department of mechanical engineering university of ... · thermoelectric chip module epoxy...

13
Thermal Management of Electronics – Energy Conversion Issues Avram Bar-Cohen Department of Mechanical Engineering University of Maryland Rohsenow Symposium – MIT Cambridge, Mass May 16 th 2003

Upload: others

Post on 27-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Department of Mechanical Engineering University of ... · Thermoelectric Chip module Epoxy interfaces Thermal paste. 5/16/03 WMR-ABC 11 ... “Cost” of Refrigeration System ¾Life

Thermal Management of Electronics– Energy Conversion Issues

Avram Bar-CohenDepartment of Mechanical Engineering

University of Maryland

Rohsenow Symposium – MIT Cambridge, Mass

May 16th 2003

Page 2: Department of Mechanical Engineering University of ... · Thermoelectric Chip module Epoxy interfaces Thermal paste. 5/16/03 WMR-ABC 11 ... “Cost” of Refrigeration System ¾Life

5/16/03 WMR-ABC 2

Drivers for Thermal Packaging

Air as the Ultimate Heat SinkMarket-Driven Thermal Solutions

Price – volume – weight – reliability Environmentally-Friendly Design

Low power consumptionSemiconductor devicesPackaging and cooling

Low noise: acoustic and EMI Recyclability

Feature-Rich Design ToolsIntegrated with product CAD systemParametric optimization

Page 3: Department of Mechanical Engineering University of ... · Thermoelectric Chip module Epoxy interfaces Thermal paste. 5/16/03 WMR-ABC 11 ... “Cost” of Refrigeration System ¾Life

5/16/03 WMR-ABC 3

“spreading” + natural convection/radiation

Entropy generation minimization

Least-material optimization

Least-energy optimization

Work allocation factor, ξpp

= Pumping work/Total cooling work= Wpp / [WM + WPP]

Design for Sustainability

Page 4: Department of Mechanical Engineering University of ... · Thermoelectric Chip module Epoxy interfaces Thermal paste. 5/16/03 WMR-ABC 11 ... “Cost” of Refrigeration System ¾Life

5/16/03 WMR-ABC 4

Design for Sustainability Metrics

Coefficient of Performance

COP = qT/IP

IP = Vair × ∆P

Total Work Coefficient of Performance

COPT = qTt1/WT

WT = WM + WPP

WM = 85 M (aluminum-estimated)

Page 5: Department of Mechanical Engineering University of ... · Thermoelectric Chip module Epoxy interfaces Thermal paste. 5/16/03 WMR-ABC 11 ... “Cost” of Refrigeration System ¾Life

5/16/03 WMR-ABC 5

High Performance Heat Sink Arrays

(d) Forging (e) Skiving

(a) Bonding (b) Folding

(f) Machining

(c )Modified Die-Casting

Page 6: Department of Mechanical Engineering University of ... · Thermoelectric Chip module Epoxy interfaces Thermal paste. 5/16/03 WMR-ABC 11 ... “Cost” of Refrigeration System ¾Life

5/16/03 WMR-ABC 6

Heat Sink Coefficient of Performance

L = W = 0.1 m, H = 0.05 m, θθbb= 25 K, k = 200 W/m-K

∆P = 40Pa, Vair = 0.02 m3/sqT = 284W, IP = 0.8WCOP = 355

∆P = 40Pa, Vair = 0.02 m3/sqT = 194W, IP = 0.8WCOP = 243

2030

4050

6070

80

0.01

0.01

50.

020.

025

0.03

0.03

5

0.04

0

100

200

300

400

500

600

700

800

900

1000

Qmax/Wpp

Vair (m3/s)∆P (Pa)

900-1000800-900700-800600-700500-600400-500300-400200-300100-2000-100

20 30 40 5060

7080

0.01

0.01

50.

020.

025

0.03

0.03

50.

04

0

100

200

300

400

500

600

700

800

900

1000

Qmax/Wpp

Vair (m3/s)∆P (Pa)

900-1000800-900700-800600-700500-600400-500300-400200-300100-2000-100

(a) (b)

Maximum heat transfer design Least material design

CO

P =

q T/ I

P

CO

P =

q T/ I

P

Page 7: Department of Mechanical Engineering University of ... · Thermoelectric Chip module Epoxy interfaces Thermal paste. 5/16/03 WMR-ABC 11 ... “Cost” of Refrigeration System ¾Life

5/16/03 WMR-ABC 7

COPT Comparison Forced convection SISE plate-fins

L= W = 0.1 m, H = 0.05 m, θb= 25 K, k = 200 W/m-K

COPT = qTt1/WT

20 3040

5060

7080

0.01

0.01

50.

