deisgn of caisson

Upload: adol-firdaus

Post on 08-Jul-2018

257 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/19/2019 Deisgn of Caisson

    1/200

    D E S I G N C A I S S O N B R E A K W A T E R

    A n

      evaluation of the formula of

      G o d a

    C a r l i t a L. Vis

  • 8/19/2019 Deisgn of Caisson

    2/200

    D E S I G N

      C A I S S O N

      B R E A K W A T E R

    A n e v a l u a t i o n o f t h e f o r m u l a o f   G o d a

    C L .

      V i s

    D e l f t , A u g u s t 1 9 9 5

    D e l f t U n i v e r s i t y o f

    T e c h n o l o g y

  • 8/19/2019 Deisgn of Caisson

    3/200

    page ii

  • 8/19/2019 Deisgn of Caisson

    4/200

    summary

    S U M M A R Y

    The g row ing need fo r b reakwate rs in deep wa te r due to the inc reas ing d raugh t

    o f l a rge vesse ls d raws the a t ten t ion to ca isson b reakwate rs . These mono l i th i c

    s t ruc tu res a re more economica l compared to rubb le mound b reakwate rs .

    Espec ia l l y i n deep wa te r l ower cons t ruc t ion and ma in tenance cos ts and

    considerab le savings in construct ion t ime can be rea l ised. A ca isson is bu i l t on

    shore and towed ou t to the ac tua l o f fshore s i te . Un fo r tuna te ly , damage a t a

    ca isson i s o f ten p rogress ive . Th is causes an abrup t co l l apse o f the s t ruc tu re . By

    unders tan d ing the dynam ic p rocesses invo lve d , the des ign o f the s t ruc tu re can

    be sound ly based .

    The fo rmu la o f Goda (19 85 ) is a wo r ldw ide used des ign meth od fo r ve r t i ca l

    b reakwate rs based on the quas i -s ta t i c approach . H is des ign method i s ve ry

    usefu l as a f i rs t ind icat ion for the d imensions of the ca isson. In order to be ab le

    to ana lyse Goda 's method , the des ign o f a ca isson b reakwate r i s rough ly

    d iv ided in three phases. Fi rs t the crest e levat ion of the ca isson, the design

    wave and the des ign wa te r dep th , a re de te rmined w i th p robab i l i s t i c

    cons ide ra t ions abou t the economy o f the ha rbour . Subsequen t l y the wave load

    fo l l ows f rom the wave p ressure fo rmu lae . Th i rd l y , the w id th o f the s t ruc tu re

    se ts the we igh t o f the s t ruc tu re wh ich de f ines the sa fe ty aga ins t fa i l u re .

    Goda se ts the des ign pa ramete rs on de f in i te va lues regard less the cos t -bene f i t

    ana lys is o f the harbour . H is design wave is the h ighest wave in the design sea

    s t a t e ,

      which is based on the pr inc ip le that a breakwater should be designed to

    be sa fe aga ins t the s ing le wave w i th the la rges t p ressure among s to rm waves .

    From the compar i son o f the measured wave fo rces o f the hydrau l i c mode l

    s tudy and the va lues ca lcu la ted w i th the wave p ressure fo rmu lae o f Goda and

    o f the l i near wave theory no conc lus ions can be d rawn. Th is i s pa r t l y due to the

    c lose resemb lance o f the resu l ts o f the l i near wave theory and Goda 's fo rmu la

    fo r the cond i t i ons a t Europoor t Ro t te rdam and par t l y caused by the sca t te r i n

    th e m e a su re m e n ts .

    An exper imen t abou t the fa i l u re mechan isms o f the ca isson con f i rms the

    in t roduc ing o f uncer ta in t i es concern ing the p lac ing o f the ca isson on the rubb le

    m o u n d fo u n d a t i o n .

    Goda 's wave p ressure fo rmu lae tu rned ou t to be in fac t des ign fo rmu lae . No t

    on ly h i s des ign pa ramete rs bu t the fo rmu lae themse lves inc lude sa fe ty

    cons ide ra t ions . Eva lua t ion o f God a 's fo rmu la i s the re fo re on ly va l i d w he n the

    who le des ign p rocess i s taken in to accoun t .

    I t i s no ted tha t the accuracy o f the ca lcu la ted wave p ressure on the wa l l i s ve ry

    good w i th respe c t to the uncer ta in t i es in t roduce d in the found a t ion fo rces and

    the de te rmina t ion o f the des ign pa ramete rs .

    page iii

  • 8/19/2019 Deisgn of Caisson

    5/200

    page  iv

  • 8/19/2019 Deisgn of Caisson

    6/200

    table of contents

    T A B L E   O F

      C O N T E N T S

    S U M M A R Y  P

    a

    g

    e

      '»

    P R E F A C E  page vi i

    1 I N T R O D U C T I O N

      Page 1

    1.1 W hy bu i ld ing a ca isso n bre akw ater ? page 1

    1.2 Design process page 2

    1.3 A im s of th is s tu dy page

      4

    1.4 Out l ine o f co nte nts page 5

    2   D E S I G N   P R I N C I P L E S

      Page 7

    2.1 Fa i lure me cha nism s page 7

    2 .1 . 1 Break wate r s l i d ing page 9

    2 .1 .2 Break wate r ove r tu rn ing page 11

    2.2 Probab i l is t ic design process page 12

    2 .2 . 1 The des ign pa ram ete rs resu l t f rom an econom ic

    decis ion prob lem page 12

    2 .2 .2 D imens ions o f ca isson page 14

    2.3 Design acc ord in g to Goda page 16

    2 .3 .1 Des ign pa ram ete rs page 16

    2. 3. 2 Resis tan ce again st fa i lure page 17

    2 .3 .3 D imens ions o f ca isson page  8

    2 .3 .4 Rubb le mo und foun da t io n page 20

    3   H Y D R A U L I C D E S I G N  C O N D I T I O N S   page 23

    3.1 W av e sta t is t ic s in open sea page 23

    3 .1 .1 D is t r i bu t ion o f wa ve he igh ts page 25

    3 .1 .2 D is t r i bu t ion o f wa ve per iods page 26

    3 .2 Tra ns fo rma t ion o f deep wa te r da ta to da ta a t the s i te . page 29

    3 .3 Chance tha t des ign wa ve he igh t

      H

    d

      is excee ded page 32

    4  L I N E A R   W A V E   T H E O R Y

      Page 35

    4.1 Formu lae of wa ve pressure page 35

    4 .1 .1 The re f lec t ion o f i ncom ing wa ve s page 36

    4 . 1 . 2 W ave p ressure on the f ron t o f the ve r t i ca l wa l l . page 37

    4. 1. 3 Wav e pressure on the base of the ca iss on page 41

    page v

  • 8/19/2019 Deisgn of Caisson

    7/200

    table of contents

    4 . 2 Spec t ra l ana lys i s page 42

    4 .3 Ca lcu la t ion fo r Europoor t Ro t te rd am page 45

    F O R M U L A   O F G O D A   page 49

    5.1 Formulae of w av e pressure page 49

    5.1 .1 W av e pressure on the f ront o f a ver t ica l wal l . . . page 49

    5 .1 .2 W ave p ressure under a wa ve t roug h page 53

    5 .2 Ca lcu la t ion fo r Europoor t Ro t te rd am page 53

    E X P E R I M E N T S   I N W A V E C H A N N E L   page 57

    6 .1 A im s o f exper im en ta l s tud y page 58

    6 .2 Sca l ing cons ide ra t ions page 59

    6.3 Exp er ime nta l set up page 61

    6 .3 .1 Co ns t ruc t ion o f the ca isson mode l page 61

    6 .3 .2 Meas ur ing sys tem page 62

    6 .4 Exper imen t 1 : De te rm ine hor i zon ta l dynam ic wa ve fo rce page 64

    6 .5 Exper imen t 2 : De te rm ine the ho r i zon ta l dynam ic wa ve fo rce a t

    m om en t o f fa i lure o f the ca isso n page 66

    R E S U L T S   A N D   D I S C U S S I O N   page 69

    7.1 An alys is o f Go da 's design pr inc ip les page 69

    7 .2 L inear wa ve theo ry com pared w i th God a 's fo rm u la . . . page 70

    7 .2 .1 W ave p ressure fo r wa ve c res t page 70

    7 .2 .2 W ave p ressure fo r wa ve t roug h page 72

    7 .3 The exper im en ta l da ta com pared w i t h the theo ry page 72

    7.3 .1 Exp er ime nt 1 page 76

    7 .3 .2 Exper imen t 2 page 77

    7 .4 R e co m m e n d a t i o n s p a ge 7 7

    C O N C L U S I O N S   Page 79

    L I S T   O F

      S Y M B O L S

      page 81

    R E F E R E N C E S  page 87

    page vi

  • 8/19/2019 Deisgn of Caisson

    8/200

    preface

    P R E F A C E

    This repor t is wr i t ten as a par t o f my study for the MSc. degree at the Facul ty

    of Civ i l Engineer ing at the Del f t Univers i ty o f Technology, Hydraul ic engineer ing

    group .

    Part o f th is s tudy about the design of a breakwater is per formed at the Imper ia l

    Co l lege fo r Sc ienc e , Tec hno logy and Med ic ine in London . In the hydrau l i cs

    labora to r ies o f the de par tm en t o f C ivi l Eng ineer ing , a hydrau l i c m ode l s tud y has

    been carr ied out in order to compare exper imenta l resu l ts w i th the resu l ts o f

    the ore t ica l ca lc u la t ions . I rea l ise tha t learn ing about the Engl ish w a y of

    hydrau l i c eng ineer ing a t Imper ia l Co llege was a g rea t opp or tu n i ty , fo r wh ich I

    am very g ra te fu l .

    The advice and pract ica l ass is tance of Professor P. Holmes and Dr. D. Hardwick

    o f Imper ia l Co llege o f Sc ien ce , Tec hno logy and Med ic ine a re g ra te fu l l y

    a c k n o w l e d g e d .

    Fina l ly , I w ou ld l ike to expre ss my gra t i tude to Professo r J .K. Vr i j l ing and Mr.

    K .G. Bezuyen o f the De l f t Un ive rs i ty o f Techno logy fo r the i r superv i s ion .

    D e l f t , Au g u s t 1 9 9 5

    Carl i ta L. Vis

    page vi i

  • 8/19/2019 Deisgn of Caisson

    9/200

    page vi i i

  • 8/19/2019 Deisgn of Caisson

    10/200

    I N T R O D U C T I O N

    A b re akw ate r ca n be des igned fo r severa l d i f fe re n t pu rpose s . In the f i r s t sec t ion

    o f th i s chap te r backgrou nd in fo rma t ion i s g i ven abou t ca isson b reakw ate r s in

    gene r a l .  The des ign p rocess o f a ca isson b reakwate r i s d i scussed in the second

    s e c t i o n .

      Subsequen t l y , the ob jec t i ve o f th i s s tudy i s de f ined in the th i rd sec t ion

    fo l l owed by the exp lana t ion o f the ou t l i ne o f th i s repor t i n the las t sec t ion .

