davemercer,p.e.% districtengineerdeq%...representative %ext.% kaycoffey % %8145% (manager)%...

34
Dave Mercer, P.E. District Engineer DEQ

Upload: others

Post on 07-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Dave  Mercer,  P.E.  District  Engineer  DEQ  

  • Disinfec(on  Byproducts  (DBPs):  TTHMs  and  HAA5s  •  DBPs  =  compounds  created  when  naturally  occurring  material  in  water  react  with  the  disinfectant  used  to  treat  the  water  

    •  TTHMs  =  Total  Trihalomethanes:    a  group  of  DBPs  regulated  under  the  Stage  2  DBPR  

    •  HAA5  =  Haloacetic  acids:    a  group  of  DBPs  regulated  under  the  Stage  2  DBPR  

  • Precursor  in  Water  Natural  Organic  MaAer  

    Bromide   +Added  Disinfectant  

    Chlorine  

    Chloramines  

    Chlorine  Dioxide  

    Ozone  

    How  Are  DBPs  Formed?  

    = TTHM  (Total  Trihalomethanes)  HAA5  (Haloace(c  Acids)  

    Chlorite  

    Bromate  

    DBP  

  • How  Are  DBPs  Formed?  Natural  Organic  

    MaAer   +Added  

    Disinfectant   = DBP  Natural  Organic  

    MaAer   +Added  

    Disinfectant   = DBP  Natural  Organic  MaAer   +

    Added  Disinfectant   = DBP  + Time    

  • Disinfec(on  Byproducts  TTHM    ! MCL  =  0.080  mg/l                    (80  ppb)  ! Chloroform  ! Dibromochloroform  ! Dichlorobromoform  ! Bromoform    

    HAA5    ! MCL  =  0.060  mg/l                    (60  ppb)  ! Monochloroacetic  acid  ! Dichloroacetic  acid  ! Trichloroacetic  acid  ! Monobromoacetic  acid  ! Dibromoacetic  acid  

  • TOC  ! Based  on  past  12  months  of  raw  and  finished  water  TOC  data  

    ! Determine  performance  ratio  (%  TOC  actual  removal  versus  required)  

  • TOC  Month TOC Raw Alkalinity Raw

    TOC Finished

    Req'd % Removal

    Actual % Removal SUVA Ratio

    Removal Ratio

    04/13 3.6 17.35 1.1 35 68.55 — 1.96

    05/13 3.3 19 1.3 35 61.7 — 1.76

    06/13 4.2 16.9 1.8 45 57.2 — 1.27

    07/13 5.3 14.9 2.4 45 55.9 — 1.24

    08/13 5.7 18.1 2 45 64.3 — 1.43

    09/13 5.2 20.1 2.9 45 44.8 — 1

    10/13 4.9 15.3 2.5 45 48.9 — 1.09

    11/13 4.7 16.8 2.8 45 40.6 — 0.9

    12/13 5 18.2 2.7 45 45.5 — 1.01

    01/14 5.2 14.6 2.7 45 47 — 1.04

    02/14 4.9 14.2 2.1 45 57.6 — 1.28

    03/14 3.3 15.5 1.6 35 51.2 — 1.46

    Averages: 4.6   2.15     — 1.29

  • TOC  Monitoring  Points  

    Raw  Water   Clarifiers   Filters   Clearwell  

    Chemical Addition

    Raw TOC Finished TOC

    Prior to chemical addition No later than the CFE

  • Reducing  Total  Organic  Carbon    

    Natural  Organic  MaAer  

    (measured  as  TOC)  

    +Added  

    Disinfectant   = DBP  

  • TOC  –  Coagula(on  ! The   removal   of   natural   organic  matter,  measured   as  TOC,   in   a   conventional   water   treatment   by   the  addition   of   coagulant   has   been   demonstrated   by  laboratory   research  and  by  pilot,  demonstration,  and  full  scale  studies.  

  • TOC  Removal  ! TOC  plays  a  key  role  in  DBP  formation  –  even  a  small  increase  in  TOC  can  lead  to  an  increase  in  DBP  formation!  

    ! Removal  of  TOC  occurs  in  most  plants,  but  it  may  not  be  optimized!  

