationmeth-ods—Environmentalbehavioroforganiccompounds:NewYork,N.Y.,McGraw-HillBookCompany,p.4-l–5-29.

Ma,Jian,YogeshKale,andLyndaEllis,2005,C1metabolic

cyclepathwaymap:UniversityofMinnesotaBiocatalysis/biodegradationdatabase,onlineathttp://umbbd.msi.umn.edu/C1cyc/C1cyc_map.html,accessedonApril3,2006.

Mabey,W.R.,andTheodoreMill,1978,Criticalreviewofhydrolysisoforganiccompoundsinwaterunderenviron-mentalconditions:JournalofPhysicalandChemicalRefer-enceData,v.7,no.2,p.383–415.

Mackay,Donald,2004,Findingfugacityfeasible,fruitful,andfun:EnvironmentalToxicologyandChemistry,v.23,no.10,p.2282–2289.

Mackay,Donald,AntonioDiGuardo,SallyPaterson,GabrielKicsi,andC.E.Cowan,1996,Assessingthefateofnewandexistingchemicals—Afive-stageprocess:EnvironmentalToxicologyandChemistry,v.15,no.9,p.1618–1626.

Mackay,Donald,W.Y.Shiu,andK.C.Ma,1992a,Illustratedhandbookofphysical-chemicalpropertiesandenvironmen-talfatefororganicchemicals—VolumeI,monoaromatichydrocarbons,chlorobenzenes,andPCBs:LewisPublish-ers,Chelsea,Michigan,697p.

Mackay,Donald,W.Y.Shiu,andK.C.Ma,1992b,Illustratedhandbookofphysical-chemicalpropertiesandenviron-mentalfatefororganicchemicals—VolumeII,polynucleararomatichydrocarbons,polychlorinateddioxins,anddiben-zofurans:Chelsea,Mich.,LewisPublishers,597p.

Magnuson,J.K.,R.V.Stern,J.M.Gossett,S.H.Zinder,andD.R.Burris,1998,Reductivedechlorinationoftetrachlo-roethenetoethenebyatwo-componentenzymepathway:AppliedandEnvironmentalMicrobiology,v.64,no.4,p.1270–1275.

Mason,J.R.,andP.J.Geary,1990,cis-1,2-dihydroxycyclo-hexa-3,5-diene(NAD)oxidoreductase(cis-benzenedihy-drodioldehydrogenase)fromPseudomonas putidaNCIB12190:MethodsinEnzymology,v.188,p.134–137.

Maymo-Gatell,Xavier,Yueh-TungChien,J.M.Gossett,andS.H.Zinder,1997,Isolationofabacteriumthatreductivelydechlorinatestetrachloroethenetoethene:Science,v.276,no.5318,p.1568–1571.

McCarty,P.L.,1997,Bioticandabiotictransformationsofchlorinatedsolventsingroundwater,inProceedingsoftheSymposiumonNaturalAttenuationofChlorinatedOrgan-icsinGroundWater,Dallas,Tex.,September11–13,1996:U.S.EnvironmentalProtectionAgency,EPA/540/R-97/504,p.7–11.

References Cited    ��

McCarty,P.L.,andLewisSemprini,1994,Ground-watertreatmentforchlorinatedsolvents,inNorris,R.D.,R.E.Hinchee,RobertBrown,P.L.McCarty,LewisSemprini,J.T.Wilson,D.H.Kampbell,MartinReinhard,E.J.Bouwer,R.C.Borden,T.M.Vogel,J.M.Thomas,andC.H.Ward,eds.,Groundwatercleanupthroughbioremediation:HandbookofBioremediation,BocaRaton,Fla.,LewisPublishers,Inc.,p.87.

McCarty,P.L.,andMartinReinhard,1993,Biologicalandchemicaltransformationsofhalogenatedaliphaticcom-poundsinaquaticandterrestrialenvironmentsinthebio-chemistryofglobalchange,inOremland,R.S.,ed.,Thebio-geochemistryofglobalchange—Radioactivetracegases:NewYork,N.Y.,ChapmanandHall,Inc.,p.839–852.

McCarty,P.L.,M.N.Goltz,G.D.Hopkins,M.E.Dolan,J.P.Allan,B.T.Kawakami,andT.J.Carrothers,1998,Fullscaleevaluationofinsitucometabolicdegradationoftrichloroethyleneingroundwaterthroughtolueneinjection:EnvironmentalScienceandTechnology,v.32,p.88–100.

McIntire,William,T.P.Singer,A.J.Smith,andF.S.Mathews,1986,Aminoacidandsequenceanalysisofthecytochromeandflavoproteinsubunitsofp-cresolmethylhydroxylase:Biochemistry,v.25,no.20,p.5975–5981.

McLeish,Robert,2005,Ethylbenzenepathwaymap:Univer-sityofMinnesotabiocatalysis/biodegradationdatabase,onlineathttp://umbbd.msi.umn.edu/ethb2/ethb2_map.html,accessedApril5,2006.

Menn,F.M.,G.J.Zylstra,andD.T.Gibson,1991,LocationandsequenceofthetodFgeneencoding2-hydroxy-6-oxo-hepta-2,4-dienoatehydrolaseinPseudomonas putidaF1:Gene,v.104,no.1,p.91–94.

Middeldorp,P.J.M.,JohanDeWolf,A.J.B.Zehnder,andGosseSchraa,1997,Enrichmentandpropertiesofa1,2,4-trichlorobenzene-dechlorinatingmethanogenicmicro-bialconsortium:AppliedandEnvironmentalMicrobiology,v.63,no.4,p.1225–1229.

Mili,Jeon,andStephenStephens,2006,p-Xylenepathwaymap:UniversityofMinnesotabiocatalysis/biodegradationdatabase,onlineathttp://umbbd.msi.umn.edu/pxy/pxy_map.html,accessedApril3,2006.

Monferran,M.V.,J.R.Echenique,andD.A.Wunderlin,2005,DegradationofchlorobenzenesbyastrainofAcidovoraxavenaeisolatedfromapollutedaquifer:Chemosphere,v.61,no.1,p.98–106.

Moran,M.J.,2006,OccurrenceandimplicationsofselectedchlorinatedsolventsingroundwaterandsourcewaterintheUnitedStatesandindrinkingwaterin12NortheastandMid-AtlanticStates,1993–2002:U.S.GeologicalSurveyScientificInvestigationsReport2005–5268,70p.

Moran,M.J.,J.S.Zogorski,andP.J.Squillace,2004,Occur-renceandimplicationsofmethyltert-butyletherandgasolinehydrocarbonsingroundwaterandsourcewaterintheUnitedStatesandindrinkingwaterin12Northeastandmid-AtlanticStates,1993–2002:U.S.GeologicalSurveyWater-ResourcesInvestigationsReport03-4200,26p.

Morasch,Barbara,H.H.Richnow,BernhardSchink,AndreaVieth,andR.U.Meckenstock,2002,Carbonandhydrogenstableisotopefractionationduringaerobicbacte-rialdegradationofaromatichydrocarbons:AppliedandEnvironmentalMicrobiology,v.68,no.10,p.5191–5194.

Morasch,Barbara,H.H.Richnow,BernhardSchink,andR.U.Meckenstock,2001,Stablehydrogenandcarboniso-topefractionationduringmicrobialtoluenedegradation—Mechanisticandenvironmentalaspects:AppliedandEnvi-ronmentalMicrobiology,v.67,no.10,p.4842–4849.

Motosugi,Kenzo,NobuyoshiEsaki,andKenjiSoda,1982,Purificationandpropertiesofanewenzyme,DL-2-haloaciddehalogenase,fromPseudomonassp.:JournalofBacteriol-ogy,v.150,no.2,p.522–527.

