dental casting alloy

97
Dental Casting Alloys By Dr. Mujtaba Ashraf JR-1 Department of Prosthodontics 1 Mujtaba Ashraf

Upload: dr-mujtaba-ashraf

Post on 20-Feb-2017

1.339 views

Category:

Education


5 download

TRANSCRIPT

Page 1: Dental Casting alloy

Mujtaba Ashraf 1

Dental Casting Alloys

ByDr. Mujtaba AshrafJR-1Department of Prosthodontics

Page 2: Dental Casting alloy

Mujtaba Ashraf 2

Contents:

IntroductionHistorical PerspectiveDesirable PropertiesCompositionClassificationNoble Metal AlloysBase Metal AlloysGuidelines for the selection of alloys

Page 3: Dental Casting alloy

Mujtaba Ashraf 3

Introduction:Today the dental profession has access to a wide variety of casting alloys.These alloys are designed for specific clinical purposes like:. Inlays. Onlays. Crowns. Bridges. Partial dentures; and. Porcelain fused to metal restorations.

Page 4: Dental Casting alloy

Mujtaba Ashraf 4

ALLOY :

A mixture of two or more metals or metalloids that are

mutually soluble in the molten state; distinguished as

binary, ternary, quaternary, etc., depending on the number

of metals within the mixture.

Alloying elements are added to alter the

hardness, strength, and toughness of a metallic element,

thus obtaining properties not found in a pure metal.

*GPT8

Page 5: Dental Casting alloy

Mujtaba Ashraf 5

Casting:Something that has been cast in a mold; an object formed by the solidification of a fluid that has been poured or injected into a mold.

Page 6: Dental Casting alloy

Mujtaba Ashraf 6

Historical Perspective on Dental Casting Alloys

Year Event1789 Jean Darcet introduced Low-fusing metal alloy1907 Introduction of Lost-Wax Technique by W.H.Taggart1933 Replacement of Co-Cr for Gold in Removable Partial Denture1950 Development of Resin Veneers for Gold Alloys1959 Introduction of the Porcelain Fused-to-Metal Technique1968 Palladium-Based Alloys as Alternatives to Gold Alloy1971 Nickel-Based Alloys as Alternatives to Gold Alloys1980s Introduction of All-Ceramic Technologies1999 Gold Alloys as Alternatives to Palladium-Based Alloys

Page 7: Dental Casting alloy

Mujtaba Ashraf 7

Desirable Properties of Dental Casting Alloys

All casting alloys must first be biocompatible and

then exhibit sufficient physical and mechanical

properties to ensure adequate function and structural

durability over long periods of time.

Depending on the primary purpose of the prosthesis,

such as to restore function, enhance aesthetics, or

maintain occlusion, the choice of casting alloy or

metal is made.

Page 8: Dental Casting alloy

Mujtaba Ashraf 8

Some of the clinically important properties and requirements of the alloys are :

Biocompatibility: The alloy should not react with the oral fluids and release any harmful products in oral environment.

Resistance to tarnish: Tarnish is a thin film of a surface deposit or an interaction layer that is adherent to the metal surface. Tarnish is usually on silver alloys and on gold alloys with higher silver content.

Page 9: Dental Casting alloy

Mujtaba Ashraf 9

Resistance to corrosion: Corrosion may lead to catastrophic failure; oxidized components may discolor natural teeth, porcelain veneers and soft tissues.Corrosion also contribute to galvanic shock due to the electrons released during corrosion.Released metallic components may cause metallic taste in the mouth.The presence of noble metals in alloy increases resistance to corrosion.

Page 10: Dental Casting alloy

Mujtaba Ashraf 10

Nonallergenic: Although toxic materials are eliminated from the alloys. However, some individuals exhibits allergic reactions to some components. Since these allergic reactions are peculiar to the individual patient, the dentist should have a record of all the components of the alloy that is being used and should inform the patient accordingly.

Page 11: Dental Casting alloy

Mujtaba Ashraf 11

Aesthetics: The alloys must be in optimal balance among the properties of aesthetics, fit, abrasive potential and clinical survivability.

