davide ferri :: paul scherrer institut infrared spectroscopy...infrared spectroscopy far mid near...

76
Infrared spectroscopy Davide Ferri :: Paul Scherrer Institut Molecular aspects of catalysts and surfaces :: ETHZ

Upload: others

Post on 12-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Infrared spectroscopyDavide Ferri :: Paul Scherrer Institut

    Molecular aspects of catalysts and surfaces :: ETHZ

  • source: Andor.com

    INFRARED

    1 mm-1 m

    1012-1015 Hz

    The electromagnetic spectrum

  • -300 200 700 1200

    EPR

    UV-Vis

    XAFS

    NMR

    Raman

    IR

    Number of publications

    Number of publications containing in situ, catalysis, and respective method

    Source: ISI Web of Knowledge (Sept. 2008)

    • pros

    - economic

    - non-invasive

    - versatile (e.g. solid, liquid, gas, interfaces)

    - very sensitive (concentration)

    - fast acquisition (down to ns!)

    • cons

    - no atomic resolution

    Importance of IR spectroscopy in catalysis

  • Infrared spectroscopy

    Far

    Mid

    Near

    [mm] [cm‐1] E [kJ/mol]

    25‐1000

    2.5‐25

    0.78‐2.5

    visible

    microwave

    12800‐4000

    4000‐400

    400‐10

    150‐50

    50‐5

    5‐0.1

    freq

    uency

    high

    low

    overtone,        combinationvibrations

    fundamentalvibrations

    fundamental vibrationsof heavy elements,lattice vibrations

    wavelength wavenumber energy

  • • ‘quality control’: identification of compounds according to their fingerprintspectrum also inorganic materials, e.g. metal oxides ex situ, but also after degassing in cell (vacuum)

    • Identification of surface sites│Detailed characterization of surface use of molecular probes in situ experiments, controlled dosage of probe

    • Identification of surface sites under reaction conditions in situ/operando experiments to obtain molecular reaction mechanism, exposure

    to reaction conditions

    Why IR spectroscopy

  • • Interaction with matter energy causes vibration of molecular bonds energy is absorbed in correspondence of vibrational modes an absorption band is generated

    Vibrational spectroscopy

    symmetric stretchingasymmetric stretching bending

    energy

  • Vibrations

    wavenumber (cm-1)4000 4003000 2000 1000

    bend

    ing

    stre

    tchi

    ngC-H

    O-H

    C-H

    O-H

    C=O C-O

    C-CC=CC≡C

    alkenesaromatics

  • • Why do vibrations appear in the IR spectrum?

    Vibrations

    selection rule

    0Q

    molecular dipole moment must change due to vibration or rotation along itscoordinate (so called, normal mode or normal coordinate, Q)

    ArHClO2

  • 3756 cm-1

    3657 cm-1

    N=3, non-linear, 3 fundamental modes

    asymmetric stretching symmetric stretching scissoring (bending)1595 cm-1

    All modes IR active

    H2O

  • 4000 3500 3000 2500 2000 1500 1000 500

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Abso

    rban

    ce

    Wavenumber / cm-1

    bendingstretching

    4000 3500 3000 2500 2000 1500 1000 5000.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Abso

    rban

    ce

    Wavenumber / cm-1

    roto-vibrational bands

    (gases)

    Gas and liquid phase H2O

  • • Harmonic oscillator The stretching frequency of a bond can be approximated by Hooke’s law. Two

    atoms and the connecting bond are treated as a harmonic oscillator composed of two masses (atoms) joined by a spring.

    Vibrations

    12

    k

    1 21 2

    m mm m

    m: reduced massk: force constant

  • Vibrations

    C-C C=C C≡C

    C-H C-D C-C C-O C-Cl

    1200 cm-1 1650 cm-1 2200 cm-1

    3000 cm-1 2100 cm-1 1200 cm-1 1100 cm-1 800 cm-1

    larger k

    larger µ

    12

    k

  • The spectrometer

    sample

    beamsplitter

    moving mirror

    fixed mirror

    x

    SiC

    interferogram

  • Dispersive vs. FT

    FT-IR spectrometer has significant advantages over dispersive one

    Multiplex (Fellgett) advantageAll source wavelengths are measured simultaneously

    Throughput (Jacquinot) advantageFor the same resolution, the energy throughput in an interferometer can be higher → the same S/N as a dispersive-IR in a much shorter time