Murakami,Shuichiro,NorikoKodama,RyuShinke,andKenjiAoki,1997,Classificationofcatechol1,2-dioxygen-asefamily:Sequenceanalysisofageneforthecatechol1,2-dioxygenaseshowinghighspecificityformethylcat-echolsfromGram+aniline-assimilatingRhodococcus erythropolisAN-13:Gene,v.185,no.1,p.49–54.

Murray,W.D.,andMarkRichardson,1993,ProgresstowardthebiologicaltreatmentofC

1andC

2halogenatedhydro-

carbons:CriticalReviewsinEnvironmentalScienceandTechnology,v.23,no.3,p.195–217.

Nakazawa,Teruko,andEmikoHayashi,1978,Phthalateand4-hydroxyphthalatemetabolisminPseudomonas testoster-one—Purificationandpropertiesof4,5-dihydroxyphthalatedecarboxylase:AppliedandEnvironmentalMicrobiology,v.36,no.2,p.264–269.

NationalCenterforManufacturingSciences,2006,SOLV-DB®:Onlinedatabaseathttp://solvdb.ncms.org/common01.idc,accessedSeptember5,2006.

NationalInstituteforResourcesandEnvironment,2001,Data-baseforenvironmentalfateofchemicals—Biodegradationpathwaysofchlorobenzenesinasedimentsample:NationalInstituteforResourcesandEnvironment,Ibaraki,Japan,onlinedatabasehttp://www.aist.go.jp/RIODB/dbefc/nirefate/bio/CBZs_E.html,accessedOctober25,2006.

��    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Neidle,Ellen,ChrisHartnett,L.N.Ornston,AmosBairoch,MoniqueRekik,andShigeakiHarayama,1992,cis-dioldehydrogenasesencodedbytheTOLpWW0plasmidxylLgeneandtheAcinetobacter calcoaceticuschromosomalbenDgenearemembersoftheshort-chainalcoholdehy-drogenasesuperfamily:EuropeanJournalofBiochemistry,v.204,no.1,p.113–120.

Newman,L.M.,andL.P.Wackett,1991,Fateof2,2,2-trichlo-roacetaldehyde(chloralhydrate)producedduringtrichloro-ethyleneoxidationbymethanotrophs:AppliedandEnviron-mentalMicrobiology,v.57,no.8,p.2399–2402.

Newman,L.M.,andL.P.Wackett,1995,Purificationandcharacterizationoftoluene2-monooxygenasefromBurkholderia cepaciaG4:Biochemistry,v.34,no.43,p.14066–14076.

Newman,L.M.,andL.P.Wackett,1997,Trichloroethyleneoxidationbypurifiedtoluene2-monooxygenase—Products,kinetics,andturnover-dependentinactivation:JournalofBacteriology,v.179,no.1,p.90–96.

Ngai,K.L.,E.L.Neidle,andL.N.Ornston,1990,Catecholandchlorocatechol1,2-dioxygenases:MethodsinEnzymology,v.188,p.122–126.

Nielsen,P.H.,P.L.Bjerg,PernilleNielsen,PernilleSmith,andT.H.Christensen,1996,In situandlaboratorydeterminedfirst-orderdegradationrateconstantsofspecificorganiccompoundsinanaerobicaquifer:EnvironmentalScienceandTechnology,v.30,no.1,p.31–37.

Norris,R.D.,R.E.Hinchee,R.A.Brown,P.L.McCarty,andLewisSemprini,J.T.Wilson,D.H.Kampbell,MartinRein-hard,E.J.Bouwer,R.C.Borden,T.M.Vogel,J.M.Thomas,andC.H.Ward,1993,In-situbioremediationofground-waterandgeologicmaterial—Areviewoftechnologies:Washington,D.C.,U.S.EnvironmentalProtectionAgency,EPA/600/R-93/124.

Olaniran,A.O.,DorsamyPillay,andBalakrishnaPillay,2004,Chloroethenescontaminantsintheenvironment—Stillacauseforconcern:AfricanJournalofBiotechnology,v.3,no.12,p.675–682.

Oldenhuis,Roelof,R.L.Vink,D.B.Janssen,andBernardWith-olt,1989,DegradationofchlorinatedaliphatichydrocarbonsbyMethylosinus trichosporiumOB3bexpressingsolublemethanemonooxygenase:AppliedandEnvironmentalMicrobiology,v.55,no.11,p.2819–2826.

Olivera,E.R.,ÁngelReglero,HonorinaMartinez-Blanco,AlbertoFernández-Medarde,M.A.Moreno,andJ.M.Luengo,1994,CatabolismofaromaticsinPseudo-monas putidaU.—Formalevidencethatphenylaceticacidand4-hydroxyphenylaceticacidarecatabolizedbytwounrelatedpathways:EuropeanJournalofBiochemistry,v.221,no.1,p.375–381.

Olsen,R.H.,J.J.Kukor,andBryanKaphammer,1994,Anoveltoluene-3-monooxygenasepathwayclonedfromPseudomo-nas pickettiiPKO1:JournalofBacteriology,v.176,no.12,p.3749–3756.

O’Reilly,K.T.,M.E.Moir,C.D.Taylor,C.A.Smith,andM.R.Hyman,2001,Hydrolysisoftert-butylmethylether(MTBE)indiluteaqueousacid:EnvironmentalScienceandTechnology,v.35,no.19,p.3954–3961.

Pathak,Dushyant,andDavidOllis,1990,Refinedstructureofdienelactonehydrolaseat1.8angstroms:JournalofMolecu-larBiology,v.214,no.2,p.497–525.

Pedersen,C.R.,andCarlaEssenberg,2005,Methyltert-butyletherpathwaymap:UniversityofMinnesotabiocatalysis/biodegradationdatabase,onlineathttp://umbbd.msi.umn.edu/mtb/mtb_map.html,accessedMarch15,2006.

Phelps,C.P.,JunkoKazumi,andL.Y.Young,1996,AnaerobicdegradationofbenzeneinBTXmixturesdependentonsul-fatereduction:FEMSMicrobiologyLetters,v.145,no.3,p.433–437.

Platt,Alec,VictoriaShingler,S.C.Taylor,andP.A.Williams,1995,The4-hydroxy-2-oxovaleratealdolaseandacetalde-hydedehydrogenase(acylating)encodedbythenahMandnahOgenesofthenaphthalenecatabolicplasmidpWW60-22providefurtherevidenceofconservationofmeta-cleav-agepathwaygenesequences:Microbiology,v.141,no.9,p.2223–2233.

Poh,C.L.,andR.C.Bayly,1980,Evidenceforisofunctionalenzymesusedinm-cresoland2,5-xylenoldegradationviathegentisatepathwayinPseudomonas alcaligenes:JournalofBacteriology,v.143,no.1,p.59–69.

Rabus,Ralf,andFriedrichWiddel,1995,Anaerobicdegrada-tionofethylbenzeneandotheraromatichydrocarbonsbynewdenitrifyingbacteria:ArchivesofMicrobiology,v.163,no.2,p.96–103.

Rabus,Ralf,RalphNordhaus,WolfgangLudwig,andFried-richWiddel,1993,Completeoxidationoftolueneunderstrictlyanoxicconditionsbyanewsulfate-reducingbacte-rium:AppliedEnvironmentalMicrobiology,v.59,no.5,p.1444–1451.

Ramanand,Karnam,M.T.Balba,andJamesDuffy,1993,Reductivedehalogenationofchlorinatedbenzenesandtolu-enesundermethanogenicconditions:AppliedandEnviron-mentalMicrobiology,v.59,no.10,p.3266–3272.

Rapp,Peter,andL.H.E.Gabriel-Jürgens,2003,Degradationofalkanesandhighlychlorinatedbenzenes,andproductionofbiosurfactants,byapsychrophilic Rhodococcussp.andgeneticcharacterizationofitschlorobenzenedioxygenase:Microbiology,v.149,no.10,p.2879–2890.

