derivation of the navier-stokes equation -...

4
Derivation of the Navier-Stokes equation Euler’s equation The fluid velocity u of an inviscid (ideal) fluid of density ρ under the action of a body force ρf is determined by the equation: ρ Du Dt = -∇p + ρf , (1) known as Euler’s equation. The scalar p is the pressure. This equation is supplemented by an equation describing the conservation of mass. For an incompressible fluid this is simply ∇· u =0. (2) Real fluids however are never truly inviscid. We must therefore see how equation (1) is changed by the inclusion of viscous forces. The stress tensor We first introduce the stress tensor σ ij as follows: σ ij is the i-component of stress on a surface element δS that has a normal n pointing in the j-direction. Then if t is the stress on a small surface element δS with unit normal n it is straightforward to demonstrate that t i = σ ij n j . (3) Proof of (3) Take δS to be the large face of the tetrahedron shown in the figure on the following page. We shall apply Newton’s 2nd law to the fluid in the tetra- hedron. For definiteness consider the i-component of the force. The force of surrounding fluid on the large face is t i δS . The i-component of the force on the ‘back’ face is -σ i1 (since the normal is in the -e 1 direction). Similarly 1

Upload: doanthuy

Post on 12-Sep-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Derivation of the Navier-Stokes equation - unipvfisica.unipv.it/Mihich/FluidiMecc/Navier-Stokes_eqn.pdf · Derivation of the Navier-Stokes equation Euler’s equation The uid velocity

Derivation of the Navier-Stokes equation

Euler’s equation

The fluid velocity u of an inviscid (ideal) fluid of density ρ under the actionof a body force ρf is determined by the equation:

ρDu

Dt= −∇p+ ρf , (1)

known as Euler’s equation. The scalar p is the pressure. This equation issupplemented by an equation describing the conservation of mass. For anincompressible fluid this is simply

∇ · u = 0. (2)

Real fluids however are never truly inviscid. We must therefore see howequation (1) is changed by the inclusion of viscous forces.

The stress tensor

We first introduce the stress tensor σij as follows:

σij is the i-component of stress on a surface element δS that has a normal npointing in the j-direction.

Then if t is the stress on a small surface element δS with unit normal n it isstraightforward to demonstrate that

ti = σijnj. (3)

Proof of (3)

Take δS to be the large face of the tetrahedron shown in the figure on thefollowing page. We shall apply Newton’s 2nd law to the fluid in the tetra-hedron. For definiteness consider the i-component of the force. The force ofsurrounding fluid on the large face is tiδS. The i-component of the force onthe ‘back’ face is −σi1 (since the normal is in the −e1 direction). Similarly

1

Page 2: Derivation of the Navier-Stokes equation - unipvfisica.unipv.it/Mihich/FluidiMecc/Navier-Stokes_eqn.pdf · Derivation of the Navier-Stokes equation Euler’s equation The uid velocity

for the two faces with normals −e2 and −e3. Thus the i-component of thetotal force exerted by surrounding fluid on the tetrahedron is

(ti − σijnj) δS (4)

(summation over j).

This force (plus any body force) will be equal, from Newton’s 2nd law, to themass of the element (ρδV ) multiplied by its acceleration. If ` is the linearlength scale of the tetrahedron then δV ∼ `3 and δS ∼ `2. Thus if we let`→ 0 then the term (4) clearly dominates and hence ti = σijnj.�

The equation of motion

The ith component of force exerted by the surrounding fluid on a fluid blobwith surface S and volume V is given by∫

S

tidS =

∫S

σijnjdS =

∫V

∂σij∂xj

dV,

where we have used relation (3) together with the divergence theorem. Ap-plying Newton’s 2nd law to an arbitrary fluid blob then leads to the equationof motion:

ρDuiDt

=∂σij∂xj

+ ρfi. (5)

2

Page 3: Derivation of the Navier-Stokes equation - unipvfisica.unipv.it/Mihich/FluidiMecc/Navier-Stokes_eqn.pdf · Derivation of the Navier-Stokes equation Euler’s equation The uid velocity

Applying an argument involving angular momentum to a tetrahedron, whichis similar in spirit to the argument above using linear momentum, leads tothe result that the tensor σij is symmetric.

Newtonian fluids

In order actually to solve equation (5) it is necessary to relate the stresstensor σij to the fluid velocity u. We shall restrict our attention to fluidsthat are incompressible and for which the stress tensor is assumed to takethe form:

σij = −pδij + µ

(∂ui∂xj

+∂uj∂xi

), (6)

where µ is the viscosity and p is the pressure. Note that σij is symmetric,as required. Fluids for which the linear relation (6) holds are said to beNewtonian, in recognition of the fact that Newton proposed such a relation fora simple shearing motion. For water and for most gases under non-extremeconditions the linear relation (6) holds. There are though many importantfluids that are non-Newtonian, i.e. the simple relation (6) does not hold.These include paint, tomato ketchup, blood, toothpaste and quicksand.

Note that, since ∇ · u = 0, then

p = −1

3(σ11 + σ22 + σ33) ,

i.e. −p is the mean of the three normal stresses.

The Navier-Stokes equation

The final step in deriving the Navier-Stokes equation is to substitute ex-pression (6) for σij into equation (5). This leads to the equation (assumingconstant viscosity µ),

ρDu

Dt= −∇p+ ρf + µ∇2u. (7)

Equation (7) is known as the Navier-Stokes equation for an incompressiblefluid; it is to be solved in conjunction with the incompressibility condition(2). For compressible fluids — with which we shall not be concerned in thiscourse — the viscous term is a little more complicated.

Assuming that the density ρ is constant, equation (7) can be written as

Du

Dt= −1

ρ∇p+ f + ν∇2u, (8)

3

Page 4: Derivation of the Navier-Stokes equation - unipvfisica.unipv.it/Mihich/FluidiMecc/Navier-Stokes_eqn.pdf · Derivation of the Navier-Stokes equation Euler’s equation The uid velocity

where ν = µ/ρ is the kinematic viscosity.

It is often helpful to express the Navier-Stokes equation in dimensionlessform. Suppose a flow has characteristic length scale L and characteristicvelocity scale U . Then we may introduce dimensionless variables (denotedby tildes) as follows:

u = U u, t =L

Ut,

∂x=

1

L

∂x, p = ρU2p, f =

U2

Lf .

On substituting into (8), and dropping the tildes, we obtain the dimensionlessNavier-Stokes equation

Du

Dt= −∇p+ f +

1

Re∇2u,

where Re = UL/ν is the Reynolds number.

Further reading

The most comprehensive derivation of the Navier-Stokes equation, coveringboth incompressible and compressible fluids, is in An Introduction to FluidDynamics by G.K. Batchelor (Cambridge University Press), §3.3.

4