    Precision (Connes) advantageThe wavenumber scale of an interferometer is derived from a HeNe laser that acts as an internal reference for each scan

  • The IR spectrum

    ‘no sample’

    ‘sample’

    dete

    ctor

    inte

    nsity

    inte

    nsity

    FT

    FT

    I

    I0II0

    T =

    4000 3500 3000 2500 2000 1500 1000

    0.6

    0.7

    0.8

    0.9

    1.00.00

    0.05

    4000 3500 3000 2500 2000 1500 10000.00

    0.05

    wavenumber (cm-1)

    4000 3500 3000 2500 2000 1500 1000wavenumber (cm-1)

    wavenumber (cm-1)

    15600 15800 16000 16200

    -0.05

    0.00

    0.05

    0.10

    relative mirror position

    15600 15800 16000 16200

    -0.05

    0.00

    0.05

    0.10

    relative mirror position

    ‘background’

    CO adsorbed on Pd/Al2O3

    interferogram

  • The IR spectrum

    4000 3500 3000 2500 2000 1500 1000 5000.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    abso

    rban

    ce

    wavenumber (cm-1)

  • The IR spectrum

    4000 3500 3000 2500 2000 1500 1000 5000.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    abso

    rban

    ce

    wavenumber (cm-1)-Al2O3

    180°C150°C

    200°C

    (O-H)

    -Al2O3

    -Al2O3

    -Al2O3

    Morterra, Catal. Today 27 (1996) 497

    (Al-O)

  • • DRIFT spectra of V-W-TiO2 catalysts after adsorption of NH3 aspect of spectra changes with background

    The background

    4000 3500 3000 2500 2000 1500 1000

    1419; NH4+*

    1V5WTi(I)5WTi(I)

    1V5WTi(C)1VTi(C)

    5WTi(C)

    Abs

    orba

    nce

    (a.u

    .)

    Wavenumbers (cm-1)

    1603; NH3*

    1180; NH3*

    3161; NH3*

    3257; NH3*3346; NH3*

    3382; NH4+*

    wavenumber (cm-1)4000 3500 3000 2500 2000 1500 1000

    0.1

    dry KBr or air sample after treatment

    400°C│O2 200°C│O2 200°C│NH3+O2 200°C│O2dehydration adsorption desorptionload sampleno cell

    positive+negative signalspositive signals

  • • The spectrum contains information on terminal O-H bonds│3800-3600 cm-1

    bridge hydroxyls│Brønsted acidity

    H-bonded hydroxyls

    M-O and M=O bonds, bulk and surface fundamental (n) and overtone (2×n) modes

    other groups, e.g. C-H, carbonates, carboxylates…

    Information on materials

    M

    OH

    MO

    H

    M

    Mm+O

    H

    Mn+

  • • Perturbation of hydroxyls adsorption of probe molecule

    Information on materials

    terminal

    bridged

    Busca, in Metal Oxide Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009) 95│Uslamin, Zeolite-based catalysis for sustainable aromatics production, Technische Universiteit Eindhoven (2019)

  • • Perturbation of hydroxyls adsorption of probe molecule

    H-bonded hydroxyls

    Information on materials

    after CO adsorption

    terminal

    bridged

    Busca, in Metal Oxide Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009) 95

  • Information on materials

    Moros et al., Anal. Bioanal. Chem. 385 (2006) 708

    sugar-added yogurt

    plain yogurt

    water

    bkg: waternutritional parameters of yogurt samples

    • Also other disciplines…

  • • The carbonate ion

    Adsorbates by FTIR

    1900 1500 1100wavenumber (cm-1)

    free ion

    monodentate

    bidentate

    organic-like

    bicarbonates

    as(CO)

    s(CO) s(OH)

    1700 1300

    Morterra, Catal. Today 27 (1996) 497

    D3hC2vC2v

    as(CO)

    simmetry

  • Adsorbates by FTIR

    2200 2000 1800 1600 1400 1200

    0.02abs.

    units

    (a.u.