    W h y b u i l d i n g a

      c a i s s o n

      b r e a k w a t e r ?

    T h e

      m a i n f u n c t i o n s o f a b r e a k w a t e r

    The bas ic fun c t ion o f a b rea kwa te r i s to p rov ide p ro te c t ion aga ins t w av es . Th is

    protect ion may be necessary for an approach channel or for a harbour i tse l f , in

    order to prov ide a suf f ic ient t ranqui l harbour basin for sh ips to navigate and

    moor . Other pu rposes o f a b reakwate r can be :

    • Reduce the am ou nt o f dredg ing requi red in a harbour entra nce by cu t t in g

    o f f the l i t to ra l t ranspor t supp ly .

    • Guide the cur ren t in the app roac h chan nel or a long the co as t .

    Reduce the grad ient o f the cross current in an approach channel in order

    to make the sh ips enter ing the harbour bet ter s teerab le .

    In th i s s tudy the p ro te c t ion aga ins t wa ve s i s cons ide red to be the on ly fun c t io n

    o f a b reakwate r .

    A c a i s s o n

      b r e a k w a t e r

    The cho ice o f a b reakwate r type

    for a g iven s i tuat ion depends on

    m a n y fa c to r s . Tw o t yp e s o f

    b reakwate rs can be

    d is t i ngu ished :

    • Ca isson b reak wate r

    • Rubb le mo und b rea kwa te r

    iiirfflTin

    1

    i h

    iiirfflTin

    a .  JBfflmm

    mÊMËsêmm^

    caisson

    rubble mound

    Figure 1.1

    Caisson breakwater and rubble mound

    breakwater

    Mono l i th i c s t ruc tu res , the so

    ca l led ca isson b reakwate rs , have

    ma jo r advan tages compared to

    rubb le mound b reakwate rs in

    deep wa te r . Fo r i ns tance the

    volume of a ca isson in deep water is less than that needed for a rubble mound

    breakwate r because the la t te r i nc reases w i th the square o f the wa te r dep th

    see f i gu re 1 1 Mono l i th i c b reakwate rs a re a l so more economica l because o f

    the i r l ower cons t ruc t ion and ma in tenance cos ts and the i r cons ide rab le sav ings

    in cons t ruc t ion t ime , fo r a ca isson i s bu i l t onshore and towed ou t to the ac tua l

    o f fshore s i te . A rubb le mound b reakwate r can on ly be bu i l t o f fshore wh ich i s

    page 1

  • 8/19/2019 Deisgn of Caisson

    11/200

    introduction

    cons ide rab ly more expens ive . Rubb le mound b reakwate rs   are  never th e less more

    popular  in w e s te rn co u n t r i e s b e ca u se th e y  can fu l f i l the i r func t ion e ven w he n

    t h e y

      are

     se ve re ly d a m a g e d . D a m a g e

      at a

     ca i sso n b re a kw a te r

      is on the

      o ther

    h a n d m o s t

      of the

     t ime s p rogress ive , wh ich resu l ts

      in an

     ab rup t co l l apse

      of the

    m o n o l i t h .

    1 . 2 D e s i g n   p r o c e s s

    The des ign  of a  ca isso n b re a kw a te r  is an  i te ra t ive

    p ro ce ss .

      It can be

     d iv ided rough ly in to thre e

    p h a se s ,

      see

     f i gu re

      1.2.

      F i rs t ly

      the

      des ign

    paramete rs have  to be d e te rm i n e d  in  a cco rd a n ce

    w i t h  the  des ign p r inc ip les .  The des ign pr inc ip les

    co n s i s t  of  econ om ica l cons ide ra t ions because an

    very h igh

      and

     h e a vy s t r u c tu re

      is not

      favourab le .

    S e c o n d l y ,

      the

      des ign pa ramete rs

      are

     used

     as

    i npu t  for the w a ve p ressu re fo rm u l a e , w h i c h

    resu l ts  in a  d e s i g n w a v e  l oad .  Su b se q u e n t l y  the

    d i m e n s i o n s  of the ca i sson can be c a l cu l a te d .

    These d imens ions have

      to be

     c h e c k e d w i t h

      the

    design pr inc ip les again because

      the

      o p t i m u m

    s t re n g th  of the s t r u c tu re  is  re la ted to the  s tab i l i t y

    of  the  s t ru c t u r e , w h i c h  is  prov ided on ly  by the

    w e i g h t  of the  s t r u c tu re .  In o th e r w o rd s , the

    o p t i m u m ra t i o b e tw e e n

      the

     w i d t h

      and the

      he ight

    of

      the

     s t r u c tu re

      has to be

     d e te rm i n e d .

    design principles:

    design parameters

    dimensions :

    width

      height

    Figure

      1.2

    General design

    process

    A s tandard des ign method  for  ve r t i ca l wa l l

    b r e a k w a t e r s

      wa s

     deve loped

      by the

      Japanese Goda

      [ref 4] and is

      used

    w o r l d w i d e .

      He

     m a d e

      his

      fo rm u la a f te r numerous hy drau l i c mode l s tud ies .

     The

    wave p ressure fo rmu lae

      of

      Goda were emp i r i ca l l y de r i ved

      and

     va l i d a te d

      by the

    p e r fo rm a n ce   of  p ro to t yp e b re a kw a te r s .

    D e s i g n

     p r i n c i p l es

    A b re a kw a te r  is  a ssu m e d  to  have fa i l ed when   the  m a i n fu n c t i o n  is no  longer

    f u l f i l l ed .

      T h a t

      is, the

      p ro te c t i o n a g a i n s t w a ve s

      is

      less than requi red.

    Ove r to p p i n g   of  w a v e s  is  the re fo re con s ide red  as fa i l u re .  A  d i s t i n c t i o n  has to be

    made be tween fa i l u re  in the sense  of  to ta l co l l apse of the  s t r u c tu re and

    m a l f u n c t i o n  of the b r e a k w a t e r  .

    The s t reng th aaa ins t co l l apse   of a   s t ruc tu re

    shou ld  be des igned  in  su ch a way t h a t the

    s t r u c tu re  can res is t  the ex t re me hydrau l i c des ign

    load on the s t ru c tu re , o the rw ise u l t ima te fa i lu re

    occurs . These chosen ex t reme des ign cond i t i ons

    d e te rm i n e th e re fo re  the  needed s t reng th or

    s tab i l i t y  of the  ca i sson .

    h a r b o u r

    Figure  1.3

    Sliding

    page  2

  • 8/19/2019 Deisgn of Caisson

    12/200

    introduction

    The fu l f i lmen t o f func t ion ing o f the s t ruc tu re under no rma l l oad ing cond i t i ons i s

    depend ing on the c res t e leva t ion o f the b reakwate r . The amoun t o f a l l owed

    over top p ing shou ld resu l t f rom a cos t -b ene f i t ana lys i s in re la t i on w i th ' the

    economy ' o f the ha rbour and the hydrau l i c des ign cond i t i ons . In o the r words ,

    the ques t ion needs to be answered i s : 'Wha t i s the accep ted downt ime o f the

    harbour resu l t i ng f rom over topp ing o f waves fo r the l i fe t ime o f the ca isson ' .

    Th is des ign cond i t i on se ts the min imum cres t e leva t ion o f the b reakwate r .

    The s t reng th aga ins t ex t reme load ing resu l ts f rom

    the u l t ima te fa i l u re mechan isms w i th i nc lud ing

    sa fe ty measures aga ins t fa i l u re . The judg ing o f

    the accep ted chance o f u l t ima te fa i l u re o f the

    caisson dur ing i ts l i fe t ime is a lso an economic

    dec is ion p rob lem, because the p robab i l i t y o f

    exceedance o f the des ign pa ramete rs se ts the

    probabi l i ty o f u l t imate fa i lure o f the ca isson.

    The most impor tan t u l t ima te fa i l u re mechan isms

    fo r a ca isson b reakwate r a re :

    • Sl id ing (see f igu re 1.3)

    • Ov er tur n ing (see f igure 1 .4)

    • Fa i lure o f the fou nd at io n ( f igure 1 .5 g ives

    two fa i lure possib i l i t ies)

    h a r b o u r

    Figure 1.4

    Overturning

    h a r b o u r

    Figure 1.5

    Failure of the

    foundation

    D e s i g n

      p a r a m e t e r s

    Once the amoun t o f a l l owed over topp ing i s de te rmined , the c res t e leva t ion o f

    the ca isson i s es tab l i shed w i th tak ing in to accoun t the requ i rements f rom

    mar ine rs . Accord ing ly the des ign wa te r dep th and the des ign wave w i th an

    accep ted p robab i l i t y shou ld be chosen .

    W a v e l o a d i n g

    The wave load on the s t ruc tu re can be ca lcu la ted w i th the wave p ressure

    fo rmu lae i f the fo l l ow ing paramete rs a re known:

    • cres t he igh t

    • chara c te r i s t i cs o f the rubb le mou nd foun da t io n

    • wa te r dep th

    • wa ve he igh t and wa ve per iod

    D i m e n s i o n s

      c a i s s o n

    The proba bi l is t ic load ing on the ca isson dete rmin es the prob abi l i ty o f u l t im ate

    fa i l u re th rough the fa i l u re mechan isms. S l id ing and over tu rn ing a re caused by a

    hor i zon ta l wa ve fo rce ac t ing on the exposed f ro n t and by a ve r t i ca l up l i f t fo rce

    ac t ing on the base o f the ca isson . Bo th fo rces a re resu l t i ng f rom the dynamic

    wa ve p ressure . Immed ia te to ta l fa i lu re of a ca isson b rea kwa te r occ urs by

    de f in i t i on when the des ign cond i t i ons a re exceeded . The w id th o f the ca isson

    se ts the to ta l we igh t o f the s t ruc tu re wh ich p rov ides the des igned s tab i l i t y fo r a

    cons tan t he igh t o f the ca isson .

    page 3

  • 8/19/2019 Deisgn of Caisson

    13/200

    introduction

    1.3  A i m s  of  t h i s s t u d y

    In th i s s tudy

      the

      des ign p rocess

      of a

      ca i sson b reak wate r w i l l

      be

      ana lysed .

    Goda 's des ign method w i l l the re fo re  be  co m p a r e d w i t h  a  d e s i gn m e th o d th a t

    m a k e s  use of the  l i near wave theory  for the  co n d i t i o n s  of a  b r e a k w a t e r  at

    Europoor t Ro t te rdam.

    An i m p o r ta n t a sp e c t  of the  eva lua t ion  of the  des ign p rocess  is the  co m p a r i so n

    o f Goda 's wave p ressure fo rmu lae w i th  the  l i near wave theory  and  w i t h  the

    resu l ts  of a  hyd rau l i c mode l s tu dy .

    The l i near wave theory  is  based upon  the  c o n c e p t t h a t w a v e s  can be

    ch a ra c te r i se d  as  l inear , s inusoida l waves  [ref 1], The  resu l t ing s imple

    m a th e m a t i ca l r e p re se n ta t i o n  is  easy  to  app ly  and  g i ves  a  g o o d a p p ro x i m a t i o n  of

    wave behav iou r .