020.

025

0.03

0.03

5

0.04

0

10

20

30

40

50

60

70

80

90

100

Q/ET

∆P (Pa) Vair (m3/s)

90-10080-9070-8060-7050-6040-5030-4020-3010-200-10

20 30 4050 60

7080

0.01

0.01

50.

020.

025

0.03

0.03

50.

04

0

10

20

30

40

50

60

70

80

90

100

Q/ET

∆P (Pa) Vair (m3/s)

90-10080-9070-8060-7050-6040-5030-4020-3010-200-10

(a) (b)

Maximum heat transfer designLeast material design

WT = 85M + IP t1

Page 8: Department of Mechanical Engineering University of ... · Thermoelectric Chip module Epoxy interfaces Thermal paste. 5/16/03 WMR-ABC 11 ... “Cost” of Refrigeration System ¾Life

5/16/03 WMR-ABC 8

2030

4050

6070

80

0.010.01

50.020.02

50.030.03

50.04

0

10

20

30

40

50

60

CO

P T

Vair, m3/s∆P, Pa

2030

4050

6070

80

0.010.01

50.020.02

50.030.03

50.04

0

10

20

30

40

50

60

CO

P T

∆P, PaVair, m3/s

(a) COPT, Extrusion (b) COPT, Skiving

COPT ComparisonForced convection SISE plate-fins

L= W = 0.1 m, H = 0.05 m, θb= 25 K, k = 200 W/m-K

COPT = qTt1 /WTWT = 85M + IP t1

Page 9: Department of Mechanical Engineering University of ... · Thermoelectric Chip module Epoxy interfaces Thermal paste. 5/16/03 WMR-ABC 11 ... “Cost” of Refrigeration System ¾Life

5/16/03 WMR-ABC 9

COPT Optimization SISE plate-fins, WT = 10 kWh, t1 = 6000h

W T = 1 0 k W h , t1 = 6 0 0 0 hNC: natura l c onvec t ion, F C : forc ed c onvec t ion

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11

F in D en s ity , N /c m

CO

P T =

[ (q

t 1) /

WT

]

F C, 0.028 F C, 0.042F C, 0.083 F C, 0.125F C, 0.139 F C, 0 m as sNC, a ll m as s

W ork a lloc at ion fac tor, ξpp = W pp / W T

L ocus o f C O P T , m ax

Page 10: Department of Mechanical Engineering University of ... · Thermoelectric Chip module Epoxy interfaces Thermal paste. 5/16/03 WMR-ABC 11 ... “Cost” of Refrigeration System ¾Life

5/16/03 WMR-ABC 10

Refrigeration Technologies for Microelectronics

Kryotech IBM S/390 G4

P P P P P PN N N N N N

Substrate

Cap

Thermoelectric

Chip

module

Epoxyinterfaces

Thermalpaste

Page 11: Department of Mechanical Engineering University of ... · Thermoelectric Chip module Epoxy interfaces Thermal paste. 5/16/03 WMR-ABC 11 ... “Cost” of Refrigeration System ¾Life

5/16/03 WMR-ABC 11

Issues in Refrigerated Packaging

CMOS Chip/CPU PerformancePerformance Driven by” Hot Spots” “Cost” of Refrigeration System

Life Cycle CostVolume, MassPower Consumption

Reliability of Refrigeration/Packaging Refrigeration HardwareCondensation on PCBs + Refrigerant LinesVibration

Page 12: Department of Mechanical Engineering University of ... · Thermoelectric Chip module Epoxy interfaces Thermal paste. 5/16/03 WMR-ABC 11 ... “Cost” of Refrigeration System ¾Life

5/16/03 WMR-ABC 12

FundamentalThermal Packaging ResearchLow-cost, high-k packaging materials Low-cost, reliable PCM’s Enhancement of convection/boiling/spray Heat Sink/HX Manufacturing processes Compact liquid cooling/refrigeration systemsImproved solid state refrigerationLow environmental impact systems Integrated modeling tools

Page 13: Department of Mechanical Engineering University of ... · Thermoelectric Chip module Epoxy interfaces Thermal paste. 5/16/03 WMR-ABC 11 ... “Cost” of Refrigeration System ¾Life

5/16/03 WMR-ABC 13

Concluding Thoughts

Growing energy consumption in electronic systems Thermal Management significant fraction of energy consumptionPromise of local energy conversionDesign for sustainability requires:

Passive cooling where feasible Optimization of COP for active coolingOptimization of COPT for all systems