Page 12: Dental Casting alloy

Mujtaba Ashraf 12

Thermal Properties: For metal-ceramic restorations, the alloys or metals must have closely matching thermal expansion to be compatible with a given porcelain, and they must tolerate high processing temperatures.

The melting range of alloys must be low enough to form smooth surfaces with the mold walls ofthe investment.

Page 13: Dental Casting alloy

Mujtaba Ashraf 13

Liquidus and solidus temperatures:

Liquidus temperature: Temperature at which an alloy begins to freeze on cooling or at which the metal is completely molten on heating.

Solidus temperature: Temperature at which an alloy becomes solid on cooling or at which the metal begins to melt on heating.

Page 14: Dental Casting alloy

Mujtaba Ashraf 14

Hence we can say that the melting of the alloys starts at solidus temperature and is completed at liquidus temperature.

An alloy must be heated above its liquidus to be cast successfully.

Alloys with the lower the solidus temperature is preferred as the lower shrinkage occurs during cooling.

Page 15: Dental Casting alloy

Mujtaba Ashraf 15

Hardness: The hardness of an alloy shouldbe sufficient enough to resist wear by theopposing tooth or restoration.At the same time, it should not be high enough to cause wear of the opposing enamel(VHN of enamel is 340 kg/mm²).Hardness of an alloy should not be less than 125 kg/mm² or greater than 340 kg/mm².

Page 16: Dental Casting alloy

Mujtaba Ashraf 16

Ease of fabrication: The material should be easily manipulated and the procedure for fabrication should not be too complicated and lengthy.

Page 17: Dental Casting alloy

Mujtaba Ashraf 17

Castability: To achieve accurate details in a cast framework or prosthesis, the molten metal must able to wet the investment mold material very well and flow into the most intricate regions of the mold without any appreciable interaction with the investment and without forming porosity within the surface or sub surface region.

Page 18: Dental Casting alloy

Mujtaba Ashraf 18

Finishing of cast metal: Some metals are harder, hence more difficult to finish and polish.Some noble metal alloys are more ductile and malleable, hence care should be taken during finishing of the casting.The hardness of an alloy is a good indicator of the difficulty in grinding and finishing ofthe alloy.

Page 19: Dental Casting alloy

Mujtaba Ashraf 19

Porcelain Bonding: The alloy used in metal-ceramic restorations should be able to form a thin, adherent layer of oxide on its surface to enable proper bonding with ceramic.The alloy must have a coefficient of thermal expansion/contraction closely matching to that of ceramic so as to create compressive stresses to enhance fracture resistance of the ceramic.

Page 20: Dental Casting alloy

Mujtaba Ashraf 20

Composition of Dental Casting Alloys

Various metallic elements are combined in different proportions to produce alloys with adequate properties for dental applications.The metals that are used to make dental alloys are broadly of two major groups:Noble metals andBase metals

Page 21: Dental Casting alloy

Mujtaba Ashraf 21

Noble Metal Alloys

The periodic table of the elements shows eight noble metals:gold, the platinum group metals (platinum, palladium, rhodium, ruthenium, iridium,osmium), and silver.However, silver is more reactive in the oral cavity and is not considered a noble metal.

Page 22: Dental Casting alloy

Mujtaba Ashraf 22

Page 23: Dental Casting alloy

Mujtaba Ashraf 23

GOLD

•Gold, a soft, yellow metal, is the most ductile and malleable of all metals but it has much lower strength.•Density 19.3g/cm³•Melting point 1063°C•Resistance to corrosion•High burnishability•Low yield strength

Page 24: Dental Casting alloy

Mujtaba Ashraf 24

Platinum, a bluish-white metal is tough, ductile and malleable.•Its hardness is similar to that of copper•Density 21.37g/cm³•Melting point 1755°C (highest)•Elevates fusion temperature•Elevates strength•Whitens the alloy

PLATINUM

Page 25: Dental Casting alloy

Mujtaba Ashraf 25

PALLADIUM•Palladium, a white metal•It whitens the alloy, any gold alloy containing more than 6% palladium will be white.•Density 11.4g/cm3•Melting point 1555°C•Enhance mechanical properties such as hardness and tensile strength

Disadvantage: At elevated temperature, it has a great affinity for hydrogen gas. Consequently high Pd content castings may causes internal porosity by absorbing large amount gas, if not cast under ideal conditions.