    R e s t r i c t i o n s  of  t h i s s t u d y

    The fo l l ow ing l im i t i ng cond i t i ons  are

    app l ied :

    •  A  quas i -s ta t i c approach  is  used  to

    ana lyse  the  w a ve fo r ce s  on the

    m o n o l i t h i c b re a kw a te r .

    •  The w a v e s  are  cons ide red  not to

    break  as  breaking  is not  taken in to

    a c c o u n t

      in the

      ca l cu la t ion

      of the

    w a ve p re ssu re s w i th  the  l inear

    w a ve th e o ry .

    •  The  ve ry com p lex p rob lems  of the

    founda t ion fa l l ou ts ide  the  scope

    o f th i s s tudy .

      The

      hydrau l ic design data

      of a

    Europoort

    Rotterdam

    Figure  1.6

    The Netherlands

    b r e a k w a t e r  at  Eu ropoor t Ro t te rdam w i l l  be  used  for the  ca l cu l a t i o n s ,  see

    f i gu re  1.6 and  f igure  1.7.

    The d i rec t ion  of

    t h e w a ve c re s ts  is

    a s s u m e d

      to be

    c o n s t a n t  and

    n o rm a l  to the

    breakwate r ax i s .

    Th e b re a kw a te r  is

    co n s i d e re d  to

    have  a  ce r ta in

    l e n g t h ,  see  f igure

    1.8.

      The

    i n te ra c t i o n w i th

    th e   S id e s ( O th e r

      Figure  1.7

    ca issons)  is

    n e g l e c te d .

    Situation approach channel Europoort Rotterdam

    page  4

  • 8/19/2019 Deisgn of Caisson

    14/200

    O u t l i n e o f c o n t e n t s

    Figure 1.8

    Length of caisson

    In order to analyse the design process of a

    ca isson b reakwate r the des ign ph i losophy i s f i r s t d i scussed in chap te r 2 . Th is

    inc ludes the fa i l u re mechan isms, the de te rmina t ion o f the des ign pa ramete rs by

    means o f an economic dec is ion p rob lem and Goda 's des ign p r inc ip les .

    Pr ior to the actua l descr ip t ion of the design wave pressure formulae in chapter

    4 ( l inear wave theory) and 5 (Goda), chapter 3 summar ises the hydrau l ic design

    cond i t i ons fo r Europoor t Ro t te rdam. The hydrau l i c cond i t i ons a t deep wa te r a re

    t rans fo rmed dur ing the p ropaga t ion in to sha l lower wa te r wh ich in f l uences the

    probab i l i t y dens i ty func t ion o f the wave he igh t .

    In chap te r 6 the exper imen ta l s tudy i s descr ibed . Hydrau l i c mode l tes ts were

    car r ied ou t to compare the theore t i ca l resu l ts w i th exper imen ta l da ta . A mode l

    ca isson was p laced in a wave channe l and a t tacked w i th regu la r waves . The

    hor i zon ta l dynamic wave fo rce has been measured and the u l t ima te fa i l u re

    mechan ism have been cons ide red .

    The resu l ts o f the p robab i l i s t i c des ign method w i th the l i near wave theory , the

    formula o f Goda and the exper imenta l data are d iscussed in chapter 7 .

    Recommenda t ions fo r fu r the r research a re g i ven a lso .

    The f ina l conclus ions are g iven in chapter 8 .

    I t i s no ted tha t de ta i l ed background in fo rmat ion abou t the exper imen ts a re

    g iven in the append ices .

    page 5

  • 8/19/2019 Deisgn of Caisson

    15/200

    introduction

    page  6

  • 8/19/2019 Deisgn of Caisson

    16/200

    design principles

    D E S I G N   P R I N C I P L E S

    Goda developed an easy to apply pract ica l design method [ re f 4 ] . In order to be

    ab le to ana lyse h i s des ign ph i losophy , th i s chap te r dea ls w i th the ques t ion :

    W he n is a b reakw ate r d es ign a t an op t imu m fo r a pa r t i cu la r s i te ? The answ er

    is:

    The best design is defined as the structure that fulfils the requirements

    at minimum total costs.

    An inves tmen t i n a b reakwate r s t ruc tu re i s an economic dec is ion p rob lem and

    depends on a l l harbour re la ted act iv i t ies. For a breakwater protects the harbour

    aga ins t waves in such a way tha t the ha rbour bas in i s su f f i c ien t t ranqu i l fo r the

    sh ips to nav iga te and moor . Wi thou t the b reakwate r the sh ips wou ld on ly be

    ab le to use the ha rbour w i th reasonab le good wea ther cond i t i ons . Whether the

    breakwate r can improve the ea rn ing capac i ty o f the ha rbour depends fo r

    instance on the type and number o f sh ips us ing the harbour , the needed quay

    fac i l i t i es , the meteoro log ica l da ta , the hydrograph ica l da ta , the ha rbour re la ted

    economic sys tems, the fu tu re deve lopment o f the ha rbour , e tc . Th is imp l ies

    tha t the func t iona l requ i rements o f a b reakwate r a re re la ted to the economy o f

    the harbour .

    The to ta l cos ts o f the des ign depend on the inves tmen t and ma in tenance o f the

    s t ru c tu re . The inves tm en t w i l l be h igh fo r a s t ruc tu re w i th a h igh s t re ng th . The

    strength o f the structure wi l l be designed so as to res is t the extreme design

    cond i t i ons . These ex t reme des ign cond i t i ons resu l t f rom the accep ted

    probab i l i t y o f u l t ima te fa i l u re fo r the l i fe t ime o f the s t ruc tu re , wh i le the

    probabi l i ty o f fa i lure due to the amount o f over topping is dependent on the

    cres t e leva t ion o f the s t ruc tu re .

    In order to determine the probabi l i ty o f fa i lure , i t is f i rs t necessary to def ine

    when fa i l u re o f a ca isson b reakwate r occurs . Th is i s descr ibed in sec t ion 1 . The

    second sec t io n p resen ts subseq uen t l y a theo ry o f ho w to f ind the o p t im um

    design load in re la t ion to the costs. Goda 's design pr inc ip les concern ing the

    design parameters and accord ing ly fa i lure o f the structure are g iven in the th i rd

    s ec t i on .

    2 .1

      Fa i lu re me chan isms

    A b reakwate r fa i l s when i t does no t fu l f i l i t s ma in func t ion : p ro tec t the ha rbour

    aga ins t waves . Fo r examp le , when a c r i t i ca l va lue o f wave d is tu rbance in the

    harbour bas in i s exceeded , the sh ip hand l ing has to s top , wh ich reduces the

    earn ing capac i ty o f the ha rbour . The des ign o f a b reakwate r depends the re fo re

    on the requi red degree of protect ion of the harbour against the waves. Th is

    degree o f p ro tec t ion i s de f ined by the layou t o f the s t ruc tu re , the pe rmeab i l i t y ,

    page 7

  • 8/19/2019 Deisgn of Caisson

    17/200

    design principles

    the c res t l eve l (amoun t o f ove r topp ing ) and the energy absorp t ion (pe rcen tage

    o f re f l ec t ion o f the incoming waves) . The de f in i t i on o f fa i l u re o f a b reakwate r

    is:

    The b reakwate r fa i l s when the waves in the ha rbour a re h igher than a l l owed

    accord ing to the des ign c r i te r ia .

    A l though fa i l u re can occur du r ing bo th cons t ruc t ion and opera t ion , i n th i s s tudy

    only fa i lure dur ing operat ion of the breakwater has been considered because the

    cons t ruc t ion can be ca r r ied ou t du r ing good wea ther cond i t i ons . The p robab i l i t y

    of fa i lure represents the probabi l i t ies o f exceeding a g iven l imi t s ta te . The two

    d i f fe ren t s ta tes a re the se rv i ceab i l i t y l im i t s ta te and the u l t ima te l im i t s ta te

    T h e S e r v i c e a b i l i t y L i m i t S t a t e ( S L S )

    The serv ic eab i l i ty l imi t s ta te is the sta te o f the bre ak wa ter dur ing norm al

    load ing cond i t i ons . Fo r th i s s ta te the pe r fo rmance o f the b reakwate r i s

    eva lua ted under the ' no rma l ' o r da i l y cond i t i ons to wh ich the s t ruc tu re w i l l be

    exposed dur ing most o f i t s l i fe t ime .

    Fai lure is def ined in th is s ta te as: the breakwater does not fu l f i l i ts funct ion

    because the am oun t o f ove r topp ing i s too h igh , wh ich d i s tu rbs the ha rbour

    ac t i v i t i es . The harbour has to be c losed down. Th is can happen regu la r l y and

    there fo re the cos ts , whereas the losses due to the c los ing o f the ha rbour fo r a

    ce r ta in pe r iod can be subs tan t ia l , shou ld be taken in to accoun t . The h igher the

    cres t he igh t o f the b reakwate r the less over topp ing w i l l occur .

    An o the r s ta te o f fa i lu re i s , tha t the b re akw ate r does no t fu l f i l i ts requ i rem ents

    any more a f te r a few years , wh ich i s de te r io ra t ion o f s t ruc tu ra l res i s tance over

    t i m e .

      Th is means fo r i ns tance tha t the s t ruc tu re has moved th rough the years

    o r tha t the scour p ro tec t ion i s d i smant led . Th is type o f fa i l u re can be p reven ted

    by:

    • Inc reas ing the des ign res is tance in o rder to guaran tee su f f i c ien t s t reng th

    dur ing the serv ice l i fe .

    • Con t ro l l i ng the de te r io ra t ion th rou gh inspec t ion and ma in tenan ce

    procedures .

    Bo th me thod s o f imp rove me nt shou ld be take n in to acco un t a t the des ign s tage

    and w i l l a f fec t the cos ts o f the des ign .

    T h e  Ultimate

      L i m i t S t a t e ( U L S )

    The u l t ima te l im i t s ta te occurs du r ing ex t rem e cond i t i ons and has a ve ry sma l l

    p robab i l i t y o f occur rence . The b reakwate r fa i l s when the ex t reme hydrau l i c

    load ing is h igher than the res is tance of the structure. By eva luat ing a l l the

    fa i l u re mechan isms tha t a re l i ke l y to occur under spec i f i ed ex t reme cond i t i ons ,

    the ab i l i t y o f the s t ruc tu re to su rv i ve ex t reme cond i t i ons i s checked .

    page 8

  • 8/19/2019 Deisgn of Caisson

    18/200

    design principles

    The th ree most impor tan t fa i l u re mechan isms  of the  u l t ima te l im i t s ta te  are

    s l i d ing ,  o ve r tu rn i n g  and  fa i lu re  of the  f o u n d a t i o n ,  see f ig u r e 2 . 1 , 2.2 and 2.3.

    Ul t ima te fa i l u re w i l l  be  cons ide red  to  h a ve o ccu r re d w h e n :

      A

      d i sp l a ce m e n t

      is

      caused

      by the

      ho r i zon ta l wave fo rce exceed ing

      the

    hor i zon ta l f r i c t i on fo rce ,

      see

     se c t i o n

      2 . 1 . 1 .

