definition of units -...

48
EG 16.043 28.013 64.063 44.010 26.038 28.054 30.07 44.097 18.015 34.080 2.016 28.010 31.999 58.123 58.123 72.15 72.15 86.177 100.204 114.231 4.0026 39.948 190.6 126.2 430.8 304.2 308.3 282.4 305.4 369.8 647.3 373.2 33.2 132.9 154.6 408.2 425.2 460.4 469.7 507.5 540.3 568.8 5.19 150.8 46.0 33.9 78.8 73.8 61.4 50.4 48.8 42.4 220.9 89.4 13 35.0 50.5 36.5 38 33.9 33.7 30.1 27.4 24.9 2.27 48.7 1.315 1.4 1.27 1.295 1.23 1.24 1.18 1.13 1.33 1.32 1.412 1.395 1.397 1.11 1.1 1.076 1.07 1.062 1.052 1.046 1.66 1.668 := NG 16.043 28.0135 64.063 44.01 26.038 28.054 30.07 44.097 18.015 34.082 2.0159 28.01 31.9988 58.123 58.123 72.15 72.15 86.177 100.204 114.231 4.0026 39.948 343.1 227.2 775.4 547.6 554.9 508.3 549.7 665.6 1165.1 671.8 59.8 239.2 278.3 734.6 765.4 828.7 845.3 913.3 972.4 1023.8 9.34 271.4 667.2 492.3 1142.9 1069.9 890.5 731 708.4 615.8 3203.9 1269.2 188.1 507 731.9 529.1 551.1 490.9 489.4 430.6 396.8 360.1 32.9 706.9 1.315 1.4 1.27 1.295 1.23 1.24 1.18 1.13 1.33 1.32 1.412 1.395 1.397 1.11 1.1 1.076 1.07 1.062 1.052 1.046 1.66 1.668 := Comp "Methane (CH4)" "Nitrogen (N2)" "Sulfur Dioxide (SO2)" "Carbon Dioxide (CO2)" "Acetylene (C2H2)" "Ethene (C2H4)" "Ethane (C2H6)" "Propane (C3H8)" "Water (H20)" "Hydrogen Sulfide (H2S)" "Hydrogen (H2)" "Carbon Monoxide (CO)" "Oxygen (O2)" "i-Butane (C4H10)" "n-Butane (C4H10)" "i-Pentane (C5H12)" "n-Pentane (C5H12)" "n-Hexane (C6H14)" "n-Heptane (C7H16)" "n-Octane (C8H18)" "Helium (He)" "Argon (Ar)" 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 := EG <3> k [-] NG <3> k [-] EG <2> Pc [bara] NG <2> Pc [psia] EG <1> Tc [K] NG <1> Tc [°R] Comp <1> Tc [°R] EG <0> M [kg/kmol] NG <0> M [kg/kmol] Comp <0> Comp [-] Source: VDI Wärmeatlas Gas Composition Data Fuel Gas Composition: The following Gas Composition Data is calculated based on the DCCD listed composition of 98% Methane, 1.4% Nitrogen, and 0.6% Ethane. The Z-factor is computed using the Redlich-Kwong Compressibility Factor Equation as defined in the Flow Measurement Engineering Handbook. Definition of Units

Upload: others

Post on 07-Sep-2019

10 views

Category:

Documents


0 download

TRANSCRIPT

EG

16.043

28.013

64.063

44.010

26.038

28.054

30.07

44.097

18.015

34.080

2.016

28.010

31.999

58.123

58.123

72.15

72.15

86.177

100.204

114.231

4.0026

39.948

190.6

126.2

430.8

304.2

308.3

282.4

305.4

369.8

647.3

373.2

33.2

132.9

154.6

408.2

425.2

460.4

469.7

507.5

540.3

568.8

5.19

150.8

46.0

33.9

78.8

73.8

61.4

50.4

48.8

42.4

220.9

89.4

13

35.0

50.5

36.5

38

33.9

33.7

30.1

27.4

24.9

2.27

48.7

1.315

1.4

1.27

1.295

1.23

1.24

1.18

1.13

1.33

1.32

1.412

1.395

1.397

1.11

1.1

1.076

1.07

1.062

1.052

1.046

1.66

1.668

:=NG

16.043

28.0135

64.063

44.01

26.038

28.054

30.07

44.097

18.015

34.082

2.0159

28.01

31.9988

58.123

58.123

72.15

72.15

86.177

100.204

114.231

4.0026

39.948

343.1

227.2

775.4

547.6

554.9

508.3

549.7

665.6

1165.1

671.8

59.8

239.2

278.3

734.6

765.4

828.7

845.3

913.3

972.4

1023.8

9.34

271.4

667.2

492.3

1142.9

1069.9

890.5

731

708.4

615.8

3203.9

1269.2

188.1

507

731.9

529.1

551.1

490.9

489.4

430.6

396.8

360.1

32.9

706.9

1.315

1.4

1.27

1.295

1.23

1.24

1.18

1.13

1.33

1.32

1.412

1.395

1.397

1.11

1.1

1.076

1.07

1.062

1.052

1.046

1.66

1.668

:=Comp

"Methane (CH4)"

"Nitrogen (N2)"

"Sulfur Dioxide (SO2)"

"Carbon Dioxide (CO2)"

"Acetylene (C2H2)"

"Ethene (C2H4)"

"Ethane (C2H6)"

"Propane (C3H8)"

"Water (H20)"

"Hydrogen Sulfide (H2S)"

"Hydrogen (H2)"

"Carbon Monoxide (CO)"

"Oxygen (O2)"

"i-Butane (C4H10)"

"n-Butane (C4H10)"

"i-Pentane (C5H12)"

"n-Pentane (C5H12)"

"n-Hexane (C6H14)"

"n-Heptane (C7H16)"

"n-Octane (C8H18)"

"Helium (He)"

"Argon (Ar)"

100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

:=

EG<3> k [-]NG<3> k [-]

EG<2> Pc [bara]NG<2> Pc [psia]

EG<1> Tc [K]NG<1> Tc [°R]Comp<1> Tc [°R]

EG<0> M [kg/kmol]NG<0> M [kg/kmol]Comp<0> Comp [-]

Source:

VDI Wärmeatlas

Gas Composition Data

Fuel Gas Composition:

The following Gas Composition Data is calculated based on the DCCD listed composition of 98% Methane, 1.4%

Nitrogen, and 0.6% Ethane. The Z-factor is computed using the Redlich-Kwong Compressibility Factor Equation

as defined in the Flow Measurement Engineering Handbook.

Definition of Units

krk 1.315=

krk k0

Cfrac0

⋅ k1

Cfrac1

⋅+ k2

Cfrac2

⋅+ k3

Cfrac3

⋅+ k4

Cfrac4

⋅+ k5

Cfrac5

⋅+ k6

Cfrac6

⋅+ k7

Cfrac7

⋅+ k8

Cfrac8

⋅+

k9

Cfrac9

⋅ k10

Cfrac10

⋅+ k11

Cfrac11

⋅+ k12

Cfrac12

⋅+ k13

Cfrac13

⋅+ k14

Cfrac14

⋅+ k15

Cfrac15

⋅++

...

k16

Cfrac16

⋅ k17

Cfrac17

⋅+ k18

Cfrac18

⋅+ k19

Cfrac19

⋅+ k20

Cfrac20

⋅+ k21

Cfrac21

⋅++

...

1⋅:=

Specific Heats for Fuel Gas Composition:

Pcrk 46 bar=

Pcrk Pc0

Cfrac0

⋅ Pc1

Cfrac1

⋅+ Pc2

Cfrac2

⋅+ Pc3

Cfrac3

⋅+ Pc4

Cfrac4

⋅+ Pc5

Cfrac5

⋅+ Pc6

Cfrac6

⋅+ Pc7

Cfrac7

⋅+

Pc8

Cfrac8

⋅ Pc9

Cfrac9

⋅+ Pc10

Cfrac10

⋅+ Pc11

Cfrac11

⋅+ Pc12

Cfrac12

⋅+ Pc13

Cfrac13

⋅+ Pc14

Cfrac14

⋅++

...

Pc15

Cfrac15

⋅ Pc16

Cfrac16

⋅+ Pc17

Cfrac17

⋅+ Pc18

Cfrac18

⋅+ Pc19

Cfrac19

⋅+ Pc20

Cfrac20

⋅+ Pc21

Cfrac21

⋅++

...