    )

    wavenumber (cm-1)2200 2000 1800 1600 1400 1200

    0.02

    wavenumber (cm-1)

    0.02

    2200 2000 1800 1600 1400 1200

    wavenumber (cm-1)

    time time time

    CO2H2

    CH4CH4

    as(HCO3-) s(HCO3-)

    as(CO32-)

    (CO)

    as(OCO-)as(OCO-)

    CO2H2

  • Techniques, sample form, environment

    transmission powder gas/vacuum

    reflection

    internal reflection powder liquid

    external reflection single crystal vacuum

    diffuse reflection powder gas/vacuum

    ATR-IRS

    IRRASDRIFTS

  • • Lambert-Beer law

    Transmission

    0

    log( ) log( )IA T cdI

    I0 I

    sample

    d

    c

    T: transmittance, A: absorbance, : molar absorption (extinction) coefficient, c: concentration, d: path length

  • Transmission

    Solid samplesLarge solid particles generally absorb too much IR light, therefore particles should be small and also special preparations are often necessary.

    Most popular sample preparation methods (for mid-IR):

    Alkali halide disk method Typically solid samples are diluted in KBr and ground Then pressurized to form a disk

    Mull method Most common one is Nujol (liquid paraffin) Samples are ground and suspended in one or two drops of a mulling agent Followed by further grinding until a smooth paste is obtained

    Film method By solvent casting or melt casting

    NOT FOR IN SITU/OPERANDO EXPERIMENTS

  • Transmission

    Busca, in Metal Oxide Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009) 95

    KBr

    MgO

    pressed powder

    • Sample preparation self supporting wafers (few mg)

    • Controlled exp. conditions vacuum and controlled dosages

    • Baseline slope increases at high frequency

    (beam scattering increases with increasing frequency)

    slope depends on particle size (very steep for powders with large particles, ca. 1 μm)

    T @ 4000 cm-1 is ca. 0 for large particle size oxides

  • • Quantification│Molar absorption coefficient

    Transmission

    SiO2

    ■ 1605 cm‐1

    □ 1585 cm‐1

    Onfroy et al., Micropor. Mesopor. Mater. 82 (2005) 99

    ε SAn=

    ε, integrated molar absorption coefficient

    ℓ, disc thickness (optical path)

    n, amount of adsorbed molecule

    S, disc area

    ASℓ

    εℓ= n

    A = Sεn

  • Diffuse reflection

    • Combination of transmission and scattering/reflection

    Chalmers and Dent, Industrial analysis with vibrational spectroscopy, 1997, 153

    normal specular component

    incident beam

    i r

    Reflectance increases by increasing scattering → spectrum baseline is flat or even decreasing

    transmission

    diffuse reflection

  • • Qualitative analysis very sensitive to surface species due to its diffuse reflective nature the detected light is reflected multiple times at powder surfaces

    • Quantitative analysis can be very complicated the spectra are largely influenced by various experimental parameters, e.g.

    particles shape and size, refractive index of particles, absorption characteristics of particles, and porosity of the powder bed

    a popular method is to use the Kubelka-Munk (K-M) function to transform reflectance to a sort of absorbance (K-M) unit

    solid (approximated) theory applicability and accuracy for highly absorbing and non-absorbing samples is

    questionable

    Diffuse reflection

  • • Infinitely thick medium

    • Adsorbate on infinitely thick medium

    Kubelka-Munk function

    R

    R∞

    0

    J = R∞ ‐ RR∞

    K/S = (1-R∞)2/2R∞K, absorption coeff.S, scattering coeff.

    (K+C)/S = (1-R)2/2R

    Matyshak et al., Catal. Today 25 (1995) 1

    F(R) = J(1/R-R∞) = 2C/S optical length (d in L-B Law) much larger than in transmission → more sensitivity

  • Diffuse reflection

    Sirita et al., Anal. Chem. 79 (2007) 3912

    Pt/CeO2

    R’= Icat+ads/Icat

    • Reflectance or Absorbance?

    Pt/SiO2

  • • Advantages of diffuse reflection easier sampling applicability to powders that scatter too much in transmission, assuming the

    surface area is sufficiently high to detect surface vibrations with a sufficiently high signal-to-noise ratio slightly lower sensitivity to bulk conduction phenomena, because of a higher

    surface-to-bulk sensitivity ratio ideally suited for in situ/operando studies

    • Disadvantages of diffuse reflection less obvious optical setup work in flow rather than in vacuum more difficult sample activation (i.e. water removal from highly porous materials)

    Diffuse reflection vs Transmission

  • • Comparison between techniques with different sensitivity (bulk/surface) should be careful