    •  An  ove r tu rn ing  is  caused  by the  ho r i zon ta l  and  u p l i f t w a ve fo r c e s , see

    se c t i o n 2 .1 .2 .

    harbour

    harbour

    harbour

    Figure  2.1

    Sliding

    Figure  2.2

    Overturning

    Figure  2.3

    Failure  of the

    foundation

    Fai lure  of the  f o u n d a t i o n  can be ca u se d  by  se ve ra l p h e n o m e n a . Wa ve i m p a c t

    fo r ce s

      for

      i ns tance

      are

      re la t i ve l y h igh because the y resu l t f ro m w av e b reak ing .

    These fo rces  can cause  the  f o r m a t i o n  of  q u i cksa n d due to  r o ck i n g m o t i o n s  of

    the ca isson . These p rob lems fa l l ou ts ide   the  s co p e  of  t h i s s tu d y  but in  order  to

    avo id tha t p rob lems w i th  the  f o u n d a t i o n w i l l o ccu r ,  a  reasonab ly th i ck po rous

    fi l ter layer  has to be  p laced on the  sa n d b o t to m   to  prevent h igh pore pressures.

    2.1.1  B r e a k w a t e r s l i d i n g

    Breakwate r s l i d ing

      is the

      ho r i zon ta l t rans la t ion

      of the

      ca i sso n , w h i ch o ccu rs

    w h e n  the  ho r i zon ta l wave load   is  h igher than  the  ho r i zon ta l f r i c t i on f o rc e .

    s e a

    harbour

    X

    '  v  hydrostatic

    /

      _X

    s

      pressure

    W

    s e a

    Fw

      c

    Figure  2.5  Wave pressure  on  caisson  for <

    wave crest

    h a r b o u r

    flu

    Ff

    N

    N

    Figure  2.4

    Th e w a te r l e ve l  at the  harbour s ide  is

    a s s u m e d  to be the  sa m e as the

    w a t e r l e v e l  at the  seas ide . So the  same

    hydros ta t i c p ressure ac ts  on  bo th

    s ides

      of the

      ca i sso n ,

      see

      f igure

      2.5.

    The resu l t i ng fo rce  is  co n se q u e n t l y  the  ho r i zon ta l dynamic w av e fo rce

      F

    w

    .

    Disp lacement w i l l occur when th i s fo rce

      F

    w

      e xce e d s

      the

      ho r i zon ta l fou nda t ion

    Schematization  of  forces under  a

    wave crest

    page

      9

  • 8/19/2019 Deisgn of Caisson

    19/200

    design principles

    f r i c t i on fo rce  F

    f

    ,  see f i gu re 2 .4 . As an approx imat ion i t i s assumed tha t the

    ca isson fa i l s when the f r i c t i on fo rce i s exceeded and any d i sp lacement occurs .

    The hor i zon ta l dynamic wave fo rce

      F

    w

      is:

    F

    w

    =F

    w

    smut

      [ 2 1 ]

    i n w h i ch  cu  is the angular f req uen cy   =2n/T

    T   is the w av e per iod

    r is the t im e

    The load f requency w is far less than the natura l f requency of the structure

    the re fo re the fo rces can be cons ide red as s ta t i c .

    When the re i s no ve r t i ca l mo t ion , the re i s ve r t i ca l equ i l i b r ium:

    N - W - U - N '

      [ 2 2

    is the resu l t i ng upw ard no rma l fo rce

    is the weight o f the ca isson

    is the bu oya nt forc e of the ca iss on

    is the ins tan taneo us resu l tan t ve r t i ca l dynam ic fo rce

    caused by propagat ion of wave pressures under the

    s t ruc tu re

    The ins tan taneous resu l tan t ve r t i ca l dynamic fo rce  N'  can be expressed in

    te rms o f the ho r i zon ta l wave fo rce

      F

    w

    :

    N'

      = e

      F

    w

    = e F

    w

      sinca

     t

      [ 2

    -

    c

    i n w h i ch  e  i s a co e f f i c ien t , wh ich can be foun d f rom a foun da t io n

    mode l

    in w hi ch A/

    W

    U

    AT

    The hor i zon ta l f r i c t i on fo rce

      F

    f

    \s

      depend ing on the no rma l fo rce

      N

      and on the

    f r i c t i on be tween concre te and rubb le mound . The fo rmu la i s :

    F

    f

      )

      l

    2

    -

    5 ]

    3

    i n w h i ch  6  is the angle o f f r ic t ion be tw ee n so i l and co ncr ete

    0 is th e angle of intern al fr i ct ion of the soi l

    page 10

  • 8/19/2019 Deisgn of Caisson

    20/200

    design principles

    For 0 = 4 5 ° :  fJ  = t a n ( 2 /3 -4 5 ° ) = t a n 3 0 ° = 0 .5 8

    This is actua l ly an in terna l fa i lure mechanism and is considered as ' fa i lu re o f the

    f o u n d a t i o n ' .

    The ac tua l f r i c t i on be tween the top laye r o f the founda t ion and the base o f the

    caisson has to be empi r ica l ly der ived. For a r ibbed ca isson base the design

    va lue fo r th i s f r i c t i on fac to r i s approx imate ly 0 .5 . Th is decreases to

      f j =

      0 .4 for

    a f la t base [ re f 11] .

    I f the re i s ho r i zon ta l mo t ion , i t fo l l ows tha t :

    1 2 6 1

    i n w h i ch

      m

    b

      is the v i r tua l ma ss of the ca isso n

    dv/dt

      is the acc e lera t ion of the ca isson

    The water and so i l mass surrounding the ca isson wi l l in f luence the iner t ia

    charac te r i s t i cs o f the ca isson by tak ing pa r t i n the movement as  w e l l .  Th e re fo re

    the v i r tua l mass i s de f ined as an equ iva len t mass wh ich wou ld beg in to move

    wh en a d i sp lacem ent o f the ca isson occu rs . Mo t ion s ta r ts wh en the s ta t i c

    f r i c t i on fo rce i s f i r s t exceeded . The ex t ra v i r tua l mass wh ich has to s ta r t

    acce le ra t ing i s cons ide red to con t r ibu te ex t ra res is tance aga ins t any m ov em ent

    o f the s t ruc tu re .

    2 . 1 . 2 B re a kw a te r o ve r tu rn i n g

    The hor i zon ta l dynamic wave fo rce   F

    v

    and the ve r t i ca l dynamic wave fo rce

    AT ten d to ro ta te the ca is son to the

    harbour s ide, see f igure 2 .6 . The

    coun te r moment i s p rov ided by the

    tu rn ing moment o r ig ina t ing f rom the

    we igh t o f the s t ruc tu re .

    width o f   c a i s s o n

    ru b b le mou nd

    s e a

    w-u

    h a r b o u r

    F w

    1

    N'

    Figure 2.6

    Turning moments

    Figure 2.7

    Dynamic wave pressure

    Th e ve r t i ca l d yn a m i c w a ve fo r ce

      N'

      is assu me d to have a t r iangu lar d is tr ibut ion

    over the base, see f igure 2 .7 . However, the pressure at the heel o f the ca isson

    page 11

  • 8/19/2019 Deisgn of Caisson

    21/200

    design principles

    does not have to be zero. I t depends on the character is t ics o f the rubble mound

    founda t ion because the dynamic up l i f t p ressure depends on the ve loc i ty

    d is tr ibut ion of the water par t ic les underneath the ca isson. The la t ter is in i ts

    tu rn dependen t on the pe rmeab i l i t y o f the rubb le mound founda t ion . The

    ve loc i ty w i l l decrease due to f r i c t i on and tu rbu lence . The ve loc i ty d i s t r i bu t ion i s

    assumed to be l inear but the curve in the pressure d is tr ibut ion wi l l p robably be

    mu ch m ore gen t le . So a t r i angu la r p ressure d i s t r i bu t ion fo r the ve r t i ca l d ynam ic

    fo rce AT seem s a conse rva t i ve assu mp t ion .

    Equ i l i b r ium o f moments a round the  hee l ,  see f igure 2 .6 , y ie lds:

    (F

    w

      • arm,) • (N

  • 8/19/2019 Deisgn of Caisson

    22/200

    design principles

    fa i l u re o f the s t ruc tu re t imes the p robab i l i t y o f fa i l u re . The income f rom the

    harbour ac t i v i t i es and the to the ha rbour re la ted economic sys tems on accoun t

    o f the b reakwate r shou ld compensa te the to ta l cos ts .

    Every design wave or design load has a

    p robab i l i t y o f exceedance . I f the des ign wave i s

    s m a l l ,  the cos ts o f cons t ruc t ion w i l l be re la t i ve l y

    low but the r isk wi l l be re la t ive ly great . As the

    magni tude of the design load increases, the r isk

    w i l l decrease , due to the decreas ing p robab i l i t y

    tha t the des ign cond i t i ons w i l l be exceeded . Th is

    imp l ies tha t the des ign load must be such tha t the

    to ta l cos ts a re min im ized , see f i gu re 2 .8 .

    C o s t

    l-AV+B

    Fo

    D e s ig n  w ave o r l oad

    Figure 2.8 Determine

    optimum design

    wave

    I f design load  F

    0

      i s exceeded then d isp lacement x

    wi l l occur (s l id ing is considered as the f i rs t

    occurr ing fa i lure mechanism). Fa i lure wi l l be

    de f ined as d i sp lacem ent x = x

    0

    , the load is then

    F..

      Thus the probabi l i ty o f co l lapse is the

    probabi l i ty o f force  F

    1

      be ing exceeded (P(F

    7

    ) ) . The d imensions of the ca isson

    are known i f the design load   F

    0

      i s chosen . Hence the cos t o f cons t ruc t ion ,

    inves tmen t / , i s a func t ion o f  F

    0

    :

    i - m  [ 2 . 8 ]

    Dam age i s de f ined as a ce r ta in change in the s ta te o f the s t ruc tu re , wh ich does

    no t i n f l uence the func t ion ing o f the b reakwate r . Damage to a mono l i th i c

    b reakwate r i s o f ten p rogress ive . However , i t i s assumed tha t a second s to rm o f

    a g i ven in tens i ty causes jus t as much d isp lacement as the f i r s t one . Repa i r

    work wi l l on ly be carr ied out in the ca lm season once per year . The annual

    chanc e o f damage repa ir cos ts is the n independen t o f the numbe r o f d ama ge

    occur rences in tha t year . Because i f a b reakwate r moves tw ice as much as a

    resu l t o f a second storm, i t w i l l cost as much to jack i t in to p lace again .

    To de te rmine the amoun t o f r i sk , o r the so ca l l ed an t i c ipa ted damage, i t i s

    assumed tha t an insu rance company i s w i l l i ng to i nsu re a ca isson aga ins t

    damage . I f the theore t i ca l annua l p remium i s s :

    s = (proba bi l i ty o f dam age) • ( the cos t of repai r ing dam age)

    The ant ic ipated damage per year is :

    s  = P ( F

    1

    )  W

    [ 2 . 9 ]

    in w h ic h P(F

    ?