References Cited    ��

Rathbun,R.E.,1998,Transport,behavior,andfateofvolatileorganiccompoundsinstreams:U.S.GeologicalSurveyProfessionalPaper1589,151p.

Reineke,Walter,andH.J.Knackmuss,1984,Microbialmetabolismofhaloaromatics—Isolationandpropertiesofachlorobenzene-degradingbacterium:AppliedandEnviron-mentalMicrobiology,v.47,no.2,p.395–402.

Reineke,Walter,andH.J.Knackmuss,1988,Microbialdegra-dationofhaloaromatics:AnnualReviewofMicrobiology,v.42,p.263–287.

Reinhard,Martin,N.L.Goodman,andJ.F.Barker,1984,Occurrenceanddistributionoforganicchemicalsintwolandfillleachateplumes:EnvironmentalScienceandTech-nology,v.18,no.12,p.953–961.

RenhaoLi,2005,1,2-dichloroethanepathwaymap(anaero-bic):UniversityofMinnesotabiocatalysis/biodegradationdatabase,onlineathttp://umbbd.msi.umn.edu/dce/dce_map.html,accessedonApril10,2006.

Riegert,Ulrich,GescheHeiss,PeterFischer,andAndreasStolz,1998,Distalcleavageof3-chlorocatecholbyanextradioldioxygenaseto3-chloro-2-hydroxymuconicsemialdehyde:JournalofBacteriology,v.180,no.11,p.2849–2853.

Roberts,P.V.,M.N.Goltz,andD.M.Mackay,1986,Anaturalgradientexperimentonsolutetransportinasandaquifer—III.Retardationestimatesandmassbalancesfororganicsolutes:WaterResourcesResearch,v.22,no.13,p.2047–2058.

Rosenzweig,A.C.,C.A.Frederick,S.J.Lippard,andPärNor-dlund,1993,Crystalstructureofabacterialnon-haemironhydroxylasethatcatalysesthebiologicaloxidationofmeth-ane:Nature,v.366,no.6455,p.537–543.

Roychoudhury,A.N.,andG.L.Merrett,2005,Redoxpathwaysinapetroleumcontaminatedshallowsandyaquifer—Ironandsulfatereductions:ScienceoftheTotalEnvironment,v.366,no.1,p.262–274,13p.

Saichek,R.E.,andK.R.Reddy,2005,Electrokineticallyenhancedremediationofhydrophobicorganiccompoundsinsoils—Areview:CriticalreviewsinEnvironmentalScienceandTechnology,v.35,no.1,p.115–192.

Sakai,Keiko,MattRowley,PritiGairola,andStephenStephens,2005,m-cresolpathwaymap—UniversityofMinnesotabio-catalysis/biodegradationdatabase:Onlineathttp://umbbd.msi.umn.edu/mcr/mcr_map.html,accessedMarch24,2006.

Salanitro,J.P.,1993,Theroleofbioattenuationinthemanage-mentofaromatichydrocarbonplumesinaquifers:GroundWaterMonitoringReview,Fall,p.150–161.

Sander,Peter,R.M.Wittaich,PeterFortnagel,HeinzWilkes,andWittkoFrancke,1991,Degradationof1,2,4-trichloro-and1,2,4,5-tetrachlorobenzenebyPseudomonasstrains:AppliedandEnvironmentalMicrobiology,v.57,no.5,p.1430–1440.

Sands,Ted,TonyDodge,andMeaghanFitzgerald,2005,1,1,1-trichloroethane(an/aerobic)pathwaymap—Univer-sityofMinnesotabiocatalysis/biodegradationdatabase:Onlineathttp://umbbd.msi.umn.edu/tca/tca_map.html,accessedMarch21,2006.

Sangster,James,1989,Octanol-waterpartitioncoefficientsofsimpleorganiccompounds:JournalofPhysicalandChemi-calReferenceData,v.18,p.1111–1230.

Sargent,B.P.,J.W.Green,P.T.Harte,andE.F.Vowinkel,1986,Ground-water-qualitydataforPicatinnyArsenal,NewJersey,1958–85:U.S.GeologicalSurveyOpen-FileReport86-58,66p.

Schalk,C.W.,W.L.Cunningham,K.M.Sarver,R.M.Timmins,G.L.Rowe,P.R.Wright,andJ.M.Parnell,1996,ResultsofthebasewidemonitoringprogramatWright-PattersonAirForceBase,Ohio,1993–1994:U.S.GeologicalSurveyWater-ResourcesInvestigationsReport96-4125,176p.

Schwarzenbach,R.P.,andJohnWestall,1981,Transportofnonpolarorganiccompoundsfromsurfacewatertoground-water—Laboratorysorptionstudies:EnvironmentalScienceandTechnology,v.15,no.11,p.1360–1367.

Sedran,M.A.,AmyPruden,G.J.Wilson,M.T.Suidan,andA.D.Venosa,2002,EffectofBTEXondegradationofMTBEandTBAbymixedbacterialconsortium:JournalofEnvironmentalEngineering,v.128,no.9,p.830–835.

Seip,H.M.,JorolfAlstad,G.E.Carlberg,KariMartinsen,andRuneSkaane,1986,Measurementofmobilityoforganiccompoundsinsoils:ScienceoftheTotalEnvironment,v.50,no.1,p.87–101.

Shaw,J.P.,andShigeakiHarayama,1990,PurificationandcharacterizationofTOLplasmid-encodedbenzylalcoholdehydrogenaseandbenzaldehydedehydrogenaseofPseudomonas putida:EuropeanJournalofBiochemistry,v.191,no.3,p.705–714.

Shaw,J.P.,andShigeakiHarayama,1992,PurificationandcharacterizationoftheNADH:acceptorreductasecompo-nentofxylenemonooxygenaseencodedbytheTOLplas-midpWW0ofPseudomonas putidamt-2:EuropeanJournalofBiochemistry,v.209,no.1,p.51–61.

Shaw,J.P.,MoniqueRekik,FrançoiseSchwager,andShigeakiHarayama,1993,Kineticstudiesonbenzylalcoholdehy-drogenaseencodedbyTOLplasmidpWW0:JournalBiol-ogyChemistry,v.268,no.15,p.10842–10850.

��    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Shields,M.S.,M.J.Reagin,R.R.Gerger,RuthCampbell,andChrisSomerville,1995,TOM,anewaromaticdegrada-tiveplasmidfromBurkholderia(Pseudomonas)cepacia G4:AppliedandEnvironmentalMicrobiology,v.61,no.4,p.1352–1356.

Simpson,H.D.,JeffreyGreen,HowardDalton,1987,Purifica-tionandsomepropertiesofanovelheat-stablecis-toluenedihydrodioldehydrogenase:BiochemistryJournal,v.244,no.3,p.585–590.

Smith,C.A.,K.T.O’Reilly,andM.R.Hyman,2003,Char-acterizationoftheinitialreactionsduringthecometabolicoxidationofmethyltert-butyletherbypropane-grownMycobacterium vaccaeJOB5:AppliedandEnvironmentalMicrobiology,v.69,no.2,p.796–804.

Smith,J.A.,P.J.Witkowski,andT.V.Fusillo,1988,ManmadeorganiccompoundsinthesurfacewatersoftheUnitedStates—Areviewofcurrentunderstanding:U.S.GeologicalSurveyCircular1007,p.52.

Sommer,Claudia,andHelmutGörisch,1997,Enzymologyofthedegradationof(di)chlorobenzenesbyXanthobacter flavus14p1:ArchivesofMicrobiology,v.167,no.6,p.384–391.

Somsamak,Piyapawn,R.M.Cowan,andM.M.Häggblom,2001,Anaerobicbiotransformationoffueloxygenatesundersulfate-reducingconditions:FEMSMicrobiologyEcology,v.37,no.3,p.259–264.