Page 26: Dental Casting alloy

Mujtaba Ashraf 26

Other Noble Metals

Iridium (Ir) and ruthenium are used in smallamounts in dental alloys as grain refiners to keepthe grain size small. A small grain size is desirablebecause it improves the mechanical properties anduniformity of properties within an alloy

Osmium (Os) has very high melting point and extreme cost, so are not used in dental casting alloys .

Page 27: Dental Casting alloy

Mujtaba Ashraf 27

Rhodium (Rh) also has a high melting point (1966°C) and has been used in alloys with platinum to form wire for thermocouples.These thermocouples help measure the temperature in porcelain furnaces used to make dental restorations.

Page 28: Dental Casting alloy

Mujtaba Ashraf 28

Base Metal Alloys

•Base metals used in dental alloys include silver, copper, zinc, indium, tin, gallium, and nickel.•UsesFabrication of partial denture frame workAs casting and wrought alloysSurgical instrumentsPeriodontal splints

Page 29: Dental Casting alloy

Mujtaba Ashraf 29

SILVER (Ag)

•Silver is a malleable, ductile white metal.•It is the best-known conductor of heat and electricity.•Stronger and harder than gold but softer than copper.•Density 10.4gms/cm3

•Melting point 961oC • It is unaltered in clean, dry air at any temperature, but combines with sulfur, chlorine, phosphorus, and vapors containing these elements or their compounds.•Foods containing sulfur compounds cause severe tarnish on silver, and for this reason silver is not considered a noble metal in dentistry.

Page 30: Dental Casting alloy

Mujtaba Ashraf 30

COPPER (Cu)•Copper is a malleable and ductile metal with high thermal and electrical conductivity•A characteristic red color.•Copper forms a series of solid solutions•with both gold and palladium and is therefore an important component of noble dental alloys.•Melting point of 1083°C•Density of 8.96 gm/cm³

Page 31: Dental Casting alloy

Mujtaba Ashraf 31

ZINC (Zn)Zinc is a blue-white metal with a tendency to tarnish in moist air.In its pure form, it is a soft, brittle metal with low strength.When heated in air, zinc oxidizes readily to form a white oxide of relatively low density. This oxidizing property is exploited indental alloys.Although zinc may be present in quantitiesof only 1% to 2% by weight, it acts as a scavenger of oxygen when the alloy is melted. Thus zinc is referred to as a deoxidizing agent.

Page 32: Dental Casting alloy

Mujtaba Ashraf 32

INDIUM (In)

•Indium is a soft, gray-white metal.• Low melting point of 156.6° C.•Indium is not tarnished by air or water.•It is used in some gold-based alloys as a•replacement for zinc and is a common minor component of some noble ceramic dental alloys.

Page 33: Dental Casting alloy

Mujtaba Ashraf 33

TIN (Sn)

•Tin is a lustrous, soft, white metal•Not to tarnish in normal air.•Some gold-based alloys contain limited quantities of tin, usually less than 5% by weight.•Tin is also an ingredient in gold-based dental solders.•It combines with platinum and palladium to produce a hardening effect, but also increases brittleness.

Page 34: Dental Casting alloy

Mujtaba Ashraf 34

GALLIUM (Ga)

•Gallium is a grayish metal.•Stable in dry air but tarnishes in moist air.•It has a very low melting point of 29.8° C•Density of only 5.91 g/cm3.•Gallium is not used in its pure form in dentistry, but is used as a component of some gold- and palladium based dental alloys, especially ceramic alloys.•The oxides of gallium are important to the bonding of the ceramic to the metal.

Page 35: Dental Casting alloy

Mujtaba Ashraf 35

NICKEL (Ni)

•Nickel has limited application in gold- and palladium-based dental alloys, but is a common component in nonnoble dental alloys.•Melting point 1453° C•Density of 8.91 g/cm3.•When used in small quantities in gold-based alloys, nickel whitens the alloy and increases its strength and hardness.

Page 36: Dental Casting alloy

Mujtaba Ashraf 36

Classification of Noble Metal Alloys

All noble metal alloys have either gold or platinum as the

principal metal by weight percentage.

There are several classifications for dental casting alloys.