  • Enhanced  Coagula(on  Enhanced  coagulation  can  include  one  or  more  of  the  following  operational  changes:  !  Increasing  coagulant  dose  !  Changing  coagulant  !  Adjusting  pH  (using  acid  to  lower  the  pH  as  low  as  5.5)  !  Improving  mixing  or  applying  moderate  dosage  of  an  oxidant  or  PAC  

    !  Adding  a  polymer  !  TOC  should  be  2.0  mg/L  or  less  at  the  clarifier  effluent  

  • Jar  Tes(ng  !  Jar   testing   is   a   method   of   simulating   a   full-‐scale  water  treatment  process,  providing  system  operators  a  reasonable   idea  of   the  way  a   treatment  chemical  will  behave   and   operate   with   a   particular   type   of   raw  water.  

    ! Nowadays,  jar  testing  must  include  TOC  analyses.  

  • Jar  Tes(ng  !  It  is  important  to  simulate  physical  conditions  such  as  mixing,  detention  times,  and  solids  recycle  in  the  jar  test  corresponding  to  those  conditions  in  the  full-‐scale  water  treatment  plant.  

  • Jar  Tes(ng  The  jar  testing  process  can  be  summarized  as  follows:  !  For  each  water  sample  (usually  raw  water)  a  number  of  beakers  (jars)  are  filled  with  equal  amounts  of  the  water  sample;  

    !  Each  beaker  of  the  water  sample  is  treated  with  a  different  dose  of  the  chemical;  

    !  Other   parameters   may   be   altered   besides   dosage,   including  chemical  types,  mixing  rate,  pH,  etc.;  

    !  By   comparing   the  final  water   quality   achieved   in   each  beaker,  the   effect   of   the   different   treatment   parameters   can   be  determined;    

    !  Jar  testing  is  normally  carried  out  on  several  beakers  at  a  time,  with   the   results   from   the   first   test   guiding   the   choice   of  parameter  amounts  in  the  later  tests.  

  • When  should  jar  tests  be  performed?  

    Seasonally Daily, Weekly, Monthly

    Change in chemical

    Change in raw water

    quality

    New pumps

    Change in flow

    New mixer motor

    pH adjustment

  • Cost  Savings    

    Jar  Test  Equipment   Overfeeding   Underfeeding  

    $3,000   • Chemical  Price  • Delivery  • Backwash  Water    • Residuals  Disposal  

    • Disinfectant  Price  • Violations  (public  notice)  • Consent  Order  (penalties)  

  • Solids  Contact  Clarifier  –  Design  !  30  seconds  rapid  mix  (no  greater  than)  !  30  minutes  flocculation  (no  less  than)  !  3  hours  sedimentation  (no  less  than)  

    Rapid Mix

    Flocculation Flocculation

    Sedimentation Sedimentation

  • Solids  Contact  Clarifier  -‐  Design  ! Need  dimensions  of  each  zone  (where  are  those  old  plans?)  

    ! Need  flow  through  clarifier  (gpm)     50 ft

    12 ft

    12 ft

    8 ft

    16 ft

    2 ft

    Example

  • Solids  Contact  Clarifier  -‐  Design  ! Determine  rapid  mix  zone  volume  (gal)  

    !  Volume  of  cylinder    ! Determine  flocculation  zone  volume  (gal)  

    !  Volume  of  frustum  (V=  π  ·∙                      ·∙  (R2  +  Rr  +  r2))  ! Determine  sedimentation  zone  volume  (gal)  

    !  Total  volume  minus  flocculation  zone  volume    

    h  

    3  

  • Ques(ons  aIer  reviewing  design:  !  Is  the  rapid  mix  rapid?  !  Is  the  clarifier  operating  as  designed  (anything  need  to  be  repaired)?  

    ! Can  the  flow  through  the  clarifiers  be  slowed  down?  !  Is  one  clarifier  being  overloaded?  

  • Chlorine  Control  

    Natural  Organic  MaAer  

    (measured  as  TOC)  

    +Added  

    Disinfectant   = DBP  

  • Required  Chlorine  Residuals  ! Maintain  at  the  Point  of  Entry  

    !  no  less  than  1.0  mg/L  free  chlorine  !  no  less  than  2.0  mg/L  total  chlorine  for  chloramines  systems  

    !  no  greater  than  4.0  mg/L  (RAA)  free  or  total  chlorine  

    ! Maintain  in  the  Distribution  System  !  System  no  less  than  0.2  mg/L  free  chlorine  

    !  System  no  less  than  1.0  mg/L  total  chlorine  for  chloramines  systems    

  • OUT

    Secondary Cl2 = 2 ppm

    Cl2= 3.2 ppm

    IN PUMP

    Maximize  CT  –  Minimize  DBP’s  Add  the  chlorine  needed  to  achieve  at  least  0.5  log  removal  of  Giardia,  add  the  rest  downstream.  

