david pekker (u. pitt) gil refael (caltech) vadim oganesyan (cuny) ehud altman (weizmann)

35
David Pekker (U. Pitt Gil Refael (Caltech) Vadim Oganesyan (CUNY Ehud Altman (Weizmann Eugene Demler (Harvar The Hilbert-glass transition: Figuring out excited states in strongly disordered systems

Upload: edric

Post on 05-Feb-2016

38 views

Category:

Documents


2 download

DESCRIPTION

The Hilbert-glass transition: Figuring out excited states in strongly disordered systems. David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann) Eugene Demler (Harvard). Outline. Quantum criticality in the quantum Ising model. + preview of punchline. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

David Pekker (U. Pitt)Gil Refael (Caltech)Vadim Oganesyan (CUNY)Ehud Altman (Weizmann)Eugene Demler (Harvard)

The Hilbert-glass transition: Figuring out excited states in strongly disordered systems

Page 2: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Outline

• Quantum criticality in the quantum Ising model

• Disordered Quantum Ising model and real-space RG

• The Hilbert-glass transition

• Extending to excited states – the RSRG-X method

+ preview of punchline

Page 3: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Standard model of Quantum criticality

xn

zn

zn hJH 1

• Quantum Ising model:

x

zzzzz

Jh

h

Page 4: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Standard model of Quantum criticality

xn

zn

zn hJH 1

• Quantum Ising model:

Ferro-magnet

Para-magnet

x

z

QCP

• Phase diagram

hJ

T

Quantum critical regime

zQC hJT ~

zzzz

Jh

h

Page 5: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Disordered Quantum Ising model

xnn

zn

znn hJH 1

• Quantum Ising model:

QCP

Para-magnet

Ferro-magnet

• Phase diagram:

hJ

T

Quantum critical regime

hJExpTQC ~

zQC hJT ~

xn

zn

zn hJH 1

zzzz z x

zzzzz

Page 6: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Surprise: Transition in all excited states

xnn

zn

znn hJH 1

• Quantum Ising model:

FMPM

• Phase diagram:

hJ

T Hilbert glasstransition

~typ......

...... Or:...... [All eigenstates

doubly degenerate]

QCP

zzzz z x

z

Page 7: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Surprise: Transition in all excited states

xnn

zn

znn hJH 1

• Quantum Ising model:

• Phase diagram:

hJ

T Hilbert glasstransition

~typ......

...... Or:...... [All eigenstates

doubly degenerate]

QCP

zzzz z

xn

xnn

xnn

zn

znn JhJH 11 '

x xxx x

FMPM

x

z

Page 8: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Surprise: Transition in all excited states

FMPM

• Phase diagram:

hJ

THilbert glass

transition

~typ ......

...... Or:......

QCP

• Dynamical quantum phase transition.

• Temperature tuned, but with no Thermodynamic signatures.

• Accessible example for an MBL like transition.

Hilbert glassphase

x-phase

Page 9: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

maxJ

Disarming disorder: Real space RG[Ma, Dasgupta, Hu (1979), Bhatt, Lee (1979), DS Fisher (1995)]

• Isolate the strongest bond (or field) in the chain.

Domain-wallexcitations

• neighboring fields: quantum fluctuations.

zzJ 21max

rightleft hhJ ,max

xlefth 1

Cluster ground state:

2121 ,

E

maxJ

2121 ,

1 2

• Choose ground-state manifold.

xrighth 2

maxJ

hhh rightleft

eff

1 2

Page 10: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

zzleftJ 21

Disarming disorder: Real space RG[Ma, Dasgupta, Hu (1979), Bhatt, Lee (1979), DS Fisher (1995)]

• Isolate the strongest bond (or field) in the chain.

1 2

• neighboring fields: quantum fluctuations.

xh 2max

rightleft JJh ,max

zzrightJ 32

maxh

JJJ rightleft

eff

E

Field aligned:

2

maxh

3

maxh

2Anti-aligned:

21 3

• Choose ground-state manifold.

X

Page 11: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

RG sketch•Ferromagnetic phase:

•Paramagnetic phase:

hJ

X

X XX XhJ

Page 12: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Universal coupling distributions and RG flow

• Initially, h and J have some coupling distributions:

)(h )(J

JmaxJhmaxh

Page 13: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Universal coupling distributions and RG flow

• These functions are attractors for all initial distributions.

• gh and gJ flow:

Ferro-magnet

Para-magnet

hJ lnln

RG

-flo

w

0

• As renormalization proceeds, universal distributions emerge:

)(JRG

J

JgJ 1

1)(hRG

h

hgh 1

1

},max{ hJ

Jh gg , flow with RG

hJ gg

QCP

Page 14: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

maxJDomain-wallexcitations

• neighboring fields: quantum fluctuations.

zzJ 21max

rightleft hhJ ,max

xlefth 1

Cluster ground state:

2121 ,

E

maxJ

2121 ,

1 2

xrighth 2

maxJ

hhh rightleftExcited

eff

1 2

What about excited states?

• Put domain walls in strongest bonds:

maxJ

hhh rightleftGS

eff No effect on coupling magnitude!

Pekker, GR, VO, Altman, Demler; Huse, Nandkishore, VO, Sondhi, Pal (2013)

Page 15: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

maxh

• Make spins antialigned with strong fields:

1 2

xh 2max

rightleft JJh ,max

zzrightJ 32

maxh

JJJ rightleftExcited

eff Field aligned:

2

E

maxh

3

2Anti-aligned:

zzleftJ 21

2X1 3

maxh

JJJ rightleftGS

eff • No effect on coupling magnitude!