The first (i.e. alloy type by nobility) being the simple

classification given by ADA in 1984.

Three categories are described•high noble (HN),•noble (N), and•predominantly base metal (PB).

Page 37: Dental Casting alloy

Mujtaba Ashraf 37

Alloy type by nobility

A. Category I - High noble (HN) Alloys contain > 60 wt% of noble metals (Au > 40 wt%)

B. Category II noble (N) Alloys contain > 25 wt% of noble metals.

C. Category III predominantly base metal (PB) alloys contain < 25 wt% of noble metals.

Page 38: Dental Casting alloy

Mujtaba Ashraf 38

Properties of High noble alloys

•These alloys are the most expensive as gold, palladium and platinum are expensive•Have relatively high densities that make them easier to cast•Due to high liquidus ( high melting point) allows them to serve as alloys for porcelain bonded restoration.•Low corrosion properties

Page 39: Dental Casting alloy

Mujtaba Ashraf 39

Properties of Noble alloys

•Moderate densities 10 to 12g/cm3•Corrosion resistance slight lower than HN alloy•Cost of these alloys are less than NH alloy•Used for crown or bridges with or without porcelain covering.

Page 40: Dental Casting alloy

Mujtaba Ashraf 40

Properties of base metal alloys

Extremely high yield strengths and hardness, makes difficult to polish.Less corrosion resistance.Less biocompatible .

Page 41: Dental Casting alloy

Mujtaba Ashraf 41

Classification by Bureau of Standard, 1927:Alloys can also be classified into four types according to their composition, their use, and the amount of stress they will be subjected to.This is the most prevalent classification. The hardness increases from type I to type IV.

Page 42: Dental Casting alloy

Mujtaba Ashraf 42

A. Type I (soft-low strength):• Used for fabrication of castings

subjected to minimal stress.• Minimum yield strength is 80 Mpa• Minimum percent elongation 18%• Used as inlays and class III and class V

restorations.• These alloys are easily burnishable.

Page 43: Dental Casting alloy

Mujtaba Ashraf 43

B. Type II (medium- medium strength);•Used for fabrication of castings subjected to moderate stresses•Used for inlays, full crowns, onlays, and thick 3/4th crowns.•The minimum yield strength is 180 Mpa.•The minimum percent elongation is 10%.

Page 44: Dental Casting alloy

Mujtaba Ashraf 44

C. Type III (hard high strength):•For castings subjected to high stress.•Used for fabrication of onlays, thin copings, thin 3/4th crowns, pontics, full crowns, and saddles.•The minimum yield strength is 270 Mpa.•The minimum percent elongation is 5%.

Page 45: Dental Casting alloy

Mujtaba Ashraf 45

D. Type IV (extra hard- very high strength):•Used for castings subjected to very high stresses such as saddles, bars, clasps, partial denture framework, and long span bridge framework.•The minimum yield strength is 300 Mpa.•The minimum percent elongation is 3%.

Types 1 and 2 alloys are often referred to as inlay alloys.Types 3 and 4 alloys are generally called crown and bridge alloys.

Page 46: Dental Casting alloy

Mujtaba Ashraf 46

The alloys for metal-ceramic restorations can be used forall-metal (or resin-veneer) prostheses, whereas the alloys for all-metal restorations should not be used for metal-ceramic restorations.

The reasons are as follows:(1)The alloys may not form thin, stable oxide layers to

promote atomic bonding to porcelain.(2)Their melting range may be too low to resist sag

deformation or melting at porcelain filing temperatures.

( 3 ) Their thermal contraction coefficients may not be close enough to those of commercial porcelains

Page 47: Dental Casting alloy

Mujtaba Ashraf 47

Carat and Fineness

•For many years, noble alloys were described on the basis of their gold content, in terms of carat and fineness.•Both refer only to the gold content of the alloy.•Carat represents 1/24th part of the whole.•For example, 24-carat gold is pure (100% gold), whereas 22-carat gold (91.67% gold) is an alloy containing 22 parts pure gold and 2 parts of other metals.•Fineness represents the number of parts of gold in 1000 parts of the alloy.•Pure gold is 1000 fine.The use of these terms is less common nowadays.