    Cl2= 1.2 ppm

  • POE  Free  Chlorine  Residual  Modifica(on  

    ! The  minimum  free  chlorine  residual  at  the  POE  shall  be  at  1.0  mg/l.  For  supplies  that  document  they  meet  or  exceed  the  inactivation  requirements  in  OAC  252:631-‐3-‐3(a)(1),  the  minimum  free  chlorine  residual  at  the  POE  shall  be  0.2  mg/l.    

           -‐  OAC  252:631-‐3-‐3(d)(2)    

  • OUT

    Secondary Cl2 = 2 ppm Cl2= 2.5 ppm

    IN PUMP

    Maximize  CT  –  Minimize  DBP’s  Add  the  chlorine  needed  to  achieve  at  least  0.5  log  removal  of  Giardia,  add  the  rest  downstream.  

    Cl2= 0.5 ppm

  • Modification   Potential  Benefits   Potential  Issues  

    Enhanced  Coagulation  

    •  may  improve  disinfection  effectiveness  •  can  reduce  bromate  formation  by  reducing  pH  •  can  reduce  DBP  formation  

    •  may  adversely  impact  finished  water  turbidity  •  lower  pH  can  cause  corrosion  problems  •  may  see  increased  inorganics  concentrations  in  finished  water  •  issues  with  disposal  of  residuals  

    Decreasing    pH   •  same  inactivation  can  be  achieved  with  lower  disinfectant  dose  or  shorter  free  chlorine  contact  time  •  lower  pH  may  reduce  some  TTHMs  

    •  may  increase  HAA5  •  can  adversely  affect  treatment  plant  equipment  •  may  impact  settling  and  sludge  dewatering  •  can  cause  corrosion  problems  •  may  be  difficult  to  maintain  a  residual  

    Moving  the  Point  of  Chlorination  Downstream  

    •  reduces  DBP  concentrations  •  reduces  amount  of  disinfectant  used    

    •  May  impact  ability  to  meet  CT  requirements  •  provides  less  effective  treatment  for  iron  or  manganese    

  • Conclusion  ! PWS  will  find  improving  and  optimizing  current  operations  is  the  best  first  step  when  making  changes  to  achieve  compliance.  ! No  major  capital  improvements.  ! Operators  are  already  familiar  with  the  processes.  ! Operational  improvements  could  lead  to  less  expensive  or  simpler  technologies  

    !  Adding  new  technology  may  not  have  the  desired  effect  if  existing  technologies  aren’t  optimized.  

  • Representative  Ext.  Kay  Coffey    8145  (Manager)  Shane  Hacker  8108  Steven  Hoffman  8143  (Team  Leader;  AWOP)  Dawn  Hoggard  8149  Dave  Mercer  8147  Zach  Paden    8106  Brian  Schwegal  8105  Candy  Thompson  8103  *  District  assigned  by  color  code    Administrative  Assistant  Ramona  Haggins  8107  

    Interim  *  

    Brian  S.  

    Haskell  

    Latimer  Le  Flore  

    Choctaw   McCurtain  

    Pushmataha  

    Bryan  

    Atoka  

    Kingfisher  

    Canadian   Oklahoma  

    Blaine  Logan  

    Public  Water  Supply  Sec(on    District  Assignments  (May  20,  2014)  

    Cleveland  

    Mcclain  

    Johnston  

    Stephens  

    Love  

    Carter  

    Garvin  

    Murray  

    Marshall  

    Zach  P.  Custer  

    Dewey  

    Major  

    Beaver  Cimarron  Harper  Texas   Woods  

    Woodward  

    Ellis  

    Roger  Mills  

    Alfalfa   Grant  

    Candy  T.  

    Sequoyah  

    Cherokee  

    Creek  

    Mayes  Rogers  

    Tulsa  

    Okmulgee  

    Wagoner  

    Muskogee  

    Hughes  Pittsburg  

    Coal  

    Pontotoc  

    Garfield  

    Payne  

    Kay  

    Noble  

    Osage  

    Pawnee  

    Pottaw

    atom

    ie  

    Seminole  

    McIntosh Okfuske

    e  

    Lincoln  

    Was

    hing

    ton  

    Adair  

    Craig  

    Delaware  

    Ottawa  Nowata  

    Steven H.

    Dawn  H.  

    Jefferson  

    Tillman  

    Caddo  

    Comanche  

    Cotton  

    Greer  

    Jackson  

    Kiowa  

    Washita  Beckham  Grady  

    Dave M.

    Shane H.

    Interim *

    Interim *