    ) is the prob abi l i ty tha t forc e  F

    1

      i s exceeded , wh ich i s the

    probabi l i ty o f u l t imate fa i lure

    W   is the cos t o f repai r ing w he n a fa i lure o f the struc tur e

    occurs

    page 13

  • 8/19/2019 Deisgn of Caisson

    23/200

    design principles

    The capi ta l ized va lue of the sum of the 'premiums' s depends on the l i fe o f the

    s t ruc tu re . I f i t s l i fe i s 100 years , the cap i ta l i zed an t i c ipa ted damage   D  is [ref

    16 ] :

    D   = M

      ( 1

      1 ) .  s  [2.10]

    i n w h i ch  6  is the rate of inte res t in % per year

    The to ta l cos ts C are de f ined as the cos ts o f cons t ruc t ion / and the cap i ta l i zed

    a n t i c i p a te d d a m a g e  D.  Hence  C = l + D.  I t is assumed that the cost o f

    construct ion / is a l inear funct ion of the requi red vo lume of the ca isson per

    met re o f exposed f ron t  V,  so

    l - A V + B

      [ 2

    '

    1 1 ]

    i n w h i ch  A  is the pr ice per cub ic me tre vo lum e of the ca iss on

    B   is the addi t iona l pr ice per cub ic me tre leng th o f the

    caisson (cost o f toe protect ion etc . )

    The re la t ion between the requi red vo lume of the ca isson per metre o f exposed

    f ron t Vand the des ign load  F

    0

      resu l ts f rom the fa i l u re mechan isms.

    2 . 2 . 2 D i m e n s i o n s o f  c a i s s o n

    Fai lure wi l l be considered to have occurred when the ca isson is t ransla ted

    (s l id ing) or ro ta ted (over turn ing) . Both fa i lure mechanism are re la ted to the

    we igh t and the geometry o f the s t ruc tu re . Fo r a p r i smat i c ca isson the he igh t

    and the w id th have to be op t im ized .

    Th e m i n i m u m re q u i r e d w i d th   b  is re la ted to the s l id ing mechanism because for a

    ce r ta in c res t he igh t ( resu l t i ng f rom the over topp ing c r i te r ion ) the w id th

    de te rmines the we igh t o f the ca isson wh ich p rov ides the s tab i l i t y . A Sa fe ty

    Factor i l lustra tes the stab i l i ty through a ra t io o f the force of res is tance and the

    dr iv ing force. The Safety Factor o f s l id ing is expressed as:

    S-F;

    Mng

      - 5-

      *

      constant,

      > 1

      [ 2 . 1 2 ]

    The va lue o f  constant

    1

      depends on the uncer ta in t i es in the assu mp t ions and

    fo rm u lae bu t shou ld be a t l eas t more than 1 to assure s tab i l i t y . W he n the inpu t

    data are not very re l iab le , the va lue of the safety factor should be made h igher

    than 1 .

    Ano ther impor tan t sa fe ty requ i rement fo r the s tab i l i t y i s tha t the en t i re base

    shou ld con t r ibu te to the upward no rma l p ressure . The moment a rm o f

      N

      is in

    that case equal to 1 /3 o f the width . A t r iangular pressure d is tr ibut ion for   N  is

    a s s u m e d ,

      see f i gu re 2 .9 . The max imum bear ing p ressure   p

    max

      ac ts a t the heel

    o f the s t ruc tu re fo r a wa ve c res t . Th is max imu m bear ing p ressure depend s on

    page 14

  • 8/19/2019 Deisgn of Caisson

    24/200

  • 8/19/2019 Deisgn of Caisson

    25/200

    design principles

    Th is p rocedure has to be execu ted fo r severa l he igh ts i f the min imum cres t

    he igh t can be taken h igher as the op t imum he igh t . Accord ing to the theory

    op t imum des ign fo l l ows f rom an economic ana lys i s .

    2 . 3 D e s i g n a c c o r d i n g t o   G o d a

    The fo rm u la o f Goda [ re f 4 ] i s a wo r ldw ide used des ign metho d fo r ve r t i ca l

    b reakwate rs based on the quas i -s ta t i c approach . See chap te r 5 fo r the wave

    pressure form ula e. Goda made h is form ula a f te r a lo t o f hydra u l ic sca le m ode l

    stud ies He judg ed the re l iab i l ity o f h is form ula by pred ic t in g the acc ura cy of

    b reakwate r s tab i l i t y w i th the a id o f the pe r fo rmance o f p ro to type b reakwate rs .

    His formula is va l id for breaking and nonbreaking waves. The basic source of

    th i s sec t ion is God a 's 'Random seas and des ign o f ma r i t ime s t ruc tu re s (19 85 ) .

    2 . 3 . 1 D e s i g n p a r a m e t e r s

    The des ign pa ramete rs a re the des ign wave , charac te r i zed by i ts wave he igh t

    and wave per iod and the des ign wa te r dep th .

    D e s i g n

      w a v e h e i g h t

    Goda s ta tes tha t the h ighes t wave in the des ign sea s ta te mus t be emp loyed .

    This is based on the pr inc ip le that a breakwater should be designed in order to

    be safe against the s ing le wave that has the largest pressure among storm

    w a ve s . Acco rd i n g to Go d a th e d e s i g n w a ve

      H

    d

      is the h ighes t wav e ou t of 25 0

    wa ve s Th is wa ve has a p robab i l i t y of exceed ance o f 0 .4 % se awa rd o f the

    sur fzone wh erea s w i th in the su r fzone the he igh t i s take n as the h ighes t o f

    random break ing waves a t a d i s tance 5 - /V

    s

      (H

    s

      is the mean of one- th i rd o f the

    h ighes t waves , see chap te r 3 ) seaward o f the b reakwate r . Goda de f ines the

    sur fzone or breaking zone as: 'A re la t ive ly wide zone of var iab le water depth in

    wh ich wave b reak ing takes p lace . Concern ing the b reak ing o f random sea

    w av es , the b reak ing po in t as we l l as the b reak ing wa ve h e igh t cann o t be

    de f ined c lea r l y , i n con t ras t to the case o f regu la r waves ' . So   H

    d

    - H

    max

    -H

    0A

    %-

    Goda s ta tes tha t the ra t io  H

    m

    JH

    s

      i s a f fe c te d by the numb er o f wa ve s in a

    r ec o r d .  The va lue of  H

    max

      shou ld the re fo re be es t im a te d , based upon the

    dura t ion o f the s to rm and the number o f waves . He wr i tes tha t the p red ic t i on

    genera l ly fa l ls in the range:

    H

    d

      =  (1.6 ... 2.0)  H

    s

      I

    2

     

    14 1

    To avoid possib le confus ion in the design, a def in i te va lue of   H

    d

    = 1.8 H

    s

      is

    recommended in cons ide ra t ion o f the pe r fo rmance o f many p ro to type

    breakwate rs as we l l as w i th regard to the accuracy o f the wave p ressure

    es t ima t ion . Cer ta in l y the re rema ins the poss ib i l i t y tha t some waves exceed ing

    1  8 H  w i l l h i t the s i te of the b reak wate r w he n s to rm w av es equ iva len t to the

    design condi t ion a t tack. But the d is tance of s l id ing of an upr ight sect ion, i f i t

    were to s l i de , wou ld be ve ry sma l l . I t shou ld be remarked , however , tha t the

    prescr ip t i on

      H

    d

    = 1.8-H

    S

      is a reco mm end a t ion and no t a ru le .

    page 16

  • 8/19/2019 Deisgn of Caisson

    26/200

    design principles

    D e s i g n w a ve h e i g h t  H

    d

      is the sm al ler one of  1.8-H

    s

      or   H

    b

    . H

    b

      is the l im i t ing

    wave he igh t o f a b roken wave a t  5-H

    s

      d i s ta n ce o f f sh o re .

    D e s i g n   w a v e p e r io d

    The per iod o f the h ighes t wa ve i s take n as tha t o f the s ign i f i can t w av e ,

    T

    d

      = T

    s

    .  The wave per iod does no t exh ib i t a un ive rsa l d i s t r i bu t ion law such as

    the Ray le igh d i s t r i bu t ion fo r wave he igh ts accord ing to Goda . Never the less

    found emp i r i ca l l y tha t the rep resen ta t i ve pe r iod pa ramete rs a re in te r re la ted .

    Go d a fo u n d th a t  T

    d

      l i es i n the range (0 .6 . . .1 .3 )7 ; and takes   T

    d

      in the midd le o f

    tha t range .

    D e s i g n

      w a t e r d e p t h

    The recommended des ign wa te r dep th i s based on the fac t tha t the g rea tes t

    wave p ressure i s exe r ted no t by waves jus t b reak ing a t the s i te , bu t by waves

    wh ich have a l ready begun to b reak a t a d i s tance . Fo r the sake o f conven ience ,

    the d i s tance  5-H

    s

      f rom the b reakwate r w i l l be used fo r the des ign wa te r dep th .

    Goda der i ved th i s f rom labora to ry da ta on b reak ing wave p ressures .

    2 . 3 . 2   R e s i s t a n c e  a ga i n s t f a i l u re

    The ca isson must be sa fe aga ins t s l i d ing and over tu rn ing . The sa fe ty fac to r

    against s l id ing of Goda is def ined as:

  • 8/19/2019 Deisgn of Caisson

    27/200

    design principles

    M

      i

    s

      t h e tu rn i n g m o m e n t d u e to t h e d yn a m i ca l w a ve

    'Fw_goda .

    fo rce accord ing to Goda

    The sa fe ty fac to rs shou ld no t be less than 1 .2 accord ing to Goda . He takes the

    coe f f i c ien t o f f r i c t i on

      f j

      as 0 .6 ( f r i c t i on coe f f i c ien t be tween concre te and rubb le

    s tones ) .

    The bear ing capac i ty o f the founda t ion shou ld be ana lysed . Goda assumes tha t

    a t rapez oida l d is tr ibut ion of bear ing pressure ex is ts bene ath the bas e. The

    largest bear ing pressure at the heel  p

    m a x g o d a

      is ca lc u la te d as:

    2 W  1   u

    / W * -

      T i ^

      1

      ^

    3

      '

      [ 2 1 7 ]

    i n w h i ch  N

      o d a

      is the upw ard no rma l fo rce accord ing to Goda

    a

    3

    °f   is the lever arm of the up wa rd norm al forc e

    M

    goda

    accord ing to Goda :

    _ _

      M

    N

    g o d

    .  [ 2 . 1 8 ]

    goda f j

    ' goda

    i n w h i ch  M

    N o d a

      is the tu rn ing m om ent o f the upw ard no rma l fo rce

    ~

    9

    °

      3

      acc ord in g to Goda around the heel o f the str uct ure

    P r e c a u t i o n s   a g a i n s t I m p u l s i v e B r e a k i n g W a v e   p r e s s u r e

    The p ressure due to b reak ing waves may r i se to more than ten t imes the

    hydros ta t i c p ressure co r respond ing to the wave he igh t , though i ts du ra t ion w i l l

    be very shor t . Goda exp la ins that i t would be ra ther foo l ish to design a ver t ica l

    b reakwate r tha t i s d i rec t l y exposed to impu ls i ve b reak ing wave p ressures . A

    rubb le moun d b rea kwa te r w ou ld be the na tu ra l cho ice in such a s i tua t ion . I t i s

    no t the magn i tude o f the g rea tes t p ressure bu t , ra the r , the occur rence o f the

    impu ls i ve b reak ing wave p ressure tha t i s mos t impor tan t . Tab le 2 .1 i s a gu ide

    for judg ing the possib le danger o f impuls ive breaking wave pressure.