1⋅ bar:=

Critical Pressure for Fuel Gas Composition:Tcrk 190.6 K=

Tcrk Tc0

Cfrac0

⋅ Tc1

Cfrac1

⋅+ Tc2

Cfrac2

⋅+ Tc3

Cfrac3

⋅+ Tc4

Cfrac4

⋅+ Tc5

Cfrac5

⋅+ Tc6

Cfrac6

⋅+ Tc7

Cfrac7

⋅+

Tc8

C%8

⋅ Tc9

C%9

⋅+ Tc10

C%10

⋅+ Tc11

C%11

⋅+ Tc12

C%12

⋅+ Tc13

C%13

⋅+ Tc14

C%14

⋅++

...

Tc15

Cfrac15

⋅ Tc16

Cfrac16

⋅+ Tc17

Cfrac17

⋅+ Tc18

Cfrac18

⋅+ Tc19

Cfrac19

⋅+ Tc20

Cfrac20

⋅+ Tc21

Cfrac21

⋅++

...

1⋅ K⋅:=

Critical Temperature for Fuel Gas Composition:

Mrk 16.043kg

kmol=

Mrk M0

Cfrac0

⋅ M1

Cfrac1

⋅+ M2

Cfrac2

⋅+ M3

Cfrac3

⋅+ M4

Cfrac4

⋅+ M5

Cfrac5

⋅+ M6

Cfrac6

⋅+ M7

Cfrac7

⋅+

M8

Cfrac8

⋅ M9

Cfrac9

⋅+ M10

Cfrac10

⋅+ M11

Cfrac11

⋅+ M12

Cfrac12

⋅+ M13

Cfrac13

⋅+ M14

Cfrac14

⋅++

...

M15

Cfrac15

⋅ M16

Cfrac16

⋅+ M17

Cfrac17

⋅+ M18

Cfrac18

⋅+ M19

Cfrac19

⋅+ M20

Cfrac20

⋅+ M21

Cfrac21

⋅++

...

1⋅kg

kmol:=

Molecular Weight for Fuel Gas Composition:

Sum_frac 1=

Sum_frac Cfrac0

Cfrac1

+ Cfrac2

+ Cfrac3

+ Cfrac4

+ Cfrac5

+ Cfrac6

+ Cfrac7

+ Cfrac8

+ Cfrac9

+ Cfrac10

+ Cfrac11

+

Cfrac12

Cfrac13

+ Cfrac14

+ Cfrac15

+ Cfrac16

+ Cfrac17

+ Cfrac18

+ Cfrac19

+ Cfrac20

+ Cfrac21

++

...:=

Sum_% 100=

Sum_% C%0

C%1

+ C%2

+ C%3

+ C%4

+ C%5

+ C%6

+ C%7

+ C%8

+ C%9

+ C%10

+ C%11

+ C%12

+

C%13

C%14

+ C%15

+ C%16

+ C%17

+ C%18

+ C%19

+ C%20

+ C%21

++

...:=

Sum of Fuel Gas mol-% and Fuel Gas Fraction respectively:

k EG3⟨ ⟩

:=Pc EG2⟨ ⟩

:=Tc EG1⟨ ⟩

:=M EG0⟨ ⟩

:=C% Comp

1⟨ ⟩:=Cfrac

Comp1⟨ ⟩

100:=

Definition of variables and assignments of matrix columns:

CALCULATIONS:

ρ 1.01325 bar⋅ 273.15 K⋅,( ) 0.716kg

m3

=

ρ p T,( )p

Zrk p T,( ) Ri⋅ T⋅REAL 1=if

p

Ri T⋅otherwise

:=

RiR

Mrk

:=

REAL 0=

CheckBox:

• Activate CheckBox to perform your calcs with Redlich-Kwong Gas Compressibility Factor Z

• Otherwise cals will be performed without Redlich-Kwong Gas Compressibility Factor Z

Ideal Gas Equation resolved with the Redlich-Kwong Gas Compressibility Factor Zrk:

Ideal Gas Equation resolved without the Redlich-Kwong Gas Compressibility Factor Zrk:

Zrk 1.01325 bar⋅ 273.15 K⋅,( ) 0.9975=Zrk P T,( ) Suchen Z( ):=

RK P T, Z,( ) 0=

Vorgabe

Z 1:=

The Redlich-Kwong Equation-of-State is non-linear requiring an iterative solution. The solution will be left

as a function of Pressure and Temperature:

RK P T, Z,( ) Z3

Z2

− B P T,( )2

B P T,( )+ A P T,( )−( ) Z⋅− A P T,( ) B P T,( )⋅−:=

Redlich-Kwong Equation-of-State as a function of Pressure, Temperature and Compressibility Factor Z:

B P T,( )0.086647 Pr P( )⋅

Tr T( ):=A P T,( )

0.42748 Pr P( )⋅

Tr T( )( )2.5

:=

Redlich-Kwong Constants as functions of Pressure P and Temperature T:

Tr T( )T

Tcrk

:=Pr P( )P

Pcrk

:=

Reduced Pressure Pr and Reduced Temperature Tr as functions:

Redlich-Kwong Equation for a given Gas Composition

Viscosity of Natural Gas:

Fuel Gas Systems operates below 1500 psia (103.43 bara), so all pressure effects on viscosity are neglected. A

temperature correction for viscosity is used, taken from the Flow Measurement Engineering Handbook (equation

2.246).

η T( ) 0.0098459.67 0.9 Tcrk⋅+

T 459.67+( ) 0.9 Tcrk⋅+

⋅T 459.67+

459.67

1.5

⋅ centipoise⋅:=

η T( ) 1.098 105−

⋅ Pa⋅ s⋅273.15 K⋅ 165 K⋅+( )

T 165 K⋅+( )⋅

T

273.15 K⋅

1.5

⋅:=

p82 20 bar⋅:=p72 20 bar⋅:=

p62 20 bar⋅:=p52 20 bar⋅:=p42 20 bar⋅:=p32 20 bar⋅:=p22 20 bar⋅:=p12 20 bar⋅:=

pcc 20 bar⋅:=Pressure at Combustion Chamber pcc

T 488.15 K⋅:=

Fuel Gas Temperature

m° 0.50 m°A⋅:=m°A 0.37 26⋅kg

s⋅:=

Mass Flows

Process Data of Fuel Gas:

λI λJ λK λL

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12

Given:

κ krk:=

ηL η T( ):=ηK η T( ):=ηJ η T( ):=ηI η T( ):=ηH η T( ):=

ηG η T( ):=ηF η T( ):=ηE η T( ):=ηD η T( ):=ηC η T( ):=ηB η T( ):=ηA η T( ):=

η12 η T( ):=η11 η T( ):=

p92 20 bar⋅:= p102 20 bar⋅:= p112 20 bar⋅:= p122 20 bar⋅:=

Physical Properties of Fuel Gas:

Dynamic Viscosities:

η0 η T( ):= η1 η T( ):= η2 η T( ):= η3 η T( ):= η4 η T( ):= η5 η T( ):= η6 η T( ):=

η7 η T( ):= η8 η T( ):= η9 η T( ):= η10 η T( ):=

Inlet pressures at individual feeder lines including manifold / feeder line tee fitting:

p12p11p10p9p8p7p6p5p4p3p2p1

Inlet pressures at individual feeder lines:

p0p

Manifold Solution SGT5-8000H

Find:

Mass flows at each individual feeder line:

m°1 m°2 m°3 m°4 m°5 m°6 m°7 m°8 m°9 m°10 m°11 m°12

Required supply pressure p at manifold inlet tee fitting and pressure p0 downstream inlet tee fitting:

p5B p6B p7B p8B p9B p10B p11B p12B

Friction factors at individual manifold sections:

λA λB λC λD λE λF λG λH

p1a p2a p3a p4a p5a p6a p7a p8a p9a p10a p11a p12a

Upstream pressures at each individual burner:

p1B p2B p3B p4B

d0 0.200 m⋅:=

Diameters of GT Manifold Piping at each Piping Section

l12 10.0 m⋅:=l11 10.0 m⋅:=l10 10.0 m⋅:=l9 10.0 m⋅:=

l8 10.0 m⋅:=l7 10.0 m⋅:=l6 10.0 m⋅:=l5 10.0 m⋅:=l4 10.0 m⋅:=l3 10.0 m⋅:=l2 10.0 m⋅:=l1 10.0 m⋅:=