What about excited states?Pekker, GR, VO, Altman, Demler; Huse, Nandkishore, VO, Sondhi, Pal (2013)

Page 16: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

RSRG-X Tree of states

• At each RG step, choose ground state or excitation:

[six sites with large disorder]

Page 17: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

RG sketch•Hilbert-glass phase:

•Paramagnetic phase:

hJ

X

X XX XhJ

Page 18: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Excited state flow

• Transition persists:

Random-domain clustersHilbert-glass

X-phase

RG

-flo

w

0

• Universal distribution functions independent of choice:

|)(| JRG

J

JgJ 1||

1|)(| hRG

h

hgh 1||

1

},max{ hJ

Jh gg , flow with RG

hJhJ gggg /hJ lnln

HGT

Page 19: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Order in the Hilbert glass vs. T=0 Ferromagnet• Symmetry-broken T=0 Ferromagnetic state:

...... ...... or

GSGSm znOrder parameter:

• Typical Hilbert-Glass excited state:

......

znm Order parameter:

z

nm

2z

nEAm

• Temporal correlations:

)()0( tm zn

zn

Page 20: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

......

~typ

......

hJ HGT

Order in the Hilbert glass vs. T=0 Ferromagnet

QCP

FM PM

hJ

T

GSGSm zn

hJ QCP

...... ......

Hil

bert

Gla

ss tr

ansi

tion

2z

nEAm

Page 21: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

T-tuned Hilbert glass transition: hJJ’ model

xn

xnn

xnn

zn

znn JhJH 11 '

• Quantum Ising model+J’:

X-states

hJ

T

1

Hilbertglass

• T (or energy-density) tuned transition

• But: No thermodynamic signatures

zzzzx x x x

1 2 3 4 5

• J’>0 increases h for low-energy states.

hJJ ,'

Page 22: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

RSRG-X Tree of statesE

nerg

y

RG step

Color code: inverse T

01

T

01

T

• Sampling method: Branch changing Monte Carlo steps.

Page 23: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

RSRG-X results for the Hilbert glass transition

Jh ~

Flows for different temperatures: Complete phase diagram:

Page 24: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Thermal conductivity

• No thermodynamic signatures – only dynamical signatures exist.

• Only energy is conserved: Signatures in heat conductivity?

~)( 3EngineeringDimension:• assume scaling form: || c

Page 25: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Numerical tests

Page 26: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Summary + odds and ends

• New universality: -T-tuned dynamical quantum transition.

- No thermodynamic signatures.

• Excited states entanglement entropy:- ‘area law’ in both phases- log(L) at the Hilbert glass transition (Follows from GR, Moore, 2004)

• Developed the RSRG-X- access to excitations and thermal averaging of L~5000 chains.

• Other Hilbert glass like transitions?

Page 27: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Edwards-Anderson order parameter

Page 28: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Lifshitz localization – a subtle example

• Tight-binding electrons on an irregular lattice.

• Density of states:

111 nnnnn JJH nJ

)(E

E

kJEk cos2Pure chain:

224

1~)(

EJE

Random J:

EEE

3ln

1~)(

Dyson singularity

Page 29: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Method of attack: Real space RGMa, Dasgupta, Hu (1979), Bhatt, Lee (1979)

J maxJ

leftJrightJ

1 3 42

32322

1

• Eliminated two sites.

• Reduced the largest bond

• New Heisenberg chain resulting with new suppressed effective coupling.

max2J

JJ rightleft

Page 30: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

D.S. Fisher (1994)

1 3 42

J

5 6 7 8

• Functional flow and universal coupling distributions:

)(J

JmaxJ

Universality of emerging distribution functions

Page 31: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

D.S. Fisher (1994)

1 3 42 5 6 7 8

• Functional flow and universal coupling distributions:

)(JRG

JmaxJ

1gJ

Universality of emerging distribution functions

|ln|

1~

maxJg

0

Page 32: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Random singlet phaseD.S. Fisher (1995)

1 3 42 5 6 7 8

• Low lying excitations: excited long-range singlets:

EEE

3ln

1~)(

• Susceptibility:

02 /ln

1~)(

TTTT

T

1~

)(E

Dyson singularity again!

Page 33: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Engtanglement entropy in the Heisenberg model

L2log3

1

AAAAB TrE 2logHolzhey, Larsen, Wilczek (1994).

• Random singlet phase:

B BA

L

• Pure chain:

Every singlet connecting A to B → entanglement entropy 1.

ABEHow many qubits

in A determined by B

(QFT Central charge, c=1)

Vidal, Latorre, Rico, Kitaev (2002).

LE number of singlets entering region A.

Page 34: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Engtanglement entropy in the Heisenberg model

L2log3

1

Holzhey, Larsen, Wilczek (1994).

• Random singlet phase:

B BA

L

• Pure chain: ABEHow many qubits

in A determined by B

(CFT Central charge, c=1)

Vidal, Latorre, Rico, Kitaev (2002).

LEL ln3

1 L2log2ln

3

1

Effective central charge 12ln1 randomcGR, Moore (2004).

For the experts: Does the effective c obey a c-theorem? No…

Fidkowski, GR, Bonesteel, Moore (2008).

Examples of enropy increasing transitions in random non-abelian anyon chains.

Page 35: David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann)

Universality at the transition?Altman, Kafri, Polkovnikov, GR (2009)

Insulator superfluid

g0 (~ J )

RSGBG

MG

1

g=1)(JRG

JmaxJ

1gJ

Mechanical analogy

1J 2JnJ

Average effectivespring constant

= 1/1 J

(ave of inverse J)

0 when g=1.Stiffness ~