    • DRIFTS more sensitive than TIRS• Band assignment depends on

    surface sensitivity of the technique

    Diffuse reflection vs Transmission

    Rödel et al., PCCP 10 (2008) 6190

  • • Typical mirror unit, sample holder and in situ cell

    Diffuse reflection

    Harrick Scientific│Praying Mantis

    in situ cell

    mirror unit

    sample holder

  • Attenuated total reflection

    dp

    IRE

    n1=nIRE

    n2

    evanescent wavez

    12 2

    212 sinpd

    n

    11n

    dp: penetration depththe distance frominterface where theelectric field hasdecayed to 1/e of itsvalue E0 at the interface

    221

    1

    nnn

    IRE, internal reflection element; high refractive index material

    : angle of incidence

  • • Sample preparation sample deposition on IRE from aqueous slurry dry in air

    Attenuated total reflection

    2000

     µm

    85 µm

    ZnSe

    Pd/Al2O3

    4 μm

    0 1 2 3 4 5 6 7

    10

    20

    numbe

    r of p

    articles (%)

    particle size (nm)

    drying

    suspension

    usedrying

    suspension

    useuse

    suspensionIR TEM

    SEM

  • Attenuated total reflection

  • drying

    suspension

    usedrying

    suspension

    use

    microbalance

    metals and metal oxides

    IRE

    e‐ beam

    crucible

    shutter

    10‐6 mbar

    100

    0

    50

    Pt(1 nm)/Al2O3

    Particulate filmModel film

    4 μm

    Pd/Al2O3

    Attenuated total reflection

    • Stable films needed for in situ investigations

  • Materials for internal reflection elements

    Material Useful range / cm-1 n dp Properties

    ZnSe 20000-700 2.43 long soluble in strong acid; usable up to ca. 300°C

    Ge 5000-900 4.02 short good chemical resistance; hard and brittle; becomes

    opaque at 250°C

    Si 9400-1500; 350-FIR 3.42 short excellent chemical resistance; hard; usable up

    to ca. 300°C

    KRS-5(Thallium bromoiodide)

    14000-330 2.45 long toxic; slightly soluble in water and soluble in base; usable

    up to ca. 200°C

  • 4000 3500 3000 2500 2000 1500 1000

    wavenumber (cm-1)

    1000 μm500 μm200 μm100 μm50 μm

    250 μm

    (0.3 to 1.4 μm !!!)

    • The meaning of dp and nIRE

    Attenuated total reflection

    abs.

    uni

    ts

    TIR

    ATR-IRS

    same spectrum as in transmission but withmuch smaller sample thickness

  • Attenuated total reflection

    ZnSe

    Si

    • The meaning of dp and nIRE

    cell section

    cell section

    powder layer

    low nIRE↓

    high dp

    high nIRE

    low dp

  • • Solid (powders, crystals, foils, plates, seeds…) and liquid samples

    • Ex situ structure assignment identification quality control

    Attenuated total reflection

    IRE

  • • Solid (powders, crystals, foils, plates, seeds…) and liquid samples

    • Ex situ

    • In situ/operando only liquids suspensions solid in contact with liquid

    Attenuated total reflection

  • • Cell mounting

    cell

    coated IRE

    mask for IRE

    to/from thermostat

    to pump

    from liquid supply

    gasket

    gasket

    samplesolution

    Attenuated total reflection

  • • Sample compartment

    Attenuated total reflection

    liquid in to/from thermostat

    cell holder

    manual mirrors

    liquid out

  • • γ-aminopropyl modified SiO2 (APS-SiO2) 1.5 mmol/g NH2 202 m2/g deposited on ZnSe from CCl4 slurry toluene/PE slurry prep. 80ºC

    dried in vacuum

    • toluene, 60ºC

    Knoevenagel condensation

    inletoutlet

    IRZnSeinlet

    HO

    CN

    COOEt+

    ethyl cyanoacetatebenzaldehyde ethyl ‐cyanocinnamate

    COOEt

    CNbase

  • HO

    CN

    COOEt+

    Knoevenagel condensation

    toluene, 60°C, 20 mM

    1800 1700 1600 1500 1400 1300 1200

    abs.

    uni

    ts(a

    .u.)

    wavenumber (cm-1)

    0.01

    flow-through mode

    COOEt

    CN

    17551701

  • Knoevenagel condensation

    toluene, 60°C, 20 mM

    1800 1700 1600 1500 1400 1300 1200

    abs.

    uni

    ts(a

    .u.)

    wavenumber (cm-1)

    0.01 1645Si N

    flow-through mode

    HO

    +

    CN

    COOEt

  • • Consecutive dosage of reactants• Time dependence

    abs.