Page 48: Dental Casting alloy

Mujtaba Ashraf 48

ADA Specification No. 5 formerly classified gold alloys as types 1 to 4 depending on the content of gold, palladium, and platinum.

The content of noble metals by weight ranges from 83% (type 1) to 75% (type 4).

Both the current ADA Specification No. 5 (1997) and ISO Standard 1562 (2004) have classified four types of casting alloys using similar minimal yield strength and percent elongation values for each type of alloy.

Gold Based Alloy

Page 49: Dental Casting alloy

Mujtaba Ashraf 49

•Gold Based alloys are generally yellow in color .

•Type 1 gold alloys

•Relatively Soft•Au-83%; Ag-10%; Pd-0.5%; Cu-6%; Ga,In, & Zn-Balance•Soft and designed for inlays supported by teeth and not subjected to significant mastication forces.

Page 50: Dental Casting alloy

Mujtaba Ashraf 50

•Type 2 gold alloys

•Medium strength•Au-77%; Ag-14%; Pd-1%; Cu-7%; Ga,In, & Zn-Balance•Widely used for inlays because of their superior mechanical properties, but they have less ductility than type 1 alloys. •Used for conventional inlays onlays or full mouth crowns.

Page 51: Dental Casting alloy

Mujtaba Ashraf 51

•Type 3 gold alloys

•High Strength•Au-75%; Ag-11%; Pd-3.5%; Cu-9%;• Ga, In, & Zn-Balance•Used for constructing crowns and onlays for high-stress areas.•Increasing the Pt or Pd content raises the melting temperature, which is beneficial when components are to be joined.

Page 52: Dental Casting alloy

Mujtaba Ashraf 52

Type 4 gold alloys

Extra High Strength•Au-56%; Ag-25%; Pd-4%; Cu-14%; Ga, In, & Zn-Balance•Used in high-stress areas such as bridges and partial denture frameworks.•The cast alloy must be rigid to resist flexure.•Possess high yield strength to prevent permanent distortion, and be ductile enough for adjustment if the clasp of a framework has been distorted or needs adjustment.

Page 53: Dental Casting alloy

Mujtaba Ashraf 53

High Noble and Noble Alloys forMetal Ceramic Prostheses

•Porcelain and ceramic materials have been used for fabricating esthetic dental restorations since the early 1800s.•The first published reports describing the successful use of porcelain fused to alloys appeared in the mid-1950s.

Page 54: Dental Casting alloy

Mujtaba Ashraf 54

Gold–platinum–palladium(Au–Pt–Pd) alloys

•This was the first casting alloy formulated for use with metal-ceramic restorations.•This high noble alloy has a gold content of 8l%-87%;• Pt 4.5%-10%, and Pd 5%-11%.•The casting temperature is around l330°C-1335°C.

Page 55: Dental Casting alloy

Mujtaba Ashraf 55

•As with other high noble alloys, it has high corrosion resistance.

•This alloy is used exclusively for metal-ceramic prostheses (single crowns and short span bridges), it is contraindicated in long span bridges since its sag resistance is low and it is susceptible to dimensional change.

Page 56: Dental Casting alloy

Mujtaba Ashraf 56

Gold–palladium–silver (Au–Pd–Ag) alloys

The Au–Pd–Ag alloys were developed in an attempt to overcomethe major disadvantages of the Au–Pt–Pd alloys:High cost, low hardness, and poor sag resistance.

Subdivided in two smaller groups:High silver (More than 12% Ag) andLow silver (5%-11.99% Ag)

The principle disadvantage of these alloys is the potential for their silver content to discolor porcelain

Page 57: Dental Casting alloy

Mujtaba Ashraf 57

Greening

It is the general term applied to porcelainthat is discolored due to contamination with silver.

Tuccillo suggested that silver may be responsible for staining when it evaporates as a positively charged ion during porcelain firing.

Page 58: Dental Casting alloy

Mujtaba Ashraf 58

During firing the silver atoms enter the body of the porcelain or diffuse through the glazed surface and cause green, yellow-green, or yellow-orange to brown discoloration.

Page 59: Dental Casting alloy

Mujtaba Ashraf 59

Prevention of greening:Regular use of a graphite block to maintain a reducing atmosphere near the alloy which inhibits the formation of silver oxide.