Spain,J.C.,andS.F.Nishino,1987,Degradationof1,4-dichlo-robenzenebyaPseudomonassp.:AppliedandEnvironmen-talMicrobiology,v.53,no.3,p.1010–1019.

Spiess,Elke,ClaudiaSommer,andHelmutGörisch,1995,Degradationof1,4-dichlorobenzenebyXanthobacter flavus 14p1:AppliedandEnvironmentalMicrobiology,v.61,no.11,p.3884–3888.

Squillace,P.J.,andM.J.Moran,2006,Factorsassociatedwithsources,transport,andfateofvolatileorganiccompoundsinaquifersoftheUnitedStatesandimplicationsforground-watermanagementandassessments:U.S.GeologicalSur-veyScientificInvestigationsReport2005-5269,40p.

Squillace,P.J.,J.F.Pankow,N.E.Korte,andJ.S.Zorgorski,1997,Reviewoftheenvironmentalbehaviorandfateofmethyltert-butylether:EnvironmentalToxicologyandChemistry,v.16,no.9,p.1836–1844.

Steffan,R.J.,KevinMcClay,SimonVainberg,C.W.Condee,andDongluZhang,1997,Biodegradationofthegasolineoxygenatesmethyltert-butylether,ethyltert-butylether,andtert-amylmethyletherbypropane-oxidizingbacteria:AppliedandEnvironmentalMicrobiology,v.63,no.11,p.4216–4222.

Stucki,Gerhard,U.Krebser,andThomasLeisinger,1983,Bacterialgrowthon1,2-dichloroethane:Experientia,v.39,no.11,p.1271–1273.

Stumm,Werner,andJ.J.Morgan,1996,AquaticChemistry:3rded.,NewYork,N.Y.,JohnWiley&Sons,Inc.,1022p.

Suzuki,Masahiko,TakahikoHayakawa,J.P.Shaw,MoniqueRekik,andShigeakiHarayama,1991,Primarystructureofxylenemonooxygenase—Similaritiestoanddifferencesfromthealkanehydroxylationsystem:JournalofBacteriology,v.173,no.5,p.1690–1695.

Swoboda-Colberg,N.G.,1995,Chemicalcontaminationoftheenvironment—Sources,types,andfateofsyntheticorganicchemicals,inYoung,L.Y.,andC.E.Cerniglia,eds.,Microbialtransformationsanddegradationoftoxicorganicchemicals:NewYork,N.Y.,Wiley-Liss,Inc.,p.27–74.

ThomasJ.M.,V.R.Gordy,StephanieFiorenza,andC.H.Ward,1990,BiodegradationofBTEXinsubsurfacematerialscon-taminatedwithgasoline—Granger,Indiana:WaterScienceandTechnology,v.22,p.53–62.

Ulrich,A.C.,H.R.Beller,andE.A.Edwards,2005,Metabo-litesdetectedduringbiodegradationof13C6-benzeneinnitrate-reducingandmethanogenicenrichmentcultures:EnvironmentalScienceandTechnology,v.39,no.17,p.6681–6691.

U.S.EnvironmentalProtectionAgency,1994,Chemicalsum-maryformethyl-tert-butylether(CASNo.1634-04-4):OfficeofPollutionPreventionandToxics:Washington,D.C.,U.S.EnvironmentalProtectionAgency,EPA749-F-94-017a,onlineathttp://www.epa.gov/chemfact/s_mtbe.txt,accessedMay22,2006.

U.S.EnvironmentalProtectionAgency,1995,Contaminantspecificfactsheets,Volatileorganicchemicals—Technicalversion:U.S.EnvironmentalProtectionAgency,EPA811-F-95-004-T,onlineathttp://www.epa.gov/safewater/dwh/t-voc.html,accessedJanuary11,2006.

U.S.EnvironmentalProtectionAgency,1998,Useanddistri-butionofMTBEandethanol:Washington,D.C.,OfficeofUndergroundStorageTanks,U.S.EnvironmentalProtectionAgency,MTBEFactSheet#3,EPA510-F-97-016,3p.,onlineathttp://www.epa.gov/swerust1/mtbe/mtbefs3.pdf,accessedSeptember22,2006.

U.S.EnvironmentalProtectionAgency,2000a,Requirementsforpreparation,adoption,andsubmittalofimplementa-tionplans—Definitions,CodeofFederalRegulations,Title40,Volume2,Parts50to51,Section51.100,revisedasofJuly1,2000:Washington,D.C.,U.S.EnvironmentalProtectionAgency,p.131–136.

References Cited    ��

U.S.EnvironmentalProtectionAgency,2000b,ReporttoCon-gressonacomplianceplanfortheundergroundstoragetankprogram:Washington,D.C.,U.S.EnvironmentalProtectionAgency,SolidWasteandEmergencyResponse,EPA510-R-00-001,70p.,onlineathttp://www.epa.gov/swerust1/pubs/rtc_0600.pdf,accessedSeptember22,2006.

U.S.EnvironmentalProtectionAgency,2004,Howtoevaluatealternativecleanuptechnologiesforundergroundstoragetanksites—Aguideforcorrectiveactionplanreviewers:U.S.EnvironmentalProtectionAgency,EPA510-B-95-007,560p.,onlineathttp://www.epa.gov/swerust1/pubs/tums.htm,accessedSeptember22,2006.

U.S.EnvironmentalProtectionAgency,2005a,U.S.Envi-ronmentalProtectionAgencyUndergroundStorageTankProgram,Correctiveactionmeasuresarchive:Onlinedata-baseathttp://www.epa.gov/oust/cat/camarchv.htm,accessedApril27,2006.

U.S.EnvironmentalProtectionAgency,2005b,Chemicalreferences complete index:Online database at http://www.epa.gov/enviro/html/emci/chemref/complete_index.html,accessed September23,2006.

U.S.GeologicalSurvey,2006,NationalWaterQualityAssess-mentGlossary:Onlineathttp://water.usgs.gov/nawqa/glos.html,accessedSeptember23,2006.

vanderMeer,J.R.,A.R.vanNeerven,E.J.deVries,W.M.deVos,andA.J.Zehnder,1991,Cloningandchar-acterizationofplasmid-encodedgenesforthedegradationof1,2-dichloro-,1,4-dichloro-,and1,2,4-trichlorobenzeneofPseudomonas sp.strainP51:JournalofBacteriology,v.173,no.1,p.6–15.

vanderMeer,J.R.,ChristophWerlen,S.F.Nishino,andJ.C.Spain,1998,Evolutionofapathwayforchlorobenzenemetabolismleadstonaturalattenuationincontaminatedgroundwater:AppliedandEnvironmentalMicrobiology,v.64,no.11,p.4185–4193.

Verschueren,H.G.Koen,FrankSeljée,H.J.Rozeboom,K.H.Kalk,andB.W.Dijkstra,1993,Crystallographicanalysisofthecatalyticmechanismofhaloalkanedehalogenase:Nature,v.363,no.6431,p.693–698.

Vogel,T.M.,1994,Naturalbioremediationofchlorinatedsolvents,inNorris,R.D.,R.E.Hinchee,RobertBrown,P.L.McCarty,LewisSemprini,J.T.Wilson,D.H.Kampbell,MartinReinhard,E.J.Bouwer,R.C.Borden,T.M.Vogel,J.M.Thomas,andC.H.Ward,eds.,HandbookofBioreme-diation:BocaRaton,Fla.,LewisPublishers,p.201–222.

Vogel,T.M.,C.S.Criddle,andP.L.McCarty,1987,Transfor-mationofhalogenatedaliphaticcompounds:EnvironmentalScienceandTechnology,v.21,no.8,p.722–736.