Length of Feeder Lines

lK 1.2 m⋅:=lJ 1.2 m⋅:=lI 1.2 m⋅:=lH 1.2 m⋅:=

lG 1.2 m⋅:=lF 1.2 m⋅:=lE 1.2 m⋅:=lD 1.2 m⋅:=

kK 0.0002 m⋅:=kJ 0.0002 m⋅:=kI 0.0002 m⋅:=kH 0.0002 m⋅:=kG 0.0002 m⋅:=kF 0.0002 m⋅:=

dK 0.200 m⋅:=dJ 0.200 m⋅:=dI 0.200 m⋅:=dH 0.200 m⋅:=dG 0.200 m⋅:=dF 0.200 m⋅:=

kE 0.0002 m⋅:=kD 0.0002 m⋅:=kC 0.0002 m⋅:=kB 0.0002 m⋅:=kA 0.0002 m⋅:=k0 0.0002 m⋅:=

dE 0.200 m⋅:=dD 0.200 m⋅:=dC 0.200 m⋅:=dB 0.200 m⋅:=dA 0.200 m⋅:=

ζd6 0.0:=ζd5 0.0:=ζd4 0.0:=ζd3 0.0:=ζd2 0.0:=ζd1 0.0:=

10.50.3330.250.200.1670.1430.125

Branch fittings at GT Manifold / Feeder Piping

dT_out 0.200 m⋅:=dT_in 0.200 m⋅:=ζT 0.7:=

Tee at GT Manifold Inlet

Piping Data of GT Manifold Piping and Feeder Lines:

Aeff 1.9 cm2

⋅:=

Aeff is also known as αA parameter given in cm2

Burner Specific Data:

lC 1.2 m⋅:=lB 1.2 m⋅:=lA 1.2 m⋅:=l0 1.2 m⋅:=

Distances between GT Manifold Piping Sections

Data for GT Manifold Piping:

ζa12 0.98:=ζa11 0.98:=ζa10 0.98:=ζa9 0.98:=

ζa8 0.98:=ζa7 0.98:=ζa6 0.98:=ζa5 0.98:=ζa4 0.98:=ζa3 0.98:=ζa2 0.98:=ζa1 0.98:=

ζd12 0.0:=ζd11 0.0:=ζd10 0.0:=ζd9 0.0:=

ζd8 0.0:=ζd7 0.0:=

k12 0.0002 m⋅:=k11 0.0002 m⋅:=k10 0.0002 m⋅:=k9 0.0002 m⋅:=k8 0.0002 m⋅:=

d12 0.050 m⋅:=d11 0.050 m⋅:=d10 0.050 m⋅:=d9 0.050 m⋅:=d8 0.050 m⋅:=

k7 0.0002 m⋅:=k6 0.0002 m⋅:=k5 0.0002 m⋅:=k4 0.0002 m⋅:=k3 0.0002 m⋅:=k2 0.0002 m⋅:=k1 0.0002 m⋅:=

d7 0.050 m⋅:=d6 0.050 m⋅:=d5 0.050 m⋅:=d4 0.050 m⋅:=d3 0.050 m⋅:=d2 0.050 m⋅:=d1 0.050 m⋅:=

Diameter of Feeder Piping

dpT ζTρ

2⋅ w

2⋅:=

The velocity w is related to velocity at fitting inlet

pressure loss of tee fittings

dp0 λ0

l0

d0

⋅ρ

2⋅

4 m°⋅

d02

π⋅ ρ⋅

2

⋅:=

Pressure loss of piping

1

λ0

2− log2.51

4 m°0⋅ d0⋅

d02

π⋅ ρ⋅ ν0⋅

λ0⋅

k0

d0

0.269⋅+

⋅:=

Lambda calculation for turbulent flow

m° m°1 m°1+ ....+ m°n+:=

Mass balance

Gleichungssystem:

η T( ) 1.098 105−

⋅ Pa⋅ s⋅273.15 K⋅ 165 K⋅+( )

T 165 K⋅+( )⋅

T

273.15 K⋅

1.5

⋅:=

η T( ) 0.0098459.67 0.9 Tcrk⋅+

T 459.67+( ) 0.9 Tcrk⋅+

⋅T 459.67+

459.67

1.5

⋅ centipoise⋅:=

Fuel Gas Systems operates below 1500 psia (103.43 bara), so all pressure effects on viscosity are neglected. A

temperature correction for viscosity is used, taken from the Flow Measurement Engineering Handbook (equation

2.246).

Viscosity of Natural Gas:

ρ P T,( )P 144⋅ Mrk⋅

Zrk P T,( ) 1545⋅ T 459.67+( )⋅

lb

ft3

⋅:=

Ideal Gas Equation resolved with the Redlich-Kwong Gas Compressibility Factor Zrk:

ρ p T,( )p

Ri T⋅:=

Ideal Gas Equation:

Herleitung der Formeln

critical condition

non-critical conditionψ p4B pcc, κ,( )κ

κ 1−

pcc

p4B

2

κpcc

p4B

κ 1+

κ

⋅pcc

p4B

2

κ 1+

κ

κ 1−

>if

2

κ 1+

1

κ 1−κ

κ 1+⋅

pcc

p4B

2

κ 1+

κ

κ 1−

≤if

:=

Definition of ψ depending on pressure ratio at 4th burner:

critical condition

non-critical conditionψ p3B pcc, κ,( )κ

κ 1−

pcc

p3B

2

κpcc

p3B

κ 1+

κ

⋅pcc

p3B

2

κ 1+

κ

κ 1−

>if

2

κ 1+

1

κ 1−κ

κ 1+⋅

pcc

p3B

2

κ 1+

κ

κ 1−

≤if

:=

Definition of ψ depending on pressure ratio at 3rd burner:

critical condition

non-critical conditionψ p2B pcc, κ,( )κ

κ 1−

pcc

p2B

2

κpcc

p2B

κ 1+

κ

⋅pcc

p2B

2

κ 1+

κ

κ 1−

>if

2

κ 1+

1

κ 1−κ

κ 1+⋅

pcc

p2B

2

κ 1+

κ

κ 1−

≤if

:=

Definition of ψ depending on pressure ratio at 2nd burner:

critical condition

non-critical conditionψ p1B pcc, κ,( )κ

κ 1−

pcc

p1B

2

κpcc

p1B

κ 1+

κ

⋅pcc

p1B

2

κ 1+

κ

κ 1−

>if

2

κ 1+

1

κ 1−κ

κ 1+⋅

pcc

p1B

2

κ 1+

κ

κ 1−

≤if

:=

Definition of ψ depending on pressure ratio at 1st burner:

CALCULATIONS FOR BURNERS:

critical condition

non-critical conditionψ p8B pcc, κ,( )κ

κ 1−

pcc

p8B

2

κpcc

p8B

κ 1+

κ

⋅pcc

p8B

2

κ 1+

κ

κ 1−

>if

2

κ 1+

1

κ 1−κ

κ 1+⋅

pcc

p8B

2

κ 1+

κ

κ 1−

≤if

:=

Definition of ψ depending on pressure ratio at 8th burner:

critical condition

non-critical conditionψ p7B pcc, κ,( )κ

κ 1−

pcc

p7B

2

κpcc

p7B

κ 1+

κ

⋅pcc

p7B

2

κ 1+

κ

κ 1−

>if

2

κ 1+

1

κ 1−κ

κ 1+⋅

pcc

p7B

2

κ 1+

κ

κ 1−

≤if

:=

Definition of ψ depending on pressure ratio at 7th burner:

critical condition

non-critical conditionψ p6B pcc, κ,( )κ

κ 1−

pcc

p6B

2

κpcc

p6B

κ 1+

κ

⋅pcc

p6B

2

κ 1+

κ

κ 1−

>if

2

κ 1+

1

κ 1−κ

κ 1+⋅

pcc

p6B

2

κ 1+

κ

κ 1−

≤if

:=

Definition of ψ depending on pressure ratio at 6th burner:

critical condition

non-critical conditionψ p5B pcc, κ,( )κ

κ 1−

pcc

p5B

2

κpcc

p5B

κ 1+

κ

⋅pcc

p5B

2

κ 1+

κ

κ 1−

>if

2

κ 1+

1

κ 1−κ

κ 1+⋅

pcc

p5B

2

κ 1+

κ

κ 1−

≤if

:=

Definition of ψ depending on pressure ratio at 5th burner:

critical condition

non-critical conditionψ p12B pcc, κ,( )κ

κ 1−

pcc

p12B

2

κpcc

p12B

κ 1+

κ

⋅pcc

p12B

2

κ 1+

κ

κ 1−

>if

2

κ 1+

1

κ 1−κ

κ 1+⋅

pcc

p12B

2

κ 1+

κ

κ 1−

≤if

:=

Definition of ψ depending on pressure ratio at 12th burner:

critical condition

non-critical conditionψ p11B pcc, κ,( )κ

κ 1−

pcc

p11B

2

κpcc

p11B

κ 1+

κ

⋅pcc

p11B

2

κ 1+

κ

κ 1−

>if

2

κ 1+

1

κ 1−κ

κ 1+⋅

pcc

p11B

2

κ 1+

κ

κ 1−

≤if

:=

Definition of ψ depending on pressure ratio at 11th burner:

critical condition

non-critical conditionψ p10B pcc, κ,( )κ

κ 1−

pcc

p10B

2

κpcc

p10B

κ 1+

κ

⋅pcc

p10B

2

κ 1+

κ

κ 1−

>if

2

κ 1+

1

κ 1−κ

κ 1+⋅

pcc

p10B

2

κ 1+

κ

κ 1−

≤if

:=

Definition of ψ depending on pressure ratio at 10th burner:

critical condition

non-critical conditionψ p9B pcc, κ,( )κ

κ 1−

pcc

p9B

2

κpcc

p9B

κ 1+

κ

⋅pcc

p9B

2

κ 1+

κ

κ 1−

>if

2

κ 1+

1

κ 1−κ

κ 1+⋅

pcc

p9B

2

κ 1+

κ

κ 1−

≤if

:=

Definition of ψ depending on pressure ratio at 9th burner:

p10 20 bar⋅:=p9 20 bar⋅:=p8 20 bar⋅:=p7 20 bar⋅:=

p6 20 bar⋅:=p5 20 bar⋅:=p4 20 bar⋅:=p3 20 bar⋅:=p2 20 bar⋅:=p1 20 bar⋅:=

pa12 20 bar⋅:=pa11 20 bar⋅:=pa10 20 bar⋅:=pa9 20 bar⋅:=pa8 20 bar⋅:=pa7 20 bar⋅:=

pa6 20 bar⋅:=pa5 20 bar⋅:=pa4 20 bar⋅:=pa3 20 bar⋅:=pa2 20 bar⋅:=

p p0− ζTρ p T,( )

2⋅

4 m°A⋅

dT_in2

π⋅ ρ p T,( )⋅

2

⋅=

calculation for pressure loss at manifold inlet tee

m° m°1 m°2+ m°3+ m°4+ m°5+ m°6+ m°7+ m°8+ m°9+ m°10+ m°11+ m°12+=

calculation for mass balance

Gleichungssystem: ... Gleichungen mit ... Unbekannten:

Vorgabe

Lösungsblock:

p12B pcc 1 bar⋅+:=p11B pcc 1 bar⋅+:=

p10B pcc 1 bar⋅+:=p9B pcc 1 bar⋅+:=p8B pcc 1 bar⋅+:=p7B pcc 1 bar⋅+:=p6B pcc 1 bar⋅+:=

p5B pcc 1 bar⋅+:=p4B pcc 1 bar⋅+:=p3B pcc 1 bar⋅+:=p2B pcc 1 bar⋅+:=p1B pcc 1 bar⋅+:=

p12 20 bar⋅:=p11 20 bar⋅:=

λ5 0.015:=λ4 0.015:=λ3 0.015:=λ2 0.015:=λ1 0.015:=

λK 0.015:=λJ 0.015:=λI 0.015:=λH 0.015:=

λG 0.015:=λF 0.015:=λE 0.015:=λD 0.015:=λC 0.015:=λB 0.015:=λA 0.015:=λ0 0.015:=

Schätzwerte für Iteration im Lösungsblock:

Numerische Lösung eines Gleichungssystems mittels Lösungsblock:

BERECHNUNG:

pa1 20 bar⋅:=

p0 21 bar⋅:=p 21.5 bar⋅:=

m°12 0.401kg

s⋅:=m°11 0.401

kg

s⋅:=

m°10 0.401kg

s⋅:=m°9 0.401

kg

s⋅:=m°8 0.401

kg

s⋅:=m°7 0.401

kg

s⋅:=m°6 0.401

kg

s⋅:=

m°5 0.401kg

s⋅:=m°4 0.401

kg

s⋅:=m°3 0.401

kg

s⋅:=m°2 0.401

kg

s⋅:=m°1 0.401

kg

s⋅:=

λ12 0.015:=λ11 0.015:=λ10 0.015:=λ9 0.015:=

λ8 0.015:=λ7 0.015:=λ6 0.015:=

calculation for friction factor at manifold section 0

1

λ0

2− log2.51

4 m°⋅ d0⋅

d02

π⋅ η0⋅

λ0⋅

k0

d0

0.269⋅+

⋅=

calculation for pressure loss at manifold section 0

p0 pa1− λ0

l0

d0

⋅ρ p0 T,( )

2⋅

4 m°⋅

d02

π⋅ ρ p0 T,( )⋅

2

⋅=

calculation for friction factor at manifold section A

1

λA

2− log2.51

4 m° m°1−( )⋅ dA⋅

dA2

π⋅ ηA⋅

λA⋅

kA

dA

0.269⋅+

⋅=

pa1 pa2− λA

lA

dA

⋅ρ pa1 T,( )

2⋅

4 m° m°1−( )⋅

dA2

π⋅ ρ pa1 T,( )⋅

2

⋅=

1

λB

2− log2.51

4 m° m°1− m°2−( )⋅ dB⋅

dB2

π⋅ ηB⋅

λB⋅

kB

dB

0.269⋅+

⋅=

pa2 pa3− λB

lB

dB

⋅ρ pa2 T,( )

2⋅

4 m° m°1− m°2−( )⋅

dB2

π⋅ ρ pa2 T,( )⋅

2

⋅=

1

λC

2− log2.51

4 m° m°1− m°2− m°3−( )⋅ dC⋅

dC2

π⋅ ηC⋅

λC⋅

kC

dC

0.269⋅+

⋅=

pa3 pa4− λC

lC

dC

⋅ρ pa3 T,( )

2⋅

4 m° m°1− m°2− m°3−( )⋅

dC2

π⋅ ρ pa3 T,( )⋅

2

⋅=

1

λD

2− log2.51

4 m° m°1− m°2− m°3− m°4−( )⋅ dD⋅

dD2

π⋅ ηD⋅

λD⋅

kD

dD

0.269⋅+

⋅=

pa4 pa5− λD

lD

dD

⋅ρ pa4 T,( )

2⋅

4 m° m°1− m°2− m°3− m°4−( )⋅

dD2

π⋅ ρ pa4 T,( )⋅

2

⋅=

1

λE

2− log2.51

4 m° m°1− m°2− m°3− m°4− m°5−( )⋅ dE⋅

dE2

π⋅ ηE⋅

λE⋅

kE

dE

0.269⋅+

⋅=

pa5 pa6− λE

lE

dE

⋅ρ pa5 T,( )

2⋅

4 m° m°1− m°2− m°3− m°4− m°5−( )⋅

dE2

π⋅ ρ pa5 T,( )⋅

2

⋅=

1

λF

2− log2.51

4 m° m°1− m°2− m°3− m°4− m°5− m°6−( )⋅ dF⋅

dF2

π⋅ ηF⋅

λF⋅

kF

dF

0.269⋅+

⋅=

pa6 pa7− λF

lF

dF

⋅ρ pa6 T,( )

2⋅

4 m° m°1− m°2− m°3− m°4− m°5− m°6−( )⋅

dF2

π⋅ ρ pa6 T,( )⋅

2

⋅=

1

λG

2− log2.51

4 m° m°1− m°2− m°3− m°4− m°5− m°6− m°7−( )⋅ dG⋅

dG2

π⋅ ηG⋅

λG⋅

kG

dG

0.269⋅+

⋅=

pa7 pa8− λG

lG

dG

⋅ρ pa7 T,( )

2⋅

4 m° m°1− m°2− m°3− m°4− m°5− m°6− m°7−( )⋅

dG2

π⋅ ρ pa7 T,( )⋅

2

⋅=

1

λH

2− log2.51

4 m° m°1− m°2− m°3− m°4− m°5− m°6− m°7− m°8−( )⋅ dH⋅

dH2

π⋅ ηH⋅

λH⋅

kH

dH

0.269⋅+

⋅=

pa8 pa9− λH

lH

dH

⋅ρ pa8 T,( )

2⋅

4 m° m°1− m°2− m°3− m°4− m°5− m°6− m°7− m°8−( )⋅

dH2

π⋅ ρ pa8 T,( )⋅

2

⋅=

1

λI

2− log2.51

4 m° m°1− m°2− m°3− m°4− m°5− m°6− m°7− m°8− m°9−( )⋅ dI⋅

dI2

π⋅ ηI⋅

λI⋅

kI

dI

0.269⋅+

⋅=

pa9 pa10− λI

lI

dI

⋅ρ pa9 T,( )