A pure gold film is fired on the alloy surface; this reduces the amount of free silver ions available on the alloy surface for vaporization.

Page 60: Dental Casting alloy

Mujtaba Ashraf 60

Gold–palladium (Au–Pd) alloys

•The Au–Pd alloys were developed to address the two main problems associated with silver-containing alloys:•Porcelain discoloration and•a high coefficient of thermal expansion.

•Introduced by J.F. Jelenko & Co in 1977•Contains 45%-52% Au and 37%-45% Pd

Page 61: Dental Casting alloy

Mujtaba Ashraf 61

These alloys exhibit a “white gold” color and have been commercially successful.

The only significant disadvantage is having adegree of thermal expansion incompatible with some high expansion porcelains causes crack formation.

In an effort to address this problem,a number of Au–Pd alloys have recently been developed that contain less (<5% silver)Due to these alloys low silver content,porcelain does not discolor, castability is improved, andthe coefficient of thermal expansion is increased

Page 62: Dental Casting alloy

Mujtaba Ashraf 62

Palladium–silver (Pd–Ag) alloys

In 1974 the first “gold-free” noble-metal metal-ceramic alloys, the Pd–Ag alloys, were introduced.They were specifically developed to offer an economical alternative to more expensive gold-based alloys.

Page 63: Dental Casting alloy

Mujtaba Ashraf 63

The compositions Pd-Ag alloys fall within a narrow range of 53% to 61% Pd and 28% to 40% Ag.Tin and/or indium are usually added to increase alloy hardness and to promote oxide formation and adequate bonding to porcelain.

Page 64: Dental Casting alloy

Mujtaba Ashraf 64

The high silver content compared with that of gold-based alloys, the silver discoloration effect is most severe for these alloys.Gold metal conditioners or ceramic coating agents may minimize this effect.

The elastic modulus for Pd–Ag alloys is the most favorable of all of the noble-metalmetal-ceramic alloys as a result Pd–Ag alloys have excellent sag resistance.

Page 65: Dental Casting alloy

Mujtaba Ashraf 65

High-palladium alloys

Several types of high-palladium alloys were introduced in the1980s.These alloys were primarily developed for economic reasons and to address biocompatibility concerns of nickel-based casting alloys, andto minimize the possibility of porcelain discoloration.

The most popular types have beenPd–Cu, Pd–Co, and Pd–Ga.

Page 66: Dental Casting alloy

Mujtaba Ashraf 66

Palladium-Gallium-Silver

Palladium-gallium-silver alloys is the most recent of the noble metal alloys.Advantages• Slightly lighter colored oxide than the Pd-Cu alloys.•Thermally compatible.•Low hardness

Page 67: Dental Casting alloy

Mujtaba Ashraf 67

Base Metal Alloys

Metals that oxidize or dissolve readily to release ions.

Base metal alloys are primarily made of cobalt, nickel, and/or titanium; though minor amounts of noble metals may also be present.

Page 68: Dental Casting alloy

Mujtaba Ashraf 68

These alloys are more complex, science they may contain 6-8 elements in addition to their primary constituents including:molybdenum, chromium, aluminum, vanadium, iron, carbon, beryllium, manganese, gallium, silicon, etc.

Page 69: Dental Casting alloy

Mujtaba Ashraf 69

Base-Metal Metal-Ceramic Alloy

Nickel-Chromium

Beryllium

containing

Beryllium free

Cobalt-Chromium Titanium

*(adapted from Naylor and O’Brien

Compositional classification of base-metal metal-ceramic alloys

Page 70: Dental Casting alloy

Mujtaba Ashraf 70

Historically, the base-metal alloys were dividedinto four groups:•nickel–chromium–beryllium,•nickel–chromium,•nickel–high-chromium, and•cobalt–chromium

Page 71: Dental Casting alloy

Mujtaba Ashraf 71

Nickel–chromium–beryllium, nickel–chromium, nickel–high-chromium are used for fabrication of crowns and bridges (with and without ceramic).while cobalt–chromium predominantly used for removable partial dentures and dental implants.