Vogel,T.M.,andDunjaGrbić-Galić,1986,Incorporationofoxygenfromwaterintotolueneandbenzeneduringanaero-bicfermentativetransformation:AppliedandEnvironmen-talMicrobiology,v.52,no.1,p.200–202.

Vogel,T.M.,andP.L.McCarty,1985,Biotransformationoftetrachloroethylenetotrichloroethylene,dichloroethylene,vinylchloride,andcarbondioxideundermethanogenicconditions:AppliedandEnvironmentalMicrobiology,v.49,no.5,p.1080–1083.

Vogel,T.M.,andP.L.McCarty,1987a,Rateofabioticforma-tionof1,1-dichloroethylenefrom1,1,1-trichloroethaneingroundwater:JournalofContaminantHydrology,v.1,no.3,p.299–308.

Vogel,T.M.,andP.L.McCarty,1987b,Abioticandbiotictransformationof1,1,1-trichloroethaneundermethanogenicconditions:EnvironmentalScienceandTechnology,v.21,no.12,p.1208–1214.

Vollmer,M.D.,KarenStadler-Fritzsche,andMichaelSchlö-mann,1993,Conversionof2-chloromaleylacetateinAlcaligenes eutrophusJMP134:ArchivesofMicrobiology,v.159,no.2,p.182–188.

Wackett,L.P.,L.D.Kwart,andD.T.Gibson,1988,BenzylicmonooxygenationcatalyzedbytoluenedioxygenasefromPseudomonas putida:Biochemistry,v.27,no.4,p.1360–1367.

Wackett,L.P.,andYuemoZeng,2004,Toluenepathwaymap:UniversityofMinnesotabiocatalysis/biodegradationdata-base:Onlineathttp://umbbd.msi.umn.edu/tol/tol_map.html,accessedMarch22,2006.

Walsh,T.A.,D.P.Ballou,RuthMayer,andLawrenceQue,Jr.,1983,Rapidreactionstudiesontheoxygenationreactionsofcatecholdioxygenase:JournalofBiologicalChemistry,v.258,no.23,p.14422–14427.

Warhurst,A.M.,K.F.Clarke,R.A.Hill,R.A.Holt,andC.A.Fewson,1994,MetabolismofstyrenebyRhodococcus rhodochrous NCIMB13259:AppliedandEnvironmentalMicrobiology,v.60,no.4,p.1137–1145.

Washington,J.W.,1995,Hydrolysisratesofdissolvedvolatileorganiccompounds—Principles,temperatureeffectsandliteraturereview:GroundWater,v.33,no.3,p.415–424.

Weightman,A.J.,A.L.Weightman,andJ.H.Slater,1985,ToxiceffectsofchlorinatedandbrominatedalkanoicacidsonPseudomonas putidaPP3—Selectionathighfrequenciesofmutationsingenesencodingdehalogenases:AppliedandEnvironmentalMicrobiology,v.49,no.6,p.1494–1501.

�8    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Weiner,J.M.,andD.R.Lovley,1998,Rapidbenzenedegrada-tioninmethanogenicsedimentsfromapetroleum-contami-natedaquifer:AppliedandEnvironmentalMicrobiology,v.64,no.5,p.1937–1939.

Werlen,Christoph,H.P.Kohler,andJ.R.vanderMeer,1996,Thebroadsubstratechlorobenzenedioxygenaseandcis-chlorobenzenedihydrodioldehydrogenaseofPseudomonassp.strainP51arelinkedevolutionarilytotheenzymesforbenzeneandtoluenedegradation:JournalofBiologicalChemistry,v.271,no.8,p.4009–4016.

Whited,G.M.,W.R.McCombie,L.D.Kwart,andD.T.Gibson,1986,Identificationofcis-diolsasintermediatesintheoxidationofaromaticacidsbyastrainofPseudomonas putidathatcontainsaTOLplasmid:JournalofBiochemis-try,v.166,no.3,p.1028–1039.

Whittaker,Mark,DavidMonroe,DongJunOh,andSeanAn-derson,2005,Trichloroethylenepathwaymap—UniversityofMinnesotabiocatalysis/biodegradationdatabase:Onlineathttp://umbbd.msi.umn.edu/tce/tce_map.html,accessedonMarch21,2006.

Wiedemeier,T.H.,M.A.Swanson,D.E.Moutoux,E.K.Gor-don,J.T.Wilson,B.H.Wilson,D.H.Kampbell,P.E.Haas,R.N.Miller,J.E.Hansen,andF.H.Chapelle,1998,Techni-calprotocolforevaluatingnaturalattenuationofchlorinatedsolventsingroundwater:Cincinnati,Ohio,U.S.Environ-mentalProtectionAgency,NationalRiskManagementResearchLaboratory,OfficeofResearchandDevelopment,EPA/600/R-98/128,244p.

Wiedemeier,T.H.,J.T.Wilson,D.H.Kampbell,R.N.Miller,andJ.E.Hansen,1995,Technicalprotocolforimplementingintrinsicremediationwithlong-termmonitoringfornaturalattenuationoffuelcontaminationdissolvedingroundwater:U.S.AirForceCenterforEnvironmentalExcellence,TechnologyTransferDivision,BrooksAirForceBase,SanAntonio,Tex.,323p.

Wilson,J.T.,J.S.Cho,B.H.Wilson,andJ.A.Vardy,2000,NaturalattenuationofMTBEinthesubsurfaceundermethanogenicconditions:Ada,Okla.,U.S.EnvironmentalProtectionAgency,NationalRiskManagementResearchLaboratory,EPA/600/R-00/006,59p.,onlineathttp://www.epa.gov/ada/download/reports/mtbereport.pdf,accessedSeptember21,2006.

Wilson,J.T.,P.M.Kaiser,andCherriAdair,2005,MonitorednaturalattenuationofMTBEasariskmanagementoptionatleakingundergroundstoragetanksites:Washington, D.C.,U.S. EnvironmentalProtectionAgency,EPA/600/R-04/179,74p.

WisconsinDepartmentofNaturalResources,2000,Fiscalyear2001groundwaterqualitymonitoringplan:Madison,Wisc.,WisconsinDepartmentofNaturalResources,60p.

Xia,Zong-xiang,Wei-wenDai,Yue-fanZhang,S.A.White,G.D.Boyd,andS.F.Mathews,1996,Determinationofthegenesequenceandthethree-dimensionalstructureat2.4angstromsresolutionofmethanoldehydrogenasefromMethylophilusW3A1:JournalofMolecularBiology,v.259,no.3,p.480–501.

Yagi,Osami,AkikoHashimoto,KazuhiroIwasaki,andMutsuyasuNakajima,1999,Aerobicdegradationof1,1,1-trichloroethanebyMycobacteriumspp.isolatedfromsoil:AppliedandEnvironmentalMicrobiology,v.65,no.10,p.4693–4696.

Yao,Guang,2006,1,2,4-trichlorobenzene(an/aerobic)pathwaymap—UniversityofMinnesotabiocatalysis/biodegradationdatabase:Onlineathttp://umbbd.msi.umn.edu/tbz/tbz_map.html,accessedJune14,2006.

Yen,K.M.,M.R.Karl,L.M.Blatt,M.J.Simon,R.B.Winter,P.R.Fausset,H.S.Lu,A.A.Harcourt,andK.K.Chen,1991,CloningandcharacterizationofaPseudomonas mendocinaKR1geneclusterencodingtoluene-4-monooxygenase:JournalofBacteriology,v.173,no.17,p.5315–5327.

Zamanian,Maryam,andJ.R.Mason,1987,Benzenedioxy-genaseinPseudomonas putida—Subunitcompositionandimmuno-cross-reactivitywithotheraromaticdioxygenases:BiochemicalJournal,v.244,no.3,p.611–616.