    uni

    ts

    elapsed time (s)

    0.020

    0.025

    0.030

    0.035

    0.040

    0.045

    0 100 200 3000.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030product

    1645 cm-1

    1701 cm-1

    1755 cm-1

    Wirz et al., Langmuir 22 (2006) 3698

    Knoevenagel condensation

    O O

    O

    CN

    NH2 NH2

    Si Si

    H2O

    O

    O

    CN

    HO

    CN

    COOEt

  • • Stopped-flow mode

    Knoevenagel condensation

    toluene, 60°C, 20 mM

    0.01 30 min

    1800 1700 1600 1500 1400 1300 1200wavenumber (cm-1)

    abs.

    uni

    ts(a

    .u.)

    stopped-flow mode

    flow-through mode

  • Knoevenagel condensation

    Si NH2

    Si N

    HO

    CN

    COOEt

    COOEt

    CN

    H2O

    H O+

    1645 cm-1

    1733 cm-1

    2225 cm-1

    CN

    COOH

    OHO HHOH

    +

    2

    2300 22202260

    2264

    2225

    Wirz et al., Langmuir 22 (2006) 3698

  • CO adsorption

    C

    O

    4

    1 13

    22

    22 5

    CO donates electrons from the s orbital to the metal

    metal donates electrons back to the anti-bonding orbital of CO

    Donation

    Back-donation (BD)

    • Low CO coverage: CO depends on thegeometry of adsorption site (face order:terrace – corner – edge) – BD is strong

    • High CO coverage: CO depends on dipole-dipole interactions – BD is weak

    metal

    Lewis acid

  • CO adsorption

    2300 2200 2100 2000 1900 1800 1700

    abs.

    uni

    ts

    wavenumber (cm-1)

    gas phase

    CO in organic solvent

    CO@Pt

    (red-) shift

    4 cm-1 resolution

    ro-vi spectrum0.5 cm-1 resolution

    effect of bond order and condensed phase

    Adsorbateassignments on powdersby comparison withreference exps. in UHV (single crystals)

  • CO adsorption

    XPS

    FTIR

    detector

    manipulator

    LEED

    MS

    Empa

    • Model studies – Surface science stainless steel UHV setup with flanges, pumps,

    pressure gauges, etc. 10-10 to 10-11 mbar base pressure tools and components for preparation,

    characterization, sample manipulation, resistiveheating

  • 50 nm

    • Model studies – Surface science

    CO adsorption

    2 nmnanoparticles

    model systems

    single crystals NiAl(110)

    Al2O3

  • • Powders

    CO adsorption

    Pd/SiO2

    Pd(111)Pd(100)

    fcc(100)

    fcc(111)

    nanoparticle

    Szanyi et al., J. Vac. Sci. Technol. A 11 (1993) 1969

  • • Powders

    the larger the particles, the less CO adsorbs (intensity) the larger the particles, the less the available defects (nr. of signals)

    CO adsorption

    50 nm

    800°C‐2h‐air

    fresh

    particle size

    Pt disp

    ersio

    n

    Pt/Al2O3

    2100 2000 1900 1800 17000.0

    0.2

    absorbance  (a.u.)

    wavenumber (cm‐1)

    0.1fresh

    agedCOB

    COL

    intensity

    site distribution

    Pt

    PtPt

    COTEM 

  • How does the CO stretching frequency shift when a Pt surface is covered with hydrogen or oxygen?

    CO

    H H H H H H

    Pt

    CO

    O O O O O O

    Pt

    CO adsorption

    CO

    Pt

  • Lear et al., J. Chem. Phys. 123 82005) 174706

    size confirmed by TEM

    CO adsorption

  • CO adsorption

    Carenco, Chem. Eur. J. 20 (2014) 10616

    M-M bond distance increasein EXAFS

    time dependent COL/COB ratio

    COL

    COB

    COL1COL2

    time

    COgas

  • Y. Soma-Noto et al., J. Catal. 32 (1974) 315

    0.01 Torr CO0.5 Torr CO Pd

    Ag

    CO adsorption

    Pd/Ag alloy on SiO2

  • Pearce and Sheppard, Surf. Sci. 59 (1976) 205

    Total dipole = 0

    Total dipole = 2

    The surface selection rule

  • AS(OCO) S(OCO) 1500 cm-1

    O O

    R

    x

    yz

    O O

    Rmetal metal

    The surface selection rule

    • Carboxylate groups

    Greenler et al. Surf. Sci. 118 (1982) 415

    Note that the selection rule can break down for particles smaller than ca. 2 nm

  • L (Langmuir)= exposure of 10-6 Torr gas for 1 s

    wavenumber (cm-1)

    trans

    mitta

    nce (

    %)