Page 72: Dental Casting alloy

Mujtaba Ashraf 72

Nickel–chromium (Ni–Cr) alloys

Most common base metal alloy used in metal-ceramic prostheses.The composition includes:•Nickel (61.5%-77.5%•Chromium (12.8%-22%)•Molybdenum (4%-14%)•Aluminum (0%-4%), and•Iron (0%-5%)•Ni-Cr-Be alloys also contain 0%-2% beryllium

Page 73: Dental Casting alloy

Mujtaba Ashraf 73

•Yield strength is 260-830 MPa•Hardness ranges between 175VHN -380 VHN•Tensile strength 400-1200 MPa •Modulus of elasticity 150-210 GPa•Percentage elongation is 8%-28%

Page 74: Dental Casting alloy

Mujtaba Ashraf 74

•Chromium contributes to the corrosion resistance.

•Molybdenum decreases coefficient of thermal expansion.

•Nickel and aluminum form an intermetallic compound i.e

Ni₃Al that contributes to strength and hardness.

•Nickel is also a known allergen, more so in females

(4.5%) than males (1.5%).

•It results in contact dermatitis and hypersensitivity

•OSHA regulations allow 15 μg/m³ of Ni in air.

Page 75: Dental Casting alloy

Mujtaba Ashraf 75

Beryllium is primarily added to lowering the melting range of the alloy, enhances fluidity, and improves grain structure.

Page 76: Dental Casting alloy

Mujtaba Ashraf 76

•Beryllium is known to be toxic, more so to the laboratory technician during alloy melting.

•Toxicity that is termed as berylliosis may be exhibited from mild to moderate symptoms as contact dermatitis to severe chemical pneumonitis.

•Permissible maximum concentration of Be in air is 5 μg/m³, while Occupational Safety and Health Act (OSHA) guidelines permit an exposure of a maximum of 2 μg/m³.

Page 77: Dental Casting alloy

Mujtaba Ashraf 77

Reasons for the use of nickel-chromium alloys in dentistry:

•Nickel is combined with chromium to form a highly corrosion resistant alloy.•It is low cost alloy as compared to Gold based alloys.•Alloys such as Ticonium-100 have been used in removable partial denture frameworks for many years with few reports of allergic reactions.•Nickel alloys have excellent mechanical properties, such as high elastic modulus (stiffness), high hardness, and a reasonably high elongation (ductility).

Page 78: Dental Casting alloy

Mujtaba Ashraf 78

Cobalt–chromium (Co–Cr) alloys

In 1907 Haynes patented cobalt-chromium.In 1929 Co-Cr alloys were used in dental appliances.

Cobalt is the main constituent of cobalt-based metal-ceramic alloys, with chromium added for strength and to provide corrosion resistance via passivation.

Page 79: Dental Casting alloy

Mujtaba Ashraf 79

The composition of Co-Cr alloy isCobalt (52%-28%)Chromium (15%-28%)Tungsten (10%-14%)Other trace elements areGa 0%-7%, Ru (0%-6%), Fe (0%-1%)Cu (0%-1%)

Page 80: Dental Casting alloy

Mujtaba Ashraf 80

Yield strength is 460-640 MPaElastic modulus is 145-220 GpaElongation is 6%-15%Hardness is 330-465 VHN andTensile strength is 520-820 MPa.

Page 81: Dental Casting alloy

Mujtaba Ashraf 81

Cobalt–chromium alloys are the most commonbase-metal alternative for patients known to be allergicto nickel.Second highest melting point of all dental casting alloy.

Disadvantages of Co-Cr alloys:Difficult laboratory procedures ( casting, finishing, polishing).Incompatibility in CTE between Co-Cr alloy and porcelain.

Page 82: Dental Casting alloy

Mujtaba Ashraf 82

Co-Cr alloys are used for the metal frameworkof cast partial dentures, since they are much less ductile than Ni-Cr.These-alloys are not used for metalceramic prostheses, since the oxide layer formed on these alloys are susceptible to delamination and adversely affect the bonding with porcelain

Page 83: Dental Casting alloy

Mujtaba Ashraf 83

TITANIUM (Ti) AND TITANIUM ALLOYS

Titanium was discovered in the late 1700s and is the fourth most abundant metal in the earth’s crust .

Process for extracting of Titanium was introduced by Kroll in 1936.