Zogorski,J.S.,J.M.Carter,TamaraIvahnenko,W.W.Lapham,M.J.Moran,B.L.Rowe,P.J.Squillace,andP.L.Toccalino,2006,ThequalityofourNation’swaters—VolatileorganiccompoundsintheNation’sgroundwateranddrinking-watersupplywells:U.S.GeologicalSurveyCircular1292,101p.,onlineathttp://pubs.usgs.gov/circ/circ1292/,accessedSep-tember21,2006.

References Cited    �9

A

abiotic  Notassociatedwithlivingorganisms.Synonymouswithabiological.1

abiotic transformation  Processinwhichasubstanceintheenvironmentismodifiedbynonbiologicalmechanisms.1

absorption  Thepenetrationofatoms,ions,ormoleculesintothebulkmassofasubstance.2

adsorption Theretentionofatoms,ions,ormoleculesontothesurfaceofanothersubstance.2

aerobe  Anorganismthatneedsoxygenforrespirationandhenceforgrowth.1

aerobic  Anenvironmentorprocessthatsustainsbiologicallifeandgrowth,oroccursonlywhenfree(molecular)oxygenispresent.2

aerobic conditions  Conditionsforgrowthormetabolisminwhichtheorganismissufficientlysuppliedwithoxygen.1

alcohols  Compoundsinwhichahydroxygroup,–OH,isattachedtoasaturatedcarbonatomR3COH.Thetermhydroxylreferstotheradicalspecies,HO.1

aldehydes  CompoundsRC(=O)H,inwhichacarbonylgroupisbondedtoonehydrogenatomandtooneRgroup1.Rrepresentsafunctionalgroupsuchasanalkylgroup(methylorethylradical).1

aliphatic compounds  Abroadcategoryofhydrocarboncompoundsdistinguishedbyastraight,orbranched,openchainarrangementoftheconstituentcarbonatoms,excludingaromaticcompounds.Thecarbon-carbonbondsmaybeeithersingleormultiplebonds.Alkanes,alkenes,andalkynesarealiphatichydrocarbons.2

alkanes  Thehomologousgroupoflinear(acyclic)aliphatichydrocarbonshavingthegeneralformulaC

nH

2n+2.Alkanescan

bestraightchains,branchedchains,orringstructures,some-timescalledparaffins.1

alkenes  Acyclicbranchedorunbranchedhydrocarbonshav-ingonecarbon–carbondoublebondandthegeneralformulaC

nH

2n,sometimescalledolefins.1

alkyl groups  Univalentgroupsderivedfromalkanesbyremovalofahydrogenatomfromanycarbonatomwiththegeneralformof–C

nH

2n+1.Thegroupsderivedbyremovalof

ahydrogenatomfromaterminalcarbonatomofunbranchedalkanesformasubclasscallednormalalkyl(n-alkyl)groupsH[CH

2]

n.1

alkyl radicals  Carbon-centeredradicalsderivedformallybyremovalofonehydrogenatomfromanalkane,e.g.,CH

3CH

2—(ethylradical).1

alkynes  Thegroupofacyclicbranchedorunbranchedhydrocarbonshavingacarbon-carbontriplebondthathavethegeneralformulaC

nH

2n-2.1

ambient  Thesurroundingenvironmentandprevailingconditions.2

anaerobe  Anorganismthatdoesnotneedfree-formoxygenforgrowth.Manyanaerobesareevensensitivetofreeoxygen.1

anaerobic  Abiologically-mediatedprocessorconditionnotrequiringmolecularorfreeoxygen.1

analyte  Thecomponentofasystemtobeanalyzed.1Forexample,chemicalelementsorionsinground-watersample.2

anoxic  Anenvironmentwithoutoxygen.2

aquifer  Awater-bearinglayerofsoil,sand,gravel,rockorothergeologicformationthatwillyieldusablequantitiesofwatertoawellundernormalhydraulicgradientsorbypumpage.3

aromatic  Agroupoforganiccompoundsthatarecyclic,containresonantcarbon-carbondoublebondsintheformofatleastone6-carbonbenzenering.2Inthetraditionalsense,“havingachemistrytypifiedbybenzene.”1

attenuation  Thesetofhuman-madeornaturalprocessesthateitherreduceorappeartoreducetheamountofachemi-calcompoundasitmigratesawayfromonespecificpointtowardsanotherpointinspaceortime.Forexample,theapparentreductionintheamountofachemicalinaground-waterplumeasitmigratesawayfromitssource.Degradation,dilution,dispersion,sorption,orvolatilizationarecommonprocessesofattenuation.2

B

biodegradation  Transformationofsubstancesintonewcompoundsthroughbiochemicalreactionsortheactionsofmicroorganisms,suchasbacteria.Typicallyexpressedintermsofarateconstantorhalf-life.2

biota  Livingorganisms.2

breakdown product  Acompoundderivedbychemical,biological,orphysicalactiononachemicalcompound.Thebreakdownisaprocesswhichmayresultinamoretoxicoralesstoxiccompoundandamorepersistentorlesspersistentcompoundthantheoriginalcompound.2

GlossarySources:1InternationalUnionofPureandAppliedChemistry,2006;2U.S.EnvironmentalProtectionAgency,2004;3Wiedemeierandothers,1998;4U.S.GeologicalSurvey,2006;5BrownandLeMay,1977

�0    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

C

carbon  Elementnumber6intheperiodictableofelements.Foradescriptionofthevarioustypesofcarbonasasolid,thetermcarbonshouldbeusedonlyincombinationwithanaddi-tionalnounoraclarifyingadjective(thatis,organiccarbon).1

catabolism  Thebreakdownofcomplexmoleculesintosimpleronesthroughtheoxidationoforganicsubstratestoprovidebiologicallyavailableenergy(forexample,ATP,adenosinetriphosphate).1

catalysis  TheprocesswhereacatalystincreasestherateofachemicalreactionwithoutmodifyingtheoverallstandardGibbsenergychangeinthereaction.1

catalyst  Substancesthatincreasestherateofachemi-calreaction.Thecatalystisbothareactantandproductofthereaction.Thewordscatalystandcatalysisshouldnotbeusedwhentheaddedsubstancereducestherateofreaction(seeinhibitor).1

chemical bond  Theforcesactingamongtwoatomsorgroupsofatomsthatleadtotheformationofanaggregatewithsufficientstabilitytomakeitconvenientforthechemisttoconsideritasanindependent“molecularspecies.”1

chemical induction (coupling)  Whenonereactionacceler-atesanotherinachemicalsystemthereissaidtobechemicalinductionorcoupling.Couplingiscausedbyanintermedi-ateorby-productoftheinducingreactionthatparticipatesinasecondreaction.Chemicalinductionisoftenobservedinoxidation–reductionreactions.1

chemical reaction  Aprocessthatresultsintheinterconver-sionofchemicalspecies.Chemicalreactionsmaybeelemen-taryreactionsorstepwisereactions.1

chlorinated solvent  Avolatileorganiccompoundcontain-ingchlorine.Somecommonsolventsaretrichloroethylene,tetrachloroethylene,andcarbontetrachloride.2

cis, trans isomers  Thedifferenceinthepositionsofatoms(orgroupsofatoms)relativetoareferenceplaneinanorganicmolecule.Inacis-isomer,theatomsareonthesamesideofthemolecule,butareonoppositesidesinthetrans-isomer.Sometimescalledstereoisomers,thesearrangementsarecom-moninalkenesandcycloalkanes.1

co-metabolism  Thesimultaneousmetabolismoftwocom-pounds,inwhichthedegradationofthesecondcompound(thesecondarysubstrate)dependsonthepresenceofthefirstcompound(theprimarysubstrate).Forexample,intheprocessofdegradingmethane,somebacteriacandegradechlorinatedsolventsthatwouldotherwisenotbedegradedunderthesameconditions.2

concentration  Compositionofamixturecharacterizedintermsofmass,amount,volumeornumberconcentrationwithrespecttothevolumeofthemixture.1

conservative constituent or compound  Onethatdoesnotdegrade,isunreactive,anditsmovementisnotretardedwithin

agivenenvironment(aquifer,stream,contaminantplume,andsoforth).4

constituent  Anessentialpartorcomponentofasystemorgroup(thatis,aningredientofachemicalmixture).Forinstance,benzeneisoneconstituentofgasoline.4

covalent bond  Aregionofrelativelyhighelectrondensitybetweenatomicnucleithatresultsfromsharingofelectronsandthatgivesrisetoanattractiveforceandacharacteristicinternucleardistance.Carbon-hydrogenbondsarecovalentbonds.1