    2 . 3 . 3 D i m e n s i o n s o f

      c a i s s o n

    The w id th sa t i s fy ing the cond i t i ons o f the sa fe ty fac to rs and the max imum

    bear ing pressure is the m in im um requi red wi d th in re la t ion to a cer ta in c res t

    e l e v a t i o n .  The cr i ter ion of the crest e levat ion in Japan is a t a he ight o f 0 .6

    t ime s the s ign i f i can t w av e he igh t above des ign wa te r l eve l . Th is c r i te r ion is

    used in s i tua t ions w her e a sma l l amoun t o f wa ve o ver topp ing and res u l tan t

    w a ve t r a n sm i ss i o n i s t o l e ra te d .

    Goda 's exper imen ts showed tha t the requ i red ca isson w id th depends on the

    wave per iod . The w id th has to i nc rease w i th an inc reas ing wave per iod (see

    page  8

  • 8/19/2019 Deisgn of Caisson

    28/200

    design principles

    Table  2.1

    Questionnaire  for  judging  the  danger  of  impulsive breaking wave pressure

    A - l  Is the angle between the wave direction

    and the line normal to the breakwater

    less than

      20°

     ?

    1

     Y e s

    A-2

      Is the rubble mound sufficiently small

    to be considered negligible?

    1

     Y e s

    A-3  Is the sea bottom slope steeper than 1/50?

    I  Yes

    A - 4  Is the

     steepness

     of the equivalent

    deep water wave less than about

     0.03?

    1

     Y e s

    A-5

      Is the breaking point of a progressive

    wave (in the absence of a structure)

    located only

     slightly

      in front of the

    breakwater?

    1

     Y e s

    A-6

      Is the

      crest

      elevation so high as

    not to allow much overtopping?

    I  Yes

    No

    L i t t l e

      Danger

    No

    Go to B-l

    No

    Li t t l e  Danger

    No

    • L i t t l e  Danger

    No

    - > L i t t l e  Danger

    No

    — L i t t l e

      Danger

    Danger of Impulsive Pressure  Exists

    B - l

      Is the combined sloping section and

    top berm of the rubble mound broad

    enough (refer to Fig. 4.20)?

    1

     Y e s

    B-2  Is the mound so high that the wave

    height

      becomes

     nearly equal to or

    greater  than the water depth  above

    the mound (refer to Fig. 4.21)?

    1

     Y e s

    B-3 Is the

     crest

     elevation so high as not to

    cause

     much overtopping?

    I  Yes

    No

    — > - L i t t l e  Danger

    No

    • Li t t l e  Danger

    No

    — •

     L i t t l e

     Danger

    Danger of Impulsive Pressure  Exists

    ch a p te r  5 for  explanation  and appendix  F for the

      ca l cu la t ions) .

    page  19

  • 8/19/2019 Deisgn of Caisson

    29/200

    design principles

    2 . 3 . 4 R u b b l e m o u n d fo u n d a t io n

    Berm he i gh t

    " It   is best to set the he ight o f the rubble mound foundat ion as low as possib le

    to p reven t the genera t ion o f l a rge wave p ressure . Bu t the func t ion o f   a  rubb le

    mo und - to sp read the ve r t i ca l load due to the we ig h t o f the up r igh t se c t ion

      a n d

    the wave fo rce over a w ide a rea o f the seabed- necess i ta tes a m in imum he igh t ,

    which is requi red not to be less than 1.5 m in Japan. Fur ther more the   t o p

    should not be too deep, in order to fac i l i ta te underwater operat ions of d ivers in

    leve l l i ng the su r face o f the rubb le mound fo r even se t t i ng o f the up r igh t sec t ion .

    A cos t ana lys i s w i l l y ie ld the op t imum he igh t . "

    1

    Berm  width

    " I f the seabed is sof t , the d imensions of the rubble mound should be

    de te rmined by sa fe ty cons ide ra t ions aga ins t c i rcu la r s l i p o f the g round . The

    berm in f ron t o f an up r igh t sec t ion func t ions to p rov ide p ro tec t ion aga ins t

    possib le scour ing of the seabed. A wide berm is desi rab le in th is respect , but

    the cost and the danger o f inducing impuls ive breaking wave pressure prec ludes

    the des ign o f too g rea t a be rm w id th . The p rac t i ce in Japan i s fo r a m in imum o f

    5 m under no rma l cond i t i ons and abou t 10 m in a reas a t tacked by la rge s to rm

    waves . The berm to the rea r o f an up r igh t sec t ion has the func t ion o f sa fe l y

    t ransmi t t i ng the ve r t i ca l l oad to the seabed . I t a l so p rov ides an a l l owance o f

    some d is tance i f s l id ing should occur .The grad ient o f the s lope of the rub le

    mound is usual ly set a t 1 :2 or 1 :3 for the seaward s ide and 1:1 .5 to 1 :2 for the

    h a r b o u r "

    2

    F o o t - p r o t e c t i o n   b l o c k s

    " In b reakw ate r con s t ruc t ion in Jap an , i t is cus tom ary to p rov ide a fe w r ow s o f

    foo t -p r o te c t io n conc re te b locks a t the f ron t and rea r o f the up r igh t sec t ion see

    f i g u re 2 .1 2 .

    Cres t E leva t ion

    v iO.O

    C o n c r e t e C r o w n

    v iO.O

    Upr igh t Sec t ion

    oot - P ro tec t i on

    Concre te B locks

    A r m o r S t o n e s ( B l o c k s )

      N X

    \

    X

    Upr igh t Sec t ion

    Foot P ro tec t i on

    Concre te B locks

    Upr igh t Sec t ion

    3 Rubble Mnund Foun dat ion

    Figure 2.12 Idealized typical section [ref 4]

    The foo t p ro tec t ion usua l l y cons is ts o f rec tangu la r b locks we igh ing f rom 10 to

    40 tons , depend ing on the des ign wave he igh t . Foo t -p ro tec t ion b locks a re

    Goda,  V.,  Random seas and design of maritime structures. University of Tokyo Press, 1985. page 139

    Goda, Y., Random seas and design of maritime structures. University of Tokyo Press, 1985. page 139

    page 20

  • 8/19/2019 Deisgn of Caisson

    30/200

  • 8/19/2019 Deisgn of Caisson

    31/200

    design principles

    p a g e 2 2

  • 8/19/2019 Deisgn of Caisson

    32/200

    hydraulic design conditions

    H Y D R A U L I C  D E S I G N

      C O N D I T I O N S

    To be ab le to say someth ing about the probabi l i ty o f fa i lure o f the breakwater ,

    the p robab i l i t y o f the wave load shou ld be de te rmined wh i le the s t reng th o f the

    s t ruc tu re i s cons ide red to be cons tan t . A b reakwate r fa i l s i n the u l t ima te l im i t

    s ta te (ULS) when the ex t reme wave load i s h igher than the res is tance o f the

    s t ruc tu re . The p robab i l i t y o f exceedance o f th i s ex t reme wave load de te rmines

    the re fo re the res is tance and the d imens ions o f the s t ruc tu re (chap te r 2 ) .

    The wave load i s a func t ion o f the wa te r dep th   h,  t h e w a ve h e i g h t  H  and the

    wave per iod  T.  The re fo re the jo in t p robab i l i t y dens i ty func t ion o f the h igh w a te r

    leve l ( i nc lud ing t i des and meteo ro log ie e f f ec ts ) , the wa ve h e igh t and the wa ve

    per iod is needed.

    The ex t reme wave load resu l ts f rom a s ing le wave in a s to rm. The p robab i l i t y o f

    exceedance of th is s ing le wave cannot be re la ted to the probabi l i ty o f

    exceedance o f a charac te r i s t i c wave he igh t . There fo re the f requency o f

    exceedance o f i nd iv idua l des ign wave he igh ts i s needed . The chance tha t a

    ce r ta in des ign wave he igh t  H

    d

      is exceeded dur ing the l i fe t ime / o f the structure

    needs to be found . When the jo in t p robab i l i t y dens i ty func t ion o f

      H

      and

      T

      is

    g i ven fo r a con s tan t wa te r de p th , the p robab i l i ty o f exceedan ce o f  H  and 7 can

    be de te rmined .

    The var ia t ion in the seabed leve l has a s ign i f icant in f luence on the hydrau l ic

    load ings because a change in the wa te r dep th w i l l a f fec t the charac te r i s t i cs o f

    the waves . Th is imp l ies tha t fo r a cons tan t des ign wa te r dep th , shoa l ing and

    break ing o f waves in f l uence the jo in t p robab i l i t y dens i ty func t ion o f the wave

    he igh t and the wave per iod . The p robab i l i t y o f the wave loads changes

    accord ing ly .

    In the f i r s t sec t ion the p robab i l i ty dens i ty func t ion s o f the wa te r d ep th , the

    wave he igh t and the wave per iod a re g i ven fo r the Nor th Sea (deep wa te r ) . In

    the second sec t ion the t rans fo rmat ion o f waves en te r ing f rom deep wa te r i n to

    sha l lowe r w a te r i s descr ibed . The chance tha t a ce r ta in des ign wa ve he igh t i s

    exceeded i s de te rmined in the th i rd sec t ion .

    W a v e

      s t a t i s t i c s

      i n o p e n s e a

    A wave can be charac te r i zed by i ts wave he igh t and wave per iod . There fo re the

    dis tr ibut ion of wave he ights and wave per iods g ive the probabi l i ty o f

    occur re nce o f a s ing le wa ve fo r a con s tan t wa te r d ep th .

    In deep wa te r a s to rm can be charac te r i zed by the s ign i f i can t wave he igh t  H

    s

    and the peak per iod

      T ,

      assuming a s ta t i s t i ca l l y s ta t iona ry sea s ta te du r ing the

    s t o r m .

      Fo r sha l low wa te r cond i t i ons th i s assumpt ion can be unrea l i s t i c due to

    page 23

  • 8/19/2019 Deisgn of Caisson

    33/200

    hydraulic design conditions

    var ia t i ons

      in

      wa te r l eve l caused

      by

      t ida l and/or

      set up

     e f f e c t s .

      See

     f i gu re

      3.1 for

    the or ig in

      of the

      p robab i l i t y dens i ty func t io ns (p .d . f . ) .