Page 84: Dental Casting alloy

Mujtaba Ashraf 84

Titanium has a number of advantages, such as light weight, adequate strength, good corrosion resistance, excellent biocompatibility.Titanium alloys are being used asdental implantsFor implant prosthesis, cast partial dentures and metal ceramic prostheses.

Page 85: Dental Casting alloy

Mujtaba Ashraf 85

Titanium based alloys containing 90% titanium, 6% aluminum and 4% vanadium, hence this alloy is termed as Ti-6Al-4Va

Page 86: Dental Casting alloy

Mujtaba Ashraf 86

Due to its high melting range ( upto 1668°C), Ti-based alloys are difficult to cast and requires a special Centrifugal induction casting machine and argon atmosphere. Pure Cp-Ti has tensile strength of 240-890MPaHardness 125-350VHN

Page 87: Dental Casting alloy

Mujtaba Ashraf 87

Titanium has highest melting point of all metals and alloys used in dentistryHigh fusion temperature and low CTE.High corrosion resistanceTitanium forms porous and non-adherent oxide layer which does not form reliable porcelain to metal bond.

Page 88: Dental Casting alloy

Mujtaba Ashraf 88

GUIDELINES FOR THE SELECTION OF ALLOYS

Choosing an alloy for prosthodontic restorations is a formidable task.Although there is no proven formulafor selection, practitioners may find the following guidelines helpful.

Page 89: Dental Casting alloy

Mujtaba Ashraf 89

Develop an understanding of alloys1. Avoid selecting an alloy based on its color unlessall other factors are equal.

2. Know the complete composition of alloys, andavoid elements to which the patient is allergic. Knowthe alloys that the laboratory uses; specify a specificalloy in the laboratory prescription.

Page 90: Dental Casting alloy

Mujtaba Ashraf 90

3. When possible, use single-phase alloys over multiple-phase alloys.

4. Keep track of alloys used in the patient with theIdentalloy system or something similar. At minimum, the name of the alloy and the manufacturer should berecorded.

Page 91: Dental Casting alloy

Mujtaba Ashraf 91

Use clinically proven products from qualityManufacturers

5. Use alloys from companies that research and manufacture their own alloys. These companies will be able to provide the most accurate information, the best service, and the best answers when problems arise.

Page 92: Dental Casting alloy

Mujtaba Ashraf 92

6. Use alloys that have been tested for elemental release and corrosion and that have the lowest possible release of elements.

7. Use a dental laboratory that is knowledgeableabout its alloys and willing to discuss issues aboutthem. Be comfortable with the alloys that the laboratory uses.

Page 93: Dental Casting alloy

Mujtaba Ashraf 93

Develop a clinical philosophy

8. Focus on the long-term clinical performance andlong-term costs of restorations rather than on short term costs.

Page 94: Dental Casting alloy

Mujtaba Ashraf 94

9. Consider the clinical situation (esthetics, occlusion, space, and systemic allergy) when selecting an alloy. Select the alloy that meets the needs of the patient. Avoid a “one size fits all” approach.

10. Remember that the practitioner is ultimatelyresponsible for the safety and efficacy of any restoration.

Page 95: Dental Casting alloy

Mujtaba Ashraf 95

Conclusion

It is not always possible or feasible to use noble or precious metals and alloys for fabrication of restorations. Moreover, most removable partial dentures are fabricated from chrome-cobalt alloys. Base metal alloys do have applications in dentistry, though noble metal alloys are superior in performance. Some patients may be allergic to some components of the base metal alloys and care should taken when fabricating such prostheses.

Page 96: Dental Casting alloy

Mujtaba Ashraf 96

ReferencesPhillips Science Of Dental Material 10th & 11th Edition

Restorative Dental Materials – Craig 13th Edition

Dental Materials And Their Selection- 3rd Edition By William J. O'brien

Wataha Jc. Alloys For Prosthodontic Restorations. J Prosthet Dent 2002

Metal-ceramic Alloys In Dentistry: Howard W. Roberts; J Prosthet Dent

Base Metal Alloys Used for Dental Restorations and Implants:Michael Roach

Page 97: Dental Casting alloy

Mujtaba Ashraf 97