D

daughter product  Acompoundthatresultsdirectlyfromthedegradationofanother.Forexamplecis-1,2-dichloroethene(12-cDCE)iscommonlyadaughterproductoftrichloroethene(TCE)degradation.Thisisatermthathascurrently(2006)fallenoutofgeneraluse.Seemetabolicby-product.3

dehydrohalogenation  Removalofhydrogenandhalideionsfromanalkaneresultingintheformationofanalkene.3

denitrification  Bacterialreductionofnitratetonitritetogas-eousnitrogenornitrousoxidesunderanaerobicconditions.4

density (ρ)  Theratioofthemassofasubstancetothemassofanequalvolumeofdistilledwaterat4degreesCelsius.Sincethemassofonemilliliter(ml)ofwaterat4degreesCelsiusisexactly1gram,thespecificgravity(unitless)isnumericallyequivalenttoitsdensity(ingramsperml).1

detection limit (in analysis)  Theminimumsingleresultthat,withastatedprobability,canbedistinguishedfromarepresen-tativeblankvalueduringthelaboratoryanalysisofsubstancessuchaswater,soil,air,rock,biota,tissue,blood,andsoforth.1

dichloroelimination  Removaloftwochlorineatomsfromanalkanecompoundandtheformationofanalkenecompoundwithinareducingenvironment.4

dihaloelimination  Removaloftwohalideatomsfromanalkanecompoundandtheformationofanalkenecompoundwithinareducingenvironment.3

diols  Chemicalcompoundsthatcontaintwohydroxy(--OH)groups,generallyassumedtobe,butnotnecessarily,alcoholic.Aliphaticdiolsarealsocalledglycols.1

downgradient  Inthedirectionofdecreasingstatichydraulichead(potential).4

E

electron acceptor  Acompoundcapableofacceptingelec-tronsduringoxidation-reductionreactions.Microorganismsobtainenergybytransferringelectronsfromelectrondonorssuchasorganiccompounds(orsometimesreducedinorganiccompoundssuchassulfide)toanelectronacceptor.Electronacceptorsarecompoundsthatarerelativelyoxidizedandincludeoxygen,nitrate,iron(III),manganese(IV),sulfate,carbondioxide,orinsomecaseschlorinatedaliphatichydro-

References Cited    �1

carbonssuchasperchloroethene(PCE),TCE,DCE,andvinylchloride.2

electron donor  Acompoundcapableofsupplying(givingup)electronsduringoxidation-reductionreactions.Microor-ganismsobtainenergybytransferringelectronsfromelectrondonorssuchasorganiccompounds(orsometimesreducedinorganiccompoundssuchassulfide)toanelectronacceptor.Electrondonorsarecompoundsthatarerelativelyreducedandincludefuelhydrocarbonsandnativeorganiccarbon.3

electronegativity  ConceptintroducedbyNobelLaureateLinusPaulingasthepowerofanatomtoattractelectronstoitself.1

elimination  Reactionwheretwogroupssuchaschlorineandhydrogenarelostfromadjacentcarbonatomsandadoublebondisformedintheirplace.3

endergonic reaction  Achemicalreactionthatrequiresenergytoproceed.Achemicalreactionisendergonicwhenthechangeinfreeenergyispositive.3

enzyme  Macromolecules,mostlyproteinsorconjugatedpro-teinsproducedbylivingorganisms,thatfacilitatethedegrada-tionofachemicalcompound(catalyst).Ingeneral,anenzymecatalyzesonlyonereactiontype(reactionspecificity)andoperatesononlyonetypeofsubstrate(substratespecificity).1,4

epoxidation  Areactionwhereinanoxygenmoleculeisinsertedinacarbon-carbondoublebondandanepoxideisformed.3

epoxides  Asubclassofepoxycompoundscontainingasatu-ratedthree-memberedcyclicether.Seeepoxycompounds.1

epoxy compounds  Compoundsinwhichanoxygenatomisdirectlyattachedtotwoadjacentornonadjacentcarbonatomsinacarbonchainorringsystem;thuscyclicethers.1

F

facultative anaerobes  Microorganismsthatuse(andprefer)oxygenwhenitisavailable,butcanalsousealternateelectronacceptorssuchasnitrateunderanaerobicconditionswhennecessary.3

fermentation  Microbialmetabolisminwhichaparticularcompoundisusedbothasanelectrondonorandanelectronacceptorresultingintheproductionofoxidizedandreduceddaughterproducts.3

functional group  Anatom,oragroupofatomsattachedtothebasestructureofacompoundthathassimilarchemicalpropertiesirrespectiveofthecompoundtowhichitisapart.Itdefinesthecharacteristicphysicalandchemicalpropertiesoffamiliesoforganiccompounds.1

G

H

half-life (t½ )  Thetimerequiredtoreducetheconcentrationofachemicalto50percentofitsinitialconcentration.Unitsaretypicallyinhoursordays.2

halide  Anelementfromthehalogengroup.Theseincludefluorine,chlorine,bromine,iodine,andastatine.5

halogen  Group17intheperiodictableoftheelements.Theseelementsarethereactivenonmetalsandareelectronegative.5

Henry’s Law  TherelationbetweenthepartialpressureofacompoundandtheequilibriumconcentrationintheliquidthroughaproportionalityconstantknownastheHenry’sLawconstant.4

Henry’s Law constant  Theconcentrationratiobetweenacompoundinair(orvapor)andtheconcentrationofthecom-poundinwaterunderequilibriumconditions.4

heterogeneous  Varyinginstructureorcompositionatdiffer-entlocationsinspace.4

heterotrophic  Organismsthatderivecarbonfromorganicmatterforcellgrowth.4

homogeneous  Havinguniformstructureorcompositionatalllocationsinspace.4

hydration  Theadditionofawatermoleculetoacompoundwithinanaerobicdegradationpathway.5

hydrogen bond  Aformofassociationbetweenanelectro-negativeatomandahydrogenatomattachedtoasecond,relativelyelectronegativeatom.Itisbestconsideredasanelectrostaticinteraction,heightenedbythesmallsizeofhydro-gen,whichpermitscloseproximityoftheinteractingdipolesorcharges.1

hydrogenation  Aprocesswherebyanenzymeincertainmicroorganismscatalyzesthehydrolysisorreductionofasubstratebymolecularhydrogen.2

hydrogenolysis  Areductivereactioninwhichacarbon-halogenbondisbroken,andhydrogenreplacesthehalogensubstituent.3

hydrolysis  Achemicaltransformationprocessinwhichachemicalreactswithwater.Intheprocess,anewcarbon-oxygenbondisformedwithoxygenderivedfromthewatermolecule,andabondiscleavedwithinthechemicalbetweencarbonandsomefunctionalgroup.1

hydroxylation  Additionofahydroxylgrouptoachlorinatedaliphatichydrocarbon.3

I

inhibition  Thedecreaseinrateofreactionbroughtaboutbytheadditionofasubstance(inhibitor),byvirtueofitseffectontheconcentrationofareactant,catalyst,orreactionintermediate.1

in situ  Initsoriginalplace;unmoved;unexcavated;remain-inginthesubsurface.4

J

K

��    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

L

lag phase  Thegrowthinterval(adaptionphase)betweenmicrobialinoculationandthestartoftheexponentialgrowthphaseduringwhichthereislittleornomicrobialgrowth.1