2⋅

4 m° m°1− m°2− m°3− m°4− m°5− m°6− m°7− m°8− m°9−( )⋅

dI2

π⋅ ρ pa9 T,( )⋅

2

⋅=

1

λJ

2− log2.51

4 m° m°1− m°2− m°3− m°4− m°5− m°6− m°7− m°8− m°9− m°10−( )⋅ dJ⋅

dJ2

π⋅ ηJ⋅

λJ⋅

kJ

dJ

0.269⋅+

⋅=

pa10 pa11− λJ

lJ

dJ

⋅ρ pa10 T,( )

2⋅

4 m° m°1− m°2− m°3− m°4− m°5− m°6− m°7− m°8− m°9− m°10−( )⋅

dJ2

π⋅ ρ pa10 T,( )⋅

2

⋅=

1

λK

2− log2.51

4 m° m°1− m°2− m°3− m°4− m°5− m°6− m°7− m°8− m°9− m°10− m°11−( )⋅ dK⋅

dK2

π⋅ ηK⋅

λK⋅

kK

dK

0.269⋅+

⋅=

pa11 pa12− λK

lK

dK

⋅ρ pa11 T,( )

2⋅

4 m° m°1− m°2− m°3− m°4− m°5− m°6− m°7− m°8− m°9− m°10− m°11−( )⋅

dK2

π⋅ ρ pa11 T,( )⋅

2

⋅=

pa1 p1− ζa1

ρ pa1 T,( )2

⋅4 m°1⋅

d12

π⋅ ρ pa1 T,( )⋅

2

⋅=

1

λ1

2− log2.51

4 m°1⋅ d1⋅

d12

π⋅ η1⋅

λ1⋅

k1

d1

0.269⋅+

⋅=

p1 p1B− λ1

l1

d1

⋅ρ p1 T,( )

2⋅

4 m°1⋅

d12

π⋅ ρ p1 T,( )⋅

2

⋅=

m°1 Aeff ψ p1B pcc, κ,( )⋅ 2 p1B⋅ ρ p1B T,( )⋅⋅=

pa2 p2− ζa2

ρ pa2 T,( )2

⋅4 m°2⋅

d12

π⋅ ρ pa2 T,( )⋅

2

⋅=

1

λ2

2− log2.51

4 m°2⋅ d2⋅

d22

π⋅ η2⋅

λ2⋅

k2

d2

0.269⋅+

⋅=

p2 p2B− λ2

l2

d2

⋅ρ p2 T,( )

2⋅

4 m°2⋅

d22

π⋅ ρ p2 T,( )⋅

2

⋅=

m°2 Aeff ψ p2B pcc, κ,( )⋅ 2 p2B⋅ ρ p2B T,( )⋅⋅=

pa3 p3− ζa3

ρ pa3 T,( )2

⋅4 m°3⋅

d12

π⋅ ρ pa3 T,( )⋅

2

⋅=

1

λ3

2− log2.51

4 m°3⋅ d3⋅

d32

π⋅ η3⋅

λ3⋅

k3

d3

0.269⋅+

⋅=

p3 p3B− λ3

l3

d3

⋅ρ p3 T,( )

2⋅

4 m°3⋅

d32

π⋅ ρ p3 T,( )⋅

2

⋅=

m°3 Aeff ψ p3B pcc, κ,( )⋅ 2 p3B⋅ ρ p3B T,( )⋅⋅=

pa4 p4− ζa4

ρ pa4 T,( )2

⋅4 m°4⋅

d12

π⋅ ρ pa4 T,( )⋅

2

⋅=

1

λ4

2− log2.51

4 m°4⋅ d4⋅

d42

π⋅ η4⋅

λ4⋅

k4

d4

0.269⋅+

⋅=

p4 p4B− λ4

l4

d4

⋅ρ p4 T,( )

2⋅

4 m°4⋅

d42

π⋅ ρ p4 T,( )⋅

2

⋅=

m°4 Aeff ψ p4B pcc, κ,( )⋅ 2 p4B⋅ ρ p4B T,( )⋅⋅=

pa5 p5− ζa5

ρ pa5 T,( )2

⋅4 m°5⋅

d12

π⋅ ρ pa5 T,( )⋅

2

⋅=

1

λ5

2− log2.51

4 m°5⋅ d5⋅

d52

π⋅ η5⋅

λ5⋅

k5

d5

0.269⋅+

⋅=

p5 p5B− λ5

l5

d5

⋅ρ p5 T,( )

2⋅

4 m°5⋅

d52

π⋅ ρ p5 T,( )⋅

2

⋅=

m°5 Aeff ψ p5B pcc, κ,( )⋅ 2 p5B⋅ ρ p5B T,( )⋅⋅=

pa6 p6− ζa6

ρ pa6 T,( )2

⋅4 m°6⋅

d12

π⋅ ρ pa6 T,( )⋅

2

⋅=

1

λ6

2− log2.51

4 m°6⋅ d6⋅

d62

π⋅ η6⋅

λ6⋅

k6

d6

0.269⋅+

⋅=

p6 p6B− λ6

l6

d6

⋅ρ p6 T,( )

2⋅

4 m°6⋅

d62

π⋅ ρ p6 T,( )⋅

2

⋅=

m°6 Aeff ψ p6B pcc, κ,( )⋅ 2 p6B⋅ ρ p6B T,( )⋅⋅=

pa7 p7− ζa7

ρ pa7 T,( )2

⋅4 m°7⋅

d12

π⋅ ρ pa7 T,( )⋅

2

⋅=

1

λ7

2− log2.51

4 m°7⋅ d7⋅

d72

π⋅ η7⋅

λ7⋅

k7

d7

0.269⋅+

⋅=

p7 p7B− λ7

l7

d7

⋅ρ p7 T,( )

2⋅

4 m°7⋅

d72

π⋅ ρ p7 T,( )⋅

2

⋅=

m°7 Aeff ψ p7B pcc, κ,( )⋅ 2 p7B⋅ ρ p7B T,( )⋅⋅=

pa8 p8− ζa8

ρ pa8 T,( )2

⋅4 m°8⋅

d12

π⋅ ρ pa8 T,( )⋅

2

⋅=

1

λ8

2− log2.51

4 m°8⋅ d8⋅

d82

π⋅ η8⋅

λ8⋅

k8

d8

0.269⋅+

⋅=

p8 p8B− λ8

l8

d8

⋅ρ p8 T,( )

2⋅

4 m°8⋅

d82

π⋅ ρ p8 T,( )⋅

2

⋅=

m°8 Aeff ψ p8B pcc, κ,( )⋅ 2 p8B⋅ ρ p8B T,( )⋅⋅=

pa9 p9− ζa9

ρ pa9 T,( )2

⋅4 m°9⋅

d12

π⋅ ρ pa9 T,( )⋅

2

⋅=

1

λ9

2− log2.51

4 m°9⋅ d9⋅

d92

π⋅ η9⋅

λ9⋅

k9

d9

0.269⋅+

⋅=

p9 p9B− λ9

l9

d9

⋅ρ p9 T,( )

2⋅

4 m°9⋅

d92

π⋅ ρ p9 T,( )⋅

2

⋅=

m°9 Aeff ψ p9B pcc, κ,( )⋅ 2 p9B⋅ ρ p9B T,( )⋅⋅=

pa10 p10− ζa10

ρ pa10 T,( )2

⋅4 m°10⋅

d12

π⋅ ρ pa10 T,( )⋅

2

⋅=

1

λ10

2− log2.51

4 m°10⋅ d10⋅

d102

π⋅ η10⋅

λ10⋅

k10

d10

0.269⋅+

⋅=

p10 p10B− λ10

l10

d10

⋅ρ p10 T,( )

2⋅

4 m°10⋅

d102

π⋅ ρ p10 T,( )⋅

2

⋅=

m°10 Aeff ψ p10B pcc, κ,( )⋅ 2 p10B⋅ ρ p10B T,( )⋅⋅=

pa11 p11− ζa11

ρ pa11 T,( )2

⋅4 m°11⋅

d12

π⋅ ρ pa11 T,( )⋅

2

⋅=

1

λ11

2− log2.51

4 m°11⋅ d11⋅

d112

π⋅ η11⋅

λ11⋅

k11

d11

0.269⋅+

⋅=

p11 p11B− λ11

l11

d11

⋅ρ p11 T,( )

2⋅

4 m°11⋅

d112

π⋅ ρ p11 T,( )⋅

2

⋅=

m°11 Aeff ψ p11B pcc, κ,( )⋅ 2 p11B⋅ ρ p11B T,( )⋅⋅=

pa12 p12− ζa12

ρ pa12 T,( )2

⋅4 m°12⋅

d12

π⋅ ρ pa12 T,( )⋅

2

⋅=

1

λ12

2− log2.51

4 m°12⋅ d12⋅

d122

π⋅ η12⋅

λ12⋅

k12

d12

0.269⋅+

⋅=

p12 p12B− λ12

l12

d12

⋅ρ p12 T,( )