    In f igure

      3.1 the

      fo l l ow ing express ions

      are

      used :

    • m e a n

      sea

     l eve l (MSL) , w h ic h

      is the

      re fe rence wa t e r l eve l . A  rise

    o f

      the MSL due to

      l ong te rm c l ima t i c va r ia t i ons (usua l l y taken

     as

    0 .1

     - 0 . 1 5 m) is not

      t a ke n i n to a cco u n t ;

    • ve r t i ca l t i de , wh ich

      is

      because

      of the

     as t ron om ica l d r i ven fo rc e

    en t i re l y de te rmin is t i c ;

    astronomic forces

    T I D E

    Mean sea level

    Tide

     (vertical)

    Wind  set up

    ' J

    I  p.d.f.. storm surge level h

    X

    global climatic conditions

    meteorological conditions

    W I N D

    Waves

    Wind

      waves

    I

    p.d.f. wave steepnes s  j p.d.f. wave height H

    1  L

      J

    JOINT   P R O B A B I L I T Y

      D E N S I T Y

      F U N C T I O N 

    H,TJ

    A )

    Figure

      3.1

      Hydraulic design conditions

      for

      deep water

    • w i n d

      set up,

     w h i c h

      is

     ca u se d

      by

      shear s t ress , exe r ted

      by

      w i n d ,

    on

      the

     wa te r su r fac e causes

      a

     s lope

      in the

     w a te r su r fa ce

      as a

    resu l t

      of

      w h i c h w i n d

      set up and set

     d o w n o c c ur

      at

      d o w n

      and up

    wind shore l i nes ;

    • s to rm su rge leve l , wh ich

      is the

     h ighe st s t i l l wa te r leve l dur ing

      a

    s t o r m ;

    I n d i v i d u a l s e a   s t a t e s

    A n   ac tua l wave record f rom

      a

      w a ve g a u g e

      in the sea

     g i ves

      an

      i r regular w av e

    pro f i l e .

      For an

     e xa m p l e

      see

     f igure

      3.2. On the

      hor izonta l ax is

      the

     t i m e

      is

      g i ven

    page

      24

  • 8/19/2019 Deisgn of Caisson

    34/200

    hydraulic design conditions

    >-

    Figure 3.2

    Typical wave record Iref 5]

    and the wa te r su r face e leva t ion

      n

      is g iven on the ver t ica l ax is . To be ab le to

    ana lyse the waves , the mean wa te r su r face leve l i s de f ined as the ze ro l i ne .

    A wa ve i s de f ined as a wa te r m ove me nt b e tw een a po in t where the s u r face

    prof i le crosses the zero l ine upward and the next zero-up-cross ing po in t . So the

    hor i zon ta l d i s tance be tween two ad jacen t ze ro -up-c ross ing po in ts de f ines the

    wave per iod  T.  The ve r t i ca l d i s tance b e tw een the h ighes t and low es t po in ts i n

    a wave i s de f ined as the wave he igh t

      H.

      When the waves a re l i s ted in

    inc reas ing o rder o f the wave he igh t , a rep resen ta t i ve wave he igh t can be

    d e f i n e d .

      Of ten the s ign i f i can t wave he igh t  H

    s

      i s used , wh ich i s the mean o f

    one- th i rd o f the h ighes t waves .

    The s tandard record ing pe r iod o f a wa ve record i s 20 m inu tes and rep resen ts

    wave cond i t i ons over a 3 hour pe r iod , du r ing wh ich the cond i t i ons a re assumed

    to be ' s ta t i on ary ' . Dur ing each s ta t iona ry sea s ta te a sho r t - te rm w av e he igh t

    d i s t r i bu t ion app l ies .

    3 .1 .1  D is t r i bu t ion  o f   w a ve h e i g h ts

    When the charac te r i s t i c va lues , the s ign i f i can t wave he igh ts   H

    s

      o f e a ch s to rm ,

    a re p lo t ted , a s ign i f i can t re la t i on i s found : the long te rm d is t r i bu t ion .

    Frequen t i e

    X

    Figure 3.3 Histogram of wave heights /ref 15]

    A smooth d i s t r i bu t ion o f wave he igh ts i s ob ta ined by us ing many wave records ,

    page 25

  • 8/19/2019 Deisgn of Caisson

    35/200

    hydraulic design conditions

    in which the ord inate is then the re la t ive f requency so that the area under the

    h is tog ra m is equa l to 1 , see f i gu re 3 .3 . No rma l l y the wa ve he igh ts a re

    norma l i sed by the s ign i f i can t wave he igh t wh ich can be the Ray le igh

    d is t r i bu t ion fo r the d i s t r i bu t ion o f i nd iv idua l wave he igh ts (see f i gu re 3 .4 ) :

    [ 3 . 1 ]

    H  In  m

    Figure 3.4 Rayleigh distribution for H

    so

      = 9 m (R=100 years)

    Tab le 3 .1 g i ves the long te rm d is t r i bu t ion o f s ign i f i can t wave he igh ts fo r deep

    wate r (Nor th Sea) .

    . 2 D i s t r i b u t io n o f w a v e p e r i o d s

    The wave per iod does no t exh ib i t an un ive rsa l d i s t r i bu t ion law . The range o f the

    per iods depends on the or ig in o f the waves. In some cases, the per iod

    d is t r i bu t ion i s even b i -moda l , w i th 2 peaks co r respond ing to the mean per iods

    o f the w ind waves and swe l l (waves genera ted in ano ther w ind f i e ld a rea ) .

    The wave per iods can be ana lysed by assuming tha t sea waves cons is t o f an

    in f in i te number o f waves w i th d i f fe ren t f requenc ies , see chap te r 4 .

    To de te rmine the p robab i l i t y dens i ty func t ion o f the wave per iod , the p robab i l i t y

    dens i ty func t ion o f the wave s teepness s i s used . The re la t i on be tween the

    wave per iod and the wave s teepness i s :

    [ 3 . 2 ]

    2n

    i n w h i ch  s

    p

      i s the wa ve s teepness w i th pe r iod  T

    p

    H

    s

      i s the s ign i f i can t wa ve he igh t

    L

    p

      i s the wa ve leng th o f the wa ve w i th pe r iod  T

    p

    T

    p

      is the peak per iod (around w hi ch the w av e ene rgy is

    co n ce n t ra te d )

    page 26

  • 8/19/2019 Deisgn of Caisson

    36/200

    ' hydraulic design conditions

    H   and s a re assum ed to be independen t s toc has ts . Th is ass um pt ion i s fa i r l y

    0 . 1 2 i "   1

    0.1¬

    0.08¬

    0.06¬

    0.04¬

    0.02-

    O-l r

    «(%)

    Figure 3.5 Probability dens ity function of the wave steepness in the North Sea [ref 15]

    conserva t i ve because the re i s a re la t i on be tween  H

    s

      and  s

    p

    :  h i g h s te e p w a ve s

    are more l ike ly to occur than smal l s teep waves. Figure 3 .5 g ives the probabi l i ty

    dens i ty func t ion o f the wave s teepness o f the Nor th Sea .

    Table 3.1 Hydraulic design conditions [ref 13]

    Hydrau l i c des ign cond i t i ons

    At deep water

    At the site

    R (years)

    Hso (m)

    T (s)

    h (m)

    0.1

    4 .5

    7 .4

    1 2 .8

    0 .5

    5.5

    9 .0

    1 3 .0

    1

    6.0

    1 0 .0

    1 3 . 2

    5

    7.0

    1 1 .0

    1 3 .7

    10 7.5 1 1 .5 1 3 .9

    2 0

    8.0

    1 2 .0

    1 4 .2

    5 0

    8.5

    1 2 .5

    1 4 .4

    1 0 0

    9.0

    1 3 .0

    1 4 .6

    5 0 0

    1 0 .0

    1 4 .0

    15 .1

    1 0 0 0

    10 .5

    1 5 .0

    1 5 .3

    5 0 0 0

    1 1 .5

    1 6 .0

    1 5 .8

    page 27

  • 8/19/2019 Deisgn of Caisson

    37/200

    hydraulic design conditions

    I t is a normal d is tr ibut ion g iven by:

    1 1 _

      ( s - O

    2

    ,

    /2rc

      °

    ex p [ -

    [ 3 . 3 ]

    2 o

    s

    i n w h i ch s i s the wa ve s teepne ss

    f i s the mea n = 3 . 7 %

    a i s the s tandard dev ia t ion = 0 .5 %

    When the two p robab i l i t y dens i ty func t ions a re comb ined the boundar ies o f the

    jo in t p robab i l i t y dens i ty func t ion o f the wave he igh t and the wave per iod i s

    c

    Figure 3.6 Boundaries of the joint probability density function of H

    s

      and T

    p

      and the given values from

    Table 3.1 Iref 13)

    f o u n d ,  see f igure 3 .6 and appendix A for the der ivat ion.

    As t ronomic t i des and meteoro log ie e f fec ts g i ve the s ta t i s t i cs o f h igh wa te r

    leve ls .

    I t i s assumed tha t bo th the wa te r l eve ls and the s to rm waves occur

    s imu l taneous ly and tha t one s to rm las ts 6 hours . Wave cond i t i ons measured

    and extrapola ted at deep water near the design locat ion are g iven in Table 3 .1

    i n w h i ch

    R

    H

    s

    T

    h

    i s the re turn per iod •

    i s the s ign i f i can t wave he igh t a t deep wa te r

    is the wave per iod

    is the water depth a t the s i te

    The chance o f occur rence in te rms o f the re tu rn pe r iod can be t rans fo rmed by

    assuming that a year can be d iv ided in a number o f s torm in terva ls . Th is is a

    con serva t i ve as sum pt ion because a s to rm does no t occur i n every in te rva l i n

    page 28

  • 8/19/2019 Deisgn of Caisson

    38/200

    hydraulic design conditions

    rea l i ty . Th is t rans fo rmat ion i s on ly va l i d when the p robab i l i t y o f exceedance i s

    expressed in years , wh ich i s ca l l ed the long te rm d is t r i bu t ion . Fo r such a

    d is t r i bu t ion ma ny wa ve records over a ce r ta in pe r iod o f t ime a re needed .

    Th e f r e q u e n cy  f= 1/R  is the num ber o f s torm in terv a ls in a year m ul t ip l ied by

    the chance tha t the wave he igh t  H  i s exceeded dur ing a s to rm. A s to rm

    durat ion is taken as 6 hours. So

    f

      _ 3 65   d a y s   * 2 4  h o u r s

      #  m

      _ 365 * 24

      p (

    ^

      = 1 4 6 Q p ( f y ) [ 3 4 ]

    s t o rm d u ra t i o n

      h o u r s

      6

    Which imp l ies tha t 1460 s to rms per year occur . Fo r examp le :

    R =   1 year  f=\ -» ?(H)  =  1/1460  = 6 . 8 5 * 1 0 "

    4

    R=

      10 years -*

      f=0A

      -»

      ?{H) =

      0 . 1 / 1 4 6 0 = 6 . 8 5 * 1 0 ~

    5

    T r a n s f o r m a t i o n o f d e e p w a t e r d a t a t o d a t a a t t h e s i t e

    The t rans fo rmat ion o f waves p ropaga t ing f rom deep wa te r i n to sha l lower wa te r

    can be schemat i sed as i l l us t ra ted in f i gu re 3 .7 . Waves can be t rans fo rmed due

    to shoa l ing , b reak ing , d i f f rac t ion and re f rac t ion .