M

measurement  Adescriptionofapropertyofasystembymeansofasetofspecifiedrules,thatmapsthepropertyontoascaleofspecifiedvalues,bydirector“mathematical”comparisonwithspecifiedreference(s).1

metabolic by-product (by-product)  Aproductofthereactionbetweenanelectrondonorandanelectronacceptor.Metabolicby-productsincludevolatilefattyacids,daughterproductsofchlorinatedaliphatichydrocarbons,methane,andchloride.3

metabolism  Theentirephysicalandchemicalprocessesinvolvedinthemaintenanceandreproductionoflifeinwhichnutrientsareusedtogenerateenergyandintheprocessde-gradetosimplermolecules(catabolism),whichbythemselvesmaybeusedtoformmorecomplexmolecules(anabolism).1

methanogens  Strictlyanaerobicarchaebacteria,abletouseonlyaverylimitedspectrumofsubstrates(forexample,molecularhydrogen,formate,methanol,methylamine,carbonmonoxideoracetate)aselectrondonorsforthereductionofcarbondioxidetomethane.1

methanogenic  Theformationofmethanebycertainanaerobicbacteria(methanogens)duringtheprocessofanaerobicfermentation.4

microcosm  Adiminutive,representativesystemanalogoustoalargersystemincomposition,development,orconfiguration.4

microorganisms  Microscopicorganismsthatincludebacte-ria,protozoans,yeast,fungi,mold,viruses,andalgae.4

mineralization  Thereleaseofinorganicchemicalsfromorganicmatterintheprocessofaerobicoranaerobicdecay.4

monoaromatic  Aromatichydrocarbonscontainingasinglebenzenering.4

N

nucleophile  Achemicalreagentthatreactsbyformingcova-lentbondswithelectronegativeatomsandcompounds.4

nutrients  Majorelements(forexample,nitrogenandphosphorus)andtraceelements(includingsulfur,potassium,calcium,andmagnesium)thatareessentialforthegrowthoforganisms.3

O

octanol-water partition coefficient (KOW)  Theequilibriumratioofachemical’sconcentrationinoctanol(analcoholiccompound)toitsconcentrationintheaqueousphaseofatwo-phaseoctanol/watersystem,typicallyexpressedinlogunits(logK

OW).K

OWprovidesanindicationofachemical’s

solubilityinfats(lipophilicity),itstendencytobioconcentrateinaquaticorganisms,orsorbtosoilorsediment.2

order of reaction  Achemicalrateprocessoccurringinsystemsforwhichconcentrationchanges(andhencetherateofreaction)arenotthemselvesmeasurable,provideditispossibletomeasureachemicalflux.1

organic carbon (soil) partition coefficient (KOC)  Thepropor-tionofachemicalsorbedtothesolidphase,atequilibriuminatwo-phase,water/soilorwater/sedimentsystemexpressedonanorganiccarbonbasis.ChemicalswithhigherK

OCvaluesare

morestronglysorbedtoorganiccarbonand,therefore,tendtobelessmobileintheenvironment.2

oxidation  Ingeneral,areactioninwhichelectronsaretransferredfromachemicaltoanoxidizingagent,orwhereachemicalgainsoxygenfromanoxidizingagent.2

P

Q

R

rate  Derivedquantityinwhichtimeisadenominatorquantity.Rateofxisdx/dt.1

rate constant, k  Seeorderofreaction.1

rate-controlling step (rate-limiting step, rate-determining step)  Theelementaryreactionhavingthelargestcontrolfac-torexertsthestrongestinfluenceontherate(v).Astephavingacontrolfactormuchlargerthananyotherstepissaidtoberate-controlling.1

recalcitrant  Unreactive,nondegradable,refractory.4

redox  Reduction-oxidationreactions.Oxidationandreduc-tionoccursimultaneously;ingeneral,theoxidizingagentgainselectronsintheprocess(andisreduced)whilethereduc-ingagentdonateselectrons(andisoxidized).2

reduction  Ingeneral,areactioninwhichelectronsaretrans-ferredtoachemicalfromareducingagent,orwhereoxygenisremovedfromachemical.2

respiration  Theprocessofcouplingoxidationoforganiccompoundswiththereductionofinorganiccompounds,suchasoxygen,nitrate,iron(III),manganese(IV),andsulfate.2

S

solvolysis  Generally,areactionwithasolvent,involvingtheruptureofoneormorebondsinthereactingsolute.Morespecificallythetermisusedforsubstitution,elimination,orfragmentationreactionsinwhichasolventspeciesisthenucleophile(hydrolysis,ifthesolventiswateroralcoholysis,ifthesolventisanalcohol).1

stable  Asappliedtochemicalspecies,thetermexpressesathermodynamicproperty,whichisquantitativelymeasuredbyrelativemolarstandardGibbsenergies.AchemicalspeciesAismorestablethanitsisomerBif∆rGo>0forthe(realorhypothetical)reactionA→ B,understandardconditions.1

References Cited    ��

substrate  Componentinanutrientmedium,supplyingmicroorganismswithcarbon(C-substrate),nitrogen(N-sub-strate)as“food”neededtogrow.1

T

terminal electron acceptor (TEA)  Acompoundormoleculethatacceptsanelectron(isreduced)duringmetabolism(oxi-dation)ofacarbonsource.Underaerobicconditionsmolecu-laroxygenistheterminalelectronacceptor.Underanaerobicconditionsavarietyofterminalelectronacceptorsmaybeused.Inorderofdecreasingredoxpotential,theseTEAsincludenitrate,manganicmanganese,ferriciron,sulfate,andcarbondioxide.Microorganismspreferentiallyutilizeelec-tronacceptorsthatprovidethemaximumfreeenergyduringrespiration.Ofthecommonterminalelectronacceptorslistedabove,oxygenhasthehighestredoxpotentialandprovidesthemostfreeenergyduringelectrontransfer.4

U

unsaturated zone  Thezonebetweenlandsurfaceandthecapillaryfringewithinwhichthemoisturecontentislessthansaturationandpressureislessthanatmospheric.Soilporespacesalsotypicallycontainairorothergases.Thecapillaryfringeisnotincludedintheunsaturatedzone.4

upgradient  Inthedirectionofincreasingpotentiometric(piezometric)head.4

V

vadose zone  Thezonebetweenlandsurfaceandthewatertablewithinwhichthemoisturecontentislessthansaturation(exceptinthecapillaryfringe)andpressureislessthanatmo-spheric.Soilporespacesalsotypicallycontainairorothergases.Thecapillaryfringeisincludedinthevadosezone.4

vapor pressure (Pv)  Theforceperunitareaexertedbyavaporinanequilibriumstatewithitspuresolid,liquid,orsolutionatagiventemperature.Vaporpressureisameasureofasubstance’spropensitytoevaporate.Vaporpressureincreasesexponentiallywithanincreaseintemperature.Typicalunitsaremillimeterofmercury(mmHg),torr,orinchesofmercury(in.Hg).2

W

water solubility (S)  Themaximumamountofachemicalthatcanbedissolvedinagivenamountofpurewateratstandardconditionsoftemperatureandpressure.Typicalunitsaremil-ligramsperliter(mg/L),gallonsperliter(g/L),orpoundspergallon(lbs/gal).2

X

Y

Z

��    Description, Properties, and Degradation of Selected VOCs Detected in Ground Water

Manuscript approved for publication, October 23, 2006Prepared by USGS Georgia Water Science CenterEdited by Patricia L. NoblesGraphics by Caryl J. WipperfurthFor more information concerning the research in this report, contact

USGS Georgia Water Science Center, Atlanta, telephone: 770-903-9100