2⋅

4 m°12⋅

d122

π⋅ ρ p12 T,( )⋅

2

⋅=

m°12 Aeff ψ p12B pcc, κ,( )⋅ 2 p12B⋅ ρ p12B T,( )⋅⋅=

λ0_Result

λA_Result

λB_Result

λC_Result

λD_Result

λE_Result

λF_Result

λG_Result

λH_Result

λI_Result

λJ_Result

λK_Result

λ1_Result

λ2_Result

λ3_Result

λ4_Result

λ5_Result

λ6_Result

λ7_Result

λ8_Result

λ9_Result

λ10_Result

λ11_Result

λ12_Result

m°1_Result

m°2_Result

m°3_Result

m°4_Result

m°4_Result

m°5_Result

m°6_Result

m°7_Result

m°8_Result

m°9_Result

m°10_Result

m°11_Result

m°12_Result

pa1_Result

pa2_Result

pa3_Result

pa4_Result

pa5_Result

pa6_Result

pa7_Result

pa8_Result

pa9_Result

pa10_Result

pa11_Result

pa12_Result

p1_Result

p2_Result

p3_Result

p4_Result

p5_Result

p6_Result

p7_Result

p8_Result

p9_Result

p10_Result

p11_Result

p12_Result

p1B_Result

p2B_Result

p3B_Result

p4B_Result

p5B_Result

p6B_Result

suchen λ0 λA, λB, λC, λD, λE, λF, λG, λH, λI, λJ, λK, λ1, λ2, λ3, λ4, λ5, λ8, λ7, λ8, λ9, λ10, λ11, λ12,(:=

p6B_Result

p7B_Result

p8B_Result

p9B_Result

p10B_Result

p11B_Result

p12B_Result

p0_Result

p_Result

CALCULATIONS FOR BURNERS:

Assignment of Flow Conditions at 1st burner:

Condition_1B wennpcc

p1B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=Condition_1B wennpcc

p1B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=

Calculation of pressure loss via 5th burner:

Condition_5B wennpcc

p5B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=Condition_5B wennpcc

p5B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=

Assignment of Flow Conditions at 5th burner:

dp4B bar=dp4Bdp4B p4B_Result pcc−:=dp4B p4B_Result pcc−:=

Calculation of pressure loss via 4th burner:

Condition_4B wennpcc

p4B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=Condition_4B wennpcc

p4B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=

Assignment of Flow Conditions at 4th burner:

dp3B bar=dp3Bdp3B p3B_Result pcc−:=dp3B p3B_Result pcc−:=

Calculation of pressure loss via 3rd burner:

Condition_3B wennpcc

p3B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=Condition_3B wennpcc

p3B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=

Assignment of Flow Conditions at 3rd burner:

dp2B bar=dp2Bdp2B p2B_Result pcc−:=dp2B p2B_Result pcc−:=

Calculation of pressure loss via 2nd burner:

Condition_2B wennpcc

p2B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=Condition_2B wennpcc

p2B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=

Assignment of Flow Conditions at 2nd burner:

dp1B bar=dp1Bdp1B p1B_Result pcc−:=dp1B p1B_Result pcc−:=

Calculation of pressure loss via 1st burner:

p1B_Result κ 1+ p1B_Result κ 1+

dp8B bar=dp8Bdp8B p8B_Result pcc−:=dp8B p8B_Result pcc−:=

Calculation of pressure loss via 8th burner:

Condition_8B wennpcc

p8B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=Condition_8B wennpcc

p8B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=

Assignment of Flow Conditions at 8th burner:

dp7B bar=dp7Bdp7B p7B_Result pcc−:=dp7B p7B_Result pcc−:=

Calculation of pressure loss via 7th burner:

Condition_7B wennpcc

p7B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=Condition_7B wennpcc

p7B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=

Assignment of Flow Conditions at 7th burner:

dp6B bar=dp6Bdp6B p6B_Result pcc−:=dp6B p6B_Result pcc−:=

Calculation of pressure loss via 6th burner:

Condition_6B wennpcc

p6B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=Condition_6B wennpcc

p6B_Result

2

κ 1+

κ

κ 1−

≤ "critical pressure ratio", "non-critical pressure ratio",

:=

Assignment of Flow Conditions at 6th burner:

dp5B bar=dp5Bdp5B p5B_Result pcc−:=dp5B p5B_Result pcc−:=

dpA p1_Result p2_Result−:=dpA p1_Result p2_Result−:=

dp2 p2_Result p2B_Result−:=dp2 p2_Result p2B_Result−:=

dpB p2_Result p3_Result−:=dpB p2_Result p3_Result−:=

dp3 p3_Result p3B_Result−:=dp3 p3_Result p3B_Result−:=

dpC p3_Result p4_Result−:=dpC p3_Result p4_Result−:=

dp4 p4_Result p4B_Result−:=dp4 p4_Result p4B_Result−:=

dpD p4_Result p5_Result−:=dpD p4_Result p5_Result−:=

dp5 p5_Result p5B_Result−:=dp5 p5_Result p5B_Result−:=

dpE p5_Result p6_Result−:=dpE p5_Result p6_Result−:=

dp6 p6_Result p6B_Result−:=dp6 p6_Result p6B_Result−:=

dpF p6_Result p7_Result−:=dpF p6_Result p7_Result−:=

dp7 p7_Result p7B_Result−:=dp7 p7_Result p7B_Result−:=

dpG p7_Result p8_Result−:=dpG p7_Result p8_Result−:=

dp8 p8_Result p8B_Result−:=dp8 p8_Result p8B_Result−:=

dp p_Result p0_Result−:=dp p_Result p0_Result−:=

dp0 p0_Result pa1_Result−:=dp0 p0_Result pa1_Result−:=

Calculations of Fluid Velocities at GT Manifold and Feeder Lines:

Manifold Section at tee fitting:

v_in

m°A

ρ p_Result T,( )

dT_in2

π⋅

4

:=v_in

m°A

ρ p_Result T,( )

dT_in2

π⋅

4

:=

CALCULATIONS

Calculations for Pressure Differences:

dpfeeder1 pa1_Result p1B_Result−:=dpfeeder1 pa1_Result p1B_Result−:= dpa1 pa1_Result p1_Result−:=dpa1 pa1_Result p1_Result−:=

dpfeeder2 pa2_Result p2B_Result−:=dpfeeder2 pa2_Result p2B_Result−:= dpa2 pa2_Result p2_Result−:=dpa2 pa2_Result p2_Result−:=

dpfeeder3 pa3_Result p3B_Result−:=dpfeeder3 pa3_Result p3B_Result−:= dpa3 pa3_Result p3_Result−:=dpa3 pa3_Result p3_Result−:=

dpfeeder4 pa4_Result p4B_Result−:=dpfeeder4 pa4_Result p4B_Result−:= dpa4 pa4_Result p4_Result−:=dpa4 pa4_Result p4_Result−:=

dpfeeder5 pa5_Result p5B_Result−:=dpfeeder5 pa5_Result p5B_Result−:= dpa5 pa5_Result p5_Result−:=dpa5 pa5_Result p5_Result−:=

dpfeeder6 pa6_Result p6B_Result−:=dpfeeder6 pa6_Result p6B_Result−:= dpa6 pa6_Result p6_Result−:=dpa6 pa6_Result p6_Result−:=

dpfeeder7 pa7_Result p7B_Result−:=dpfeeder7 pa7_Result p7B_Result−:= dpa7 pa7_Result p7_Result−:=dpa7 pa7_Result p7_Result−:=

dpfeeder8 pa8_Result p8B_Result−:=dpfeeder8 pa8_Result p8B_Result−:= dpa8 pa8_Result p8_Result−:=dpa8 pa8_Result p8_Result−:=

dp1 p1_Result p1B_Result−:=dp1 p1_Result p1B_Result−:=

4 4

v_out

ρ p0_Result T,( )

dT_out2

π⋅

4

:=v_out

ρ p0_Result T,( )

dT_out2

π⋅

4

:=

Manifold Section 0:

v0_in

ρ p0_Result T,( )

d02

π⋅

4

:=v0_in

ρ p0_Result T,( )

d02

π⋅

4

:=

v0_out

ρ p1_Result T,( )

d02

π⋅

4

:=v0_out

ρ p1_Result T,( )

d02

π⋅

4

:=

Manifold Section A:

vA_in

m° m°1_Result−( )ρ p1_Result T,( )

dA2

π⋅

4

:=vA_in

m° m°1_Result−( )ρ p1_Result T,( )

dA2

π⋅

4

:=

vA_out

m° m°1_Result−( )ρ p2_Result T,( )

dA2

π⋅

4

:=vA_out

m° m°1_Result−( )ρ p2_Result T,( )

dA2

π⋅

4

:=

Manifold Section B:

vB_in

m° m°1_Result− m°2_Result−( )ρ p2_Result T,( )

dB2

π⋅

4

:=vB_in

m° m°1_Result− m°2_Result−( )ρ p2_Result T,( )

dB2

π⋅

4

:=

vB_out

m° m°1_Result− m°2_Result−( )ρ p3_Result T,( )

dB2

π⋅

4

:=vB_out

m° m°1_Result− m°2_Result−( )ρ p3_Result T,( )

dB2

π⋅

4

:=

Manifold Section C:

vC_in

m° m°1_Result− m°2_Result− m°3_Result−( )ρ p3_Result T,( )

dC2

π⋅

4

:=vC_in

m° m°1_Result− m°2_Result− m°3_Result−( )ρ p3_Result T,( )

dC2

π⋅

4

:=

vC_out

m° m°1_Result− m°2_Result− m°3_Result−( )ρ p4_Result T,( )

dC2

π⋅

4

:=vC_out

m° m°1_Result− m°2_Result− m°3_Result−( )ρ p4_Result T,( )

dC2

π⋅

4

:=

Manifold Section D:

vD_in

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result−( )ρ p4_Result T,( )

dD2

π⋅

4

:=vD_in

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result−( )ρ p4_Result T,( )

dD2

π⋅

4

:=

vD_out

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result−( )ρ p5_Result T,( )

dD2

π⋅

4

:=vD_out

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result−( )ρ p5_Result T,( )

dD2

π⋅

4

:=

Manifold Section E:

vE_in

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result− m°5_Result−( )ρ p5_Result T,( )

dE2

π⋅

4

:=vE_in

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result− m°5_Result−( )ρ p5_Result T,( )

dE2

π⋅

4

:=

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result− m°5_Result−( )ρ p6_Result T,( )

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result− m°5_Result−( )ρ p6_Result T,( )

vE_out

ρ p6_Result T,( )

dE2

π⋅

4

:=vE_out

ρ p6_Result T,( )

dE2

π⋅

4

:=

Manifold Section F:

vF_in

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result− m°5_Result− m°6_Result−( )ρ p6_Result T,( )

dF2

π⋅

4

:=vF_in

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result− m°5_Result− m°6_Result−( )ρ p6_Result T,( )

dF2

π⋅

4

:=

vF_out

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result− m°5_Result− m°6_Result−( )ρ p7_Result T,( )

dF2

π⋅

4

:=vF_out

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result− m°5_Result− m°6_Result−( )ρ p7_Result T,( )

dF2

π⋅

4

:=

Manifold Section G:

vG_in

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result− m°5_Result− m°6_Result− m°7_Result−( )ρ p7_Result T,( )

dG2

π⋅

4

:=vG_in

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result− m°5_Result− m°6_Result− m°7_Result−( )ρ p7_Result T,( )

dG2

π⋅

4

:=

vG_out

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result− m°5_Result− m°6_Result− m°7_Result−( )ρ p8_Result T,( )

dG2

π⋅

4

:=vG_out

m° m°1_Result− m°2_Result− m°3_Result− m°4_Result− m°5_Result− m°6_Result− m°7_Result−( )ρ p8_Result T,( )

dG2

π⋅

4

:=

Feeder Line (1) - inlet: Feeder Line (1) - outlet:

v1_in

m°1_Result

ρ p1_Result T,( )

d12

π⋅

4

:=v1_in

m°1_Result

ρ p1_Result T,( )

d12

π⋅

4

:=v1_out

m°1_Result

ρ p1B_Result T,( )

d12

π⋅

4

:=v1_out

m°1_Result

ρ p1B_Result T,( )

d12

π⋅

4

:=

v6_out

m°6_Result

ρ p6B_Result T,( )

d62

π⋅

4

:=v6_out

m°6_Result

ρ p6B_Result T,( )

d62

π⋅

4

:=v6_in

m°6_Result

ρ p6_Result T,( )

d62

π⋅

4

:=v6_in

m°6_Result

ρ p6_Result T,( )

d62

π⋅

4

:=

Feeder Line (6) - outlet:Feeder Line (6) - inlet:

v5_out

m°5_Result

ρ p5B_Result T,( )

d52

π⋅

4

:=v5_out

m°5_Result

ρ p5B_Result T,( )

d52

π⋅

4

:=v5_in

m°5_Result

ρ p5_Result T,( )

d52

π⋅

4

:=v5_in

m°5_Result

ρ p5_Result T,( )

d52

π⋅

4

:=

Feeder Line (5) - outlet:Feeder Line (5) - inlet:

v4_out

m°4_Result

ρ p4B_Result T,( )

d42

π⋅

4

:=v4_out

m°4_Result

ρ p4B_Result T,( )

d42

π⋅

4

:=v4_in

m°4_Result

ρ p4_Result T,( )

d42

π⋅

4

:=v4_in

m°4_Result

ρ p4_Result T,( )

d42

π⋅

4

:=

Feeder Line (4) - outlet:Feeder Line (4) - inlet:

v3_out

m°3_Result

ρ p3B_Result T,( )

d32

π⋅

4

:=v3_out

m°3_Result

ρ p3B_Result T,( )

d32

π⋅

4

:=v3_in

m°3_Result

ρ p3_Result T,( )

d32

π⋅

4

:=v3_in

m°3_Result

ρ p3_Result T,( )

d32

π⋅

4

:=

Feeder Line (3) - outlet:Feeder Line (3) - inlet:

v2_out

m°2_Result

ρ p2B_Result T,( )

d22

π⋅

4

:=v2_out

m°2_Result

ρ p2B_Result T,( )

d22

π⋅

4

:=v2_in

m°2_Result

ρ p2_Result T,( )

d22

π⋅

4

:=v2_in

m°2_Result

ρ p2_Result T,( )

d22

π⋅

4

:=

Feeder Line (2) - outlet:Feeder Line (2) - inlet:

4 4

Feeder Line (7) - inlet: Feeder Line (7) - outlet:

v7_in

m°7_Result

ρ p7_Result T,( )

d72

π⋅

4

:=v7_in

m°7_Result

ρ p7_Result T,( )

d72

π⋅

4

:=v7_out

m°7_Result

ρ p7B_Result T,( )

d72

π⋅

4

:=v7_out

m°7_Result

ρ p7B_Result T,( )

d72

π⋅

4

:=

Feeder Line (8) - inlet: Feeder Line (8) - outlet:

v8_in

m°8_Result

ρ p8_Result T,( )

d82

π⋅

4

:=v8_in

m°8_Result

ρ p8_Result T,( )

d82

π⋅

4

:= v8_out

m°8_Result

ρ p8B_Result T,( )

d82

π⋅

4

:=v8_out

m°8_Result

ρ p8B_Result T,( )

d82

π⋅

4

:=

ρ p3_Result T,( ) =p3_Resultp4_Result bar=p4_ResultdpC bar=dpCp3_Result bar=p3_Result

ρ p2_Result T,( ) =p2_Resultp3_Result bar=p3_ResultdpB bar=dpBp2_Result bar=p2_Result

ρ p1_Result T,( ) =p1_Resultp2_Result bar=p2_ResultdpA bar=dpAp1_Result bar=p1_Result

ρ p0_Result T,( ) =p0_Resultp1_Result bar=p1_Resultdp0 bar=dp0p0_Result bar=p0_Result

ρ p_Result T,( ) =p_Result

ρ p7_Result T,( ) =p7_Resultp8_Result bar=p8_ResultdpG bar=dpG

p7_Result bar=p7_Result

ρ p6_Result T,( ) =p6_Result

p7_Result bar=p7_ResultdpF bar=dpFp6_Result bar=p6_Result

ρ p5_Result T,( ) =p5_Result

p6_Result bar=p6_ResultdpE bar=dpEp5_Result bar=p5_Result

ρ p4_Result T,( ) =p4_Resultp5_Result bar=p5_ResultdpD bar=dpD

p4_Result bar=p4_Result

λ6_Result =λ6_Result

λ5_Result =λ5_Resultλ4_Result =λ4_Resultλ3_Result =λ3_Resultλ2_Result =λ2_Resultλ1_Result =λ1_Result