    • Shoa l ing is a change in wa ve he igh t wh en wa ve s p ropaga te in

    vary ing water depths as a resu l t o f the change in the ra te o f

    energy f l ux .

    • W ave b reak ing occurs because o f the l im i ta t i on o f the wa ve

    he igh t i n re la t i on to the wa te r dep th and the wave s teepness .

    • D i f f ra c t ion is the t ran s fo rm at ion of the wa ve s due to the

    in te r fe rence o f the waves w i th the s t ruc tu res they mee t . The

    resu l t i ng wave f i e ld a round a b reakwate r i s d i f fe ren t f rom the

    u n d i s tu rb e d w a ve  f ie ld .  The wave d i rec t ion i s neg lec ted in th i s

    s tudy the re fo re on ly the in f l uence o f waves re f lec ted by the

    s t ruc tu re w i l l be take n in to acco un t (see chap te r 4 fo r the t heo ry

    o n s ta n d i n g w a ve s ) .

    • Re f rac t ion is the change in the wa ve p ropaga t ion ve lo c i ty and in

    the d i rec t ion o f wave p ropaga t ion when waves p ropaga te in

    va ry i n g w a te r d e p th .

    When waves approach sha l lower wa te r w i th the i r c res ts a t an ang le to the

    dep th con tours , the wave c res ts appear to cu rve in a way tha t the ang le w i th

    the dep th con tours decreases . The wave ce le r i ty decreases as the wa te r dep th

    decreases . Fo r s imp l i c i ty , re f rac t ion in f l uences w i l l be neg lec ted .

    W a v e s h o a l i n g

    The var ia t ion in wave he ight due to var ia t ion in the speed of energy

    propagat ion, i .e . the group ve loc i ty is g iven by [ re f 1 ] :

    page 29

  • 8/19/2019 Deisgn of Caisson

    39/200

    hydraulic design conditions

    joint probability

     density

     function  H.TJi)

    shoaling

    breaking

    limit  f h) limit f L )

    censored probability density function

      H,T)

    P(failure)

    Figure 3.7 Transformation deep water data

    i n w h i ch

    H

    Ho

    Cg

    ( C J

    k

    h

    g'o

    H

    Ho

      N °

    0

    2kh

    [ 3 . 5 ]

    „ [ 1 +

    N s i n h ( 2 / c / j )

    ] tanh/V/j

    i s the shoa l ing coe f f i c ien t

    is the wave he ight a t the s i te

    i s the wave he igh t a t deep wa te r

    i s the g roup ve loc i ty o f the waves

    is the g roup ve loc i ty o f the waves in deep wa te r

    i s the wave number

      (2nlL)

    i s the water depth a t the s i te

    The phenomenon o f shoa l ing can no t be neg lec ted because K

    s h

      is purely a

    fu n c t i o n o f  h/L.  The shoa l ing coe f f i c ien t fo r Europoort R o t te rda m i s i nd ica ted in

    Tab le 3 .2 .

    Table 3.2

    Transformed hydraulic design conditions

    R

      ( y r s ) H s o   (m) h ( m ) H m a x l

     =0.5h

    L ( m ) K s h = H / H o H m a x 2 = H s o * K s h

    H s

      (m)

    H x P(H a)

    N

    0.1

    4.5

    12.8

    6.4

    70

    0.9133

    4.1

    4.1

    6.2

    0.00685

    3000

    0.5 5.5

    13

    6.5

    91 0.9308

    5.1

    5.1

    7

    0.00137

    2500

    1 6

    13.2

    6.6

    104

    0.9487

    5.7

    5.7

    7.5

    0.000685

    2000

    5

    7

    13.7

    6.9

    118

    0.9667

    6.8

    6.8

    8

    0.000137

    1000

    10

    7.5

    13.9

    7

    125

    0.9766

    7.3

    7

    8.2

    6 .85E-05

    1000

    20 8

    14.2

    7.1

    132

    0.9858

    7.9

    7.1

    8.5

    3 . 4 2 E - 0 5

    1000

    50 8.5

    14.4

    7.2

    139

    0.9958

    8.5

    7.2

    8.7

    1 .37E-05

    900

    100

    9

    14.6

    7.3

    147

    1.006

    9.1

    7.3

    8.9

    6 .85E-06

    800

    500 10

    15.1

    7.6

    162

    1.025

    10.3

    7.6

    9.3

    1.37E-06

    600

    1000

    10.5

    15.3

    7.7

    175

    1.048

    11 7.7

    9.5

    6 .85E-07

    500

    5000

    11.5

    15.8

    7.9

    191

    1.066

    12.3

    7.9

    9.9

    1 .37E-07

    500

    page 30

  • 8/19/2019 Deisgn of Caisson

    40/200

    hydraulic design conditions

    The ra t io

      H/H

    0

      is obta ined f rom the va lue of

      h/L

    0

      us ing appen d ix C f ro m the

    Shore Protection Manu al  [ ref 14 ] . The deep wa te r wa ve leng th is  L

    0

    =gT

    2

    /2n.

    W av e break in g . .. . . .

    Break ing o f waves can occur fo r two reasons . The f i r s t reason i s the l im i ta t i on

    o f wave he igh t due to the wa te r dep th . Second ly , the wave s teepness i s

    l im i t ed .

    The breaking cr i ter ion due to the water depth is normal ly g iven by the breaker

    index

      (y

    br

    )

      de f ined as the ra t io o f the max imu m wa ve he igh t to wa te r de p th

    rat io  (H/h):

    2

      * r - i - y „

      [ 3

    -

    6 1

    .

      s

      l . J max  •

     b r

    h h

    For regular waves

      y

    br

      has a theore t i ca l va lue o f 0 . 78 . W h i le fo r ir regu la r wa ve s

    ( rep resen ted by  H

    s

    )  va l u e s a re fo u n d fo r ^ = 0 . 5 - 0 . 6 [ re f 5 ] . Th e a c tu a l li m i t in g

    w a ve h e i g h t r a t io ^ d e p e n d s m a i n l y o n th e be d s lo p e  m  and the wave

    s teepness s . In th i s s tudy  y

    br

    =0.b  is tak en for i r regular w av es .

    Waves in deep wa te r b reak when a ce r ta in l im i t i ng wave s teepness s i s

    exceeded . M iche [ re f 5 ] s ta tes tha t the max imum s teepness o f a nonbreak ing

    wave i s 0 .142 = 1 /7 . The wave s teepness i s de f ined as the ra t io o f wave he igh t

    to w a ve l e n g th  H/L.

    However the b reak ing c r i te r ium fo r s tand ing waves d i f fe rs f rom those fo r

    t rave l l i ng waves accord ing to Wiege l [ re f 13 ] :

    H

    x

      = 0.109

      L

      tanh

      kh

      [ 3

    -

    7 1

    i n w h i ch  H

    x

      is the ma x im um progress ive wa ve he igh t

    k  is the wa ve number  (2nlL)

    h   i s the wa te r dep th

    L  i s the wa ve leng th

    As ind ica ted in Tab le 3 .2 , the s tand ing wave b reak ing c r i te r ium i s never a

    govern ing fac to r fo r the s ign i f i can t wave , s ince the h igher o f these b reak long

    be fo re reach ing the b reakwate r .

    The numer ica l model ENDEC [re f 5 ] g ives design graphs in which the in f luence

    of both shoal ing and wave breaking is inc luded. See f igure 3 .8 .

    The inpu t pa ramete rs fo r Europoor t a re :

    1 .

      Loca l re la t ive wa te r dep th

    i n w h i c h  L

    op

    h

    i s the deep wa te r w av e leng th (w i th

    peak per iod 7^ = 1 0 s ) =  qT

    p

    2

    l2n =

    ( 9 .8 1 * 1 0

    2

    ) / 2 r r =  56 m

    is the de sign w at er de pth (R = 50

    years has been taken) = 14 .4 m

    = 1 4 . 4 / 1 5 6 = 0 . 0 9

    page 31

  • 8/19/2019 Deisgn of Caisson

    41/200

    hydraulic design conditions

    3 . Deep wa te r wa ve s teepness   s

    op

      = H

    so

    IL

    op

    i n w h i ch  H

    so

      = 9 m (R = 10 0 years has been tak en)

    s

    op

      = 9 / 1 5 6 = 0 . 0 6

    The max imum s teepness ava i lab le in the des ign g raphs i s 0 .05 . Fo r 0 .05 the

    ou tpu t i s :

    HJh =

      0 . 4 5 :

      H

    s

      = 0.

    45-14.4 = 6. 5 m

    So  H

    s

      = 0.5-h  seem s to be a good ap prox ima t ion .

    W h e n  h =  14 .4 m the des ign s ign i f i can t wave he igh t  H

    s

      is:

    /V - = 0 . 5 - 14 .4 = 7 .2 m

    C h a n c e

      that

      d e s i g n w a v e h e i g ht

      H

    d

      i s e x c e e d e d

    Each storm can be character ized by a g iven va lue of

      H

    s

    ,

      t h e s i g n i f ica n t w a v e

    he igh t . Assume th i s s to rm cons is ts o f  n  w a ve s , w h i ch a re d i s t r i b u te d a cco rd i n g

    to a Ray le igh d i s t r i bu t ion .

    The chance tha t an a rb i t ra ry chosen des ign wave he igh t   H

    d

      is exc eed ed by any

    g iven wave i s :

    - z &

    2

      [ 3 . 8 ]

    f \ H = e

    The chance that th is wave is not exceeded in a ser ies o f

      n

      w a ve s i s :

    page 32

  • 8/19/2019 Deisgn of Caisson

    42/200

    hydraulic design conditions

    [ -   F X H ^ Y

    1

      I

    3

    -

    9

     

    So the chance tha t

      H

    d

      is exceeded at least once in a s ing le s torm conta in ing

      n

    w a ve s i s :

    E j -

      1 - [1 -   F \ H } \

    n

      [ 3 -

    1

    ° ]

    Th is chance has to be comb ined w i th the chance tha t  H

    s

      o cc u rs , w h i ch m u s t

    com e f rom a long te rm d is t r i bu t ion o f s ign i f i can t wav e he igh ts , p ^ ) can be

    de te rmined as the chance tha t some wave he igh t   H

    S

    -A H

    S

      i s excee ded minus the

    chance tha t the he igh t  H

    S

      + AH

    S

      i s exce eded .  p(H

    s

    )  i s the chance tha t  H

    s

      fa l ls in

    the in te rva l hav ing a w id t h o f 2AA/

    S

    . Take as an approx imat ion

      AH

    S

      is 0 .5 m

    t h e n  E

    1

      i s no t changed s ign i f i can t l y . So the chance tha t   H

    d

      occurs du r ing any

    sing le s torm per iod is :

    E

    Z

      =

      P H J E ,   [ 3 . 1 1 ]

    I t is s t i l l possib le that the chosen