    Haq et al., J. Phys. Chem. 100 (1996) 16957; Preuss et al., Phys. Rev. B 73 (2006) 155413

    Pt(111)/90 K

    Reflection-absorption (IRRAS)

    • Also RAIRS; specular/external reflection method

  • higher T

    Reflection-absorption (IRRAS)

    Haq et al., J. Phys. Chem. 100 (1996) 16957

  • Chesters et al., Surf. Sci. 187 (1987) L639

    94 K

    5 L C2H4

    Reflection-absorption (IRRAS)

    • Adsorption of ethylene

  • Perpendicular polarizationParallel polarization

    RsRp ‐ = RDifference

    surface + gas gas surface

    The surface spectra are often shown in R/R (R=Rs+Rp)

    Perpendicular (s-) polarization (y-axis)

    Parallel (p-) polarization (x, z-axis)

    yx

    z

    CaF2 window

    IR light

    Gas inlet

    Gas outlet

    Sample

    Heating element

    Urakawa et al., J. Chem. Phys. 124 (2006) 054717

    Phase-modulation IRRAS (PM-IRRAS)

    • Generation of 2 polarizations (photoelastic modulator) excellent gas-phase compensation non-UHV experiments pssible highly sensitive, time-resolved studies possible

  • • Quality and quantity of acid sites│Criteria unequivocal analysis of intermolecular interaction selective interaction with acidic or basic sites sufficient accuracy in frequency shift determination high (and available) extinction coefficients of adsorbed probe appropriate acid (base) strength to induce interaction high specificity (allow discrimination between sites with different strength) - Use

    different molecules ! small molecular size - Use different molecules ! pyridine (smaller channels) and picoline (larger channels or surface only)

    low reactivity under exp. conditions

    • Examples acidity of zeolites with different channel sizes acid sites located in all channels

    Acid sites

  • • Adsorption of NH3

    Probe molecules

    15002000250030003500wavenumber (cm-1)

    abs.

    uni

    ts

    1000

    NH3(g)

    TiO2

    WO3-TiO2

  • • Adsorption of NH3

    Probe molecules

    15002000250030003500wavenumber (cm-1)

    20002050

    V=O W=O

    abs.

    uni

    ts

    1000

    NH3

    TiO2

    L-NH3

    B-NH4+

    WO3-TiO2

    V2O5-TiO2

    V2O5-WO3-TiO2

  • Acid sites

    BASBrønsted sites(protic)

    LASLewis sites(aprotic)

    OH

    base

    base

    M

    base

    M

    OH

    base+

    OH

    base

    HBhydrogen bond

  • • Adsorption of NH3 V2O5/WO3-TiO2

    Acid sites

    wavenumber (cm-1)

    abs.

    uni

    ts (a

    .u.)

    500 ppm NH3 + 5 vol% O2

    4000 3500 3000 2500 2000 1500 1000

    0.1

    0 s

    LNH3

    BNH3

    NH4+: 1440 cm-1NH3: 1605 cm-1

    250°C

    LNH3

    V

    Ti

    BNH3BAS

    V

    Ti

    LAS

    Vittadini et al., J. Phys. Chem. B Lett. 109 (2005) 1652

    Arnarsson et al., PCCP 18 (2016) 17071

  • Acid sites

    • Probe molecules for the study of localization of active sites in microporous materials

    acetonitrile methanolamine

    benzonitrilepivalonitrile

    pyridine 2,6-dimethyloyridine

    dimethyl amineo-xylene

    p-xylene

    m-xylene

    trimethylamine

    2,2 - diphenylpropionitrile

    di-tert-butyl-pyridine

    o-toluonitrile

    isobutyronitrilepropionitrile

    Busca, in Metal Oxide Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009) 95

  • • Pyridine Transmission

    Acid sites

    +

    3800 3700 3600 3500

    abso

    rban

    ce (a

    .u.)

    wavenumber (cm-1)

    BAS

    1700 1600 1500 1400 1300wavenumber (cm-1)

    BAS

    LAS

    Liu et al., J. Phys. Chem. C 121 (2017) 23520

    solution