λG_Result =λG_ResultλF_Result =λF_Result

λE_Result =λE_ResultλD_Result =λD_ResultλC_Result =λC_ResultλB_Result =λB_ResultλA_Result =λA_Resultλ0_Result =λ0_Result

Results for Lambda:

RESULTS

p0_Result bar=p0_Resultdp bar=dpp_Result bar=p_Result

Manifold: Results for Pressures, Pressure Losses and associated Fuel Gas Densities:

m°8_Result =m°8_Resultm°7_Result =m°7_Resultm°6_Result =m°6_Resultm°5_Result =m°5_Result

m°4_Result =m°4_Resultm°3_Result =m°3_Resultm°2_Result =m°2_Resultm°1_Result =m°1_Result

m° 4.81kg

s=m°A 9.62

kg

s=

Results for Mass Balance:

λ8_Result =λ8_Resultλ7_Result =λ7_Result

p5_Result bar=p5_Result dp5 bar=dp5 p52 20 bar=ρ p5_Result T,( ) =p5_Result

pa5_Result bar=pa5_Result dpfeeder5 bar=dpfeeder5

p6_Result bar=p6_Result dp6 bar=dp6 p62 20 bar=ρ p6_Result T,( ) =p6_Result

pa6_Result bar=pa6_Result dpfeeder6 bar=dpfeeder6

p7_Result bar=p7_Result dp7 bar=dp7 p72 20 bar=ρ p7_Result T,( ) =p7_Result

pa7_Result bar=pa7_Result dpfeeder7 bar=dpfeeder7

p8_Result bar=p8_Result dp8 bar=dp8 p82 20 bar=ρ p8_Result T,( ) =p8_Result

pa8_Result bar=pa8_Result dpfeeder8 bar=dpfeeder8

Feeder Lines: Results for Pressures, Pressure Losses and associated Fuel Gas Densities:

p1_Result bar=p1_Result dp1 bar=dp1 p12 20 bar=ρ p1_Result T,( ) =p1_Result

pa1_Result bar=pa1_Result dpfeeder1 bar=dpfeeder1

p2_Result bar=p2_Result dp2 bar=dp2 p22 20 bar=ρ p2_Result T,( ) =p2_Result

pa2_Result bar=pa2_Result dpfeeder2 bar=dpfeeder2

p3_Result bar=p3_Result dp3 bar=dp3 p32 20 bar=ρ p3_Result T,( ) =p3_Result

pa3_Result bar=pa3_Result dpfeeder3 bar=dpfeeder3

p4_Result bar=p4_Result dp4 bar=dp4 p42 20 bar=ρ p4_Result T,( ) =p4_Result

pa4_Result bar=pa4_Result dpfeeder4 bar=dpfeeder4

pcc 20 bar=

Condition_5B =Condition_5B

p5B_Result bar=p5B_Result ρ p5B_Result T,( ) =p5B_Resultdp5B bar=dp5B pcc 20 bar=

Condition_6B =Condition_6B

p6B_Result bar=p6B_Result ρ p6B_Result T,( ) =p6B_Resultdp6B bar=dp6B pcc 20 bar=

Condition_7B =Condition_7B

p7B_Result bar=p7B_Result ρ p7B_Result T,( ) =p7B_Resultdp7B bar=dp7B pcc 20 bar=

Condition_8B =Condition_8B

p8B_Result bar=p8B_Result ρ p8B_Result T,( ) =p8B_Resultdp8B bar=dp8B pcc 20 bar=

Burners: Results for Burner Pressure Losses:

Condition_1B =Condition_1B

p1B_Result bar=p1B_Result ρ p1B_Result T,( ) =p1B_Resultdp1B bar=dp1B pcc 20 bar=

Condition_2B =Condition_2B

p2B_Result bar=p2B_Result ρ p2B_Result T,( ) =p2B_Resultdp2B bar=dp2B pcc 20 bar=

Condition_3B =Condition_3B

p3B_Result bar=p3B_Result ρ p3B_Result T,( ) =p3B_Resultdp3B bar=dp3B pcc 20 bar=

Condition_4B =Condition_4B

p4B_Result bar=p4B_Result ρ p4B_Result T,( ) =p4B_Resultdp4B bar=dp4B

vG_out =vG_outvG_in =vG_in

Manifold Section G:

vF_out =vF_outvF_in =vF_in

Manifold Section F:

vE_out =vE_outvE_in =vE_in

Manifold Section E:

vD_out =vD_outvD_in =vD_in

Manifold Section D:

vC_out =vC_outvC_in =vC_in

Manifold Section C:

vB_out =vB_outvB_in =vB_in

Manifold Section B:

vA_out =vA_outvA_in =vA_in

Manifold Section A:

v0_out =v0_outv0_in =v0_in

Manifold Section 0:

v_out =v_outv_in =v_in

Manifold Section at tee fitting:

Manifold: Results for Velocities:

v8_out =v8_outv8_in =v8_in

Feeder Line (8):

v7_out =v7_outv7_in =v7_in

Feeder Line (7):

v6_out =v6_outv6_in =v6_in

Feeder Line (6):

v5_out =v5_outv5_in =v5_in

Feeder Line (5):

v4_out =v4_outv4_in =v4_in

Feeder Line (4):

v3_out =v3_outv3_in =v3_in

Feeder Line (3):

v2_out =v2_outv2_in =v2_in

Feeder Line (2):

v1_out =v1_outv1_in =v1_in

Feeder Line (1):

Feeder Lines: Results for Velocities:

η 488 K⋅( ) 1.759 105−

×kg

m s=

η T( )

0.72kg

m3

2.444 105−

×m

2

s=

κ 1.315=

m° 4.81kg

s= m°A 9.62

kg

s=

120.401

kg

s=

m°1, m°2, m°3, m°4, m°5, m°6, m°7, m°8, m°9, m°10, m°11, m°12, pa1, pa2, pa3, pa4, pa5, pa6, pa7, pa8, pa9, pa10, pa11, pa12, p1, ,

dpfeeder1 bar=dpfeeder1 dpa1 bar=dpa1

dpfeeder2 bar=dpfeeder2 dpa2 bar=dpa2

dpfeeder3 bar=dpfeeder3 dpa3 bar=dpa3

dpa4 bar=dpa4dpfeeder4 bar=dpfeeder4

dpa5 bar=dpa5dpfeeder5 bar=dpfeeder5

dpa6 bar=dpa6

dpfeeder6 bar=dpfeeder6 dpa7 bar=dpa7

dpfeeder7 bar=dpfeeder7 dpa8 bar=dpa8

dpfeeder8 bar=dpfeeder8

m°1_Result m°2_Result+ m°3_Result+ m°4_Result+ m°5_Result+ m°6_Result+ m°7_Result+ m°8_Result+ =m°1_Result

m° 4.81kg

s=

Total ammount of mass flow m°

Verification of mass balance for m°:

m°8 0.401kg

s=m°7 0.401

kg

s=m°6 0.401

kg

s=m°5 0.401

kg

s=

m°4 0.401kg

s=m°3 0.401

kg

s=m°2 0.401

kg

s=m°1 0.401

kg

s=

λ7 0.015=λ6 0.015=λ5 0.015=λ4 0.015=λ3 0.015=λ2 0.015=λ1 0.015=

λG 0.015=λF 0.015=λE 0.015=λD 0.015=λC 0.015=λB 0.015=λA 0.015=λ0 0.015=

Schätzwerte für Iteration:

Verification of calculated pressure p0 at manifold inlet:

Required pressure p at GT Manifold Piping Inlet

p_Result bar=p_Result

pcc dp1B+ dp1+ dpa1+ dp0+ dp+ bar=dp1B

pcc dp2B+ dp2+ dpa2+ dpA+ dp0+ dp+ bar=dp2B

pcc dp3B+ dp3+ dpa3+ dpB+ dpA+ dp0+ dp+ bar=dp3B

pcc dp4B+ dp4+ dpa4+ dpC+ dpB+ dpA+ dp0+ dp+ bar=dp4B

pcc dp5B+ dp5+ dpa5+ dpD+ dpC+ dpB+ dpA+ dp0+ dp+ bar=dp5B

pcc dp6B+ dp6+ dpa6+ dpE+ dpD+ dpC+ dpB+ dpA+ dp0+ dp+ bar=dp6B

pcc dp7B+ dp7+ dpa7+ dpF+ dpE+ dpD+ dpC+ dpB+ dpA+ dp0+ dp+ bar=dp7B

pcc dp8B+ dp8+ dpa8+ dpG+ dpF+ dpE+ dpD+ dpC+ dpB+ dpA+ dp0+ dp+ bar=dp8B