_datafiles_attach_board_4Â÷¼¼¹Ì³ª(11.5 Çϱâ·æ)

Upload: satyendra-upadhyaya

Post on 05-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    1/82

    1/82

    Preparation of Polymer/Silica ParticleNanocomposites and Their Applications

    (/)

    Nov. 5, 2009

    KiRyong Ha ()

    2012-05-01

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    2/82

    2/822012-05-01

    Colorado

    Colorado

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    3/82

    3/822012-05-01

    University of Colorado

    Three campuses: Boulder, Colorado Springs and Denver.

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    4/82

    4/822012-05-01

    National Parks in Colorado

    Mesa VerdeNational Park

    Rocky MountainNational Park

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    5/82

    5/822012-05-01

    National Parks in Colorado

    Great Sand Dunes NationalPark

    Black Canyon of theGunnison National Park

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    6/82

    6/822012-05-01

    Tourist Attractions

    Aspen mountainscomprises of 4993acres, forty liftsand 335 trailsalong with sharp

    vertical slopes inthe entire Colorado,which makes itmore thrilling and

    stimulating.Aspen Colorado Ski Resort

    http://2.bp.blogspot.com/_NO2UOMMYKZ0/STPmX9iN6oI/AAAAAAAAC-Y/Rf0g9ltdbbM/s1600-h/Buttermilk+Ski+Map.jpg
  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    7/827/822012-05-01

    Tourist Attractions

    Maroon Bells One Colorado Fall day

    http://images.google.co.kr/imgres?imgurl=http://clarkvision.com/galleries/images.colorado.sanjuans/web/colorado.fall.c09.30.2003.L4.9421.c-700.jpg&imgrefurl=http://www.clarkvision.com/galleries/gallery.large_format/web/colorado.fall.c09.30.2003.L4.9421.c-700.html&usg=__LVdHwOfJQE3KwAaLuWdphILaHZQ=&h=555&w=700&sz=334&hl=ko&start=22&sig2=LTpVUGVnhFhgi7_411cccQ&um=1&tbnid=JOCbEw0OkYMifM:&tbnh=111&tbnw=140&prev=/images%3Fq%3DFall%2Bin%2BColorado%26ndsp%3D20%26complete%3D1%26hl%3Dko%26lr%3D%26sa%3DN%26start%3D20%26um%3D1%26newwindow%3D1&ei=oBztSr-BHpD0sgOiw-H1Aw
  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    8/828/822012-05-01

    Tourist Attractions

    Garden of the godsUnited StatesAir Force Academy

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    9/829/822012-05-01

    University of Colorado at Boulder

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    10/8210/822012-05-01

    Our department has been ranked 19th overall and 10th

    among public graduate programs by U.S. News & WorldReport, and ranked 4th in average citations per publicationby University Science Indicators.

    Department of Chemical and Biological Engineering

    Dr. Christopher N. Bowman

    Associate Dean for Research,Patten Professor of Chemicaland Biological Engineering,Clinical Professor ofRestorative Dentistry and

    Co-Director of the NSF I/UCRCfor Fundamentals andApplications and Photopolyme-rizations

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    11/8211/822012-05-01

    Outlines

    1. Introduction

    - Composites and Nanocomposites- Silica & Silane Coupling Agent2. Experimental- Silanization of Silica Particles- Characterization

    (a) FTIR(b) TGA(c) Solid State NMR

    - Fabrication of Nanocomposites

    (a) Curing Kinetics using Real Time NIR(b) DMA results

    3. Conclusions

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    12/8212/822012-05-01

    Introduction

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    13/8213/822012-05-01

    Composite

    20,

    000

    120,

    000

    Composite theory is based the rule-of-mixtures (simple version ormodified rule). In almost all cases, the solid dispersed phase is onewith the better properties.

    Definition: Materials containing at least two constituents that can be

    physically or visibly distinguished. Any two-phase material can beconsidered a composite.

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    14/8214/822012-05-01

    Composite

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    15/8215/822012-05-01

    Effect of Fillers

    Functional fillers transfer applied stress from the polymermatrix to the strong and stiff mineral.

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    16/8216/822012-05-01

    Polymer Nanocomposites

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    17/8217/822012-05-01

    Polymer Matrices

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    18/8218/822012-05-01

    Dimensions of Nanoparticles

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    19/8219/822012-05-01

    Preparation of Nanocomposites

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    20/82

    20/822012-05-01

    Why Nanocomposites? Multi-functionality

    Small filler size:

    High surface to volume ratio Small distance between fillers bulk interfacial material

    Mechanical Properties

    Increased ductility with no decrease of strength,

    Scratching resistance

    Optical properties Light transmission characteristics particle size dependent

    Interaction Zone

    Particle

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    21/82

    21/822012-05-01

    Production of Precipitated Silica

    1) Precipitated silica: reaction of an alkaline silicate solution

    with a mineral acid

    Na2(SiO2)3.3(aq) + H2SO4(aq) 3.3 SiO2(s) + Na2SO4(aq)

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    22/82

    22/822012-05-01

    Production process of fumed silica

    2) Fumed silica

    Flame pyrolysis of silicon tetrachloride

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    23/82

    23/822012-05-01

    Fumed Silica

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    24/82

    24/822012-05-01

    TEM of SiIica (OX-50 & AS380)

    Formation of aggregates due to high temperature

    manufacturing process.

    Evonik technical bulletin No. 11

    TEM of Aerosil OX-50 TEM of Aerosil 380

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    25/82

    25/822012-05-01

    Fumed Silica for Insulating Materials

    Thermal Conductivity vs Total Pressure & Pore Size

    Reliable and most cost-effective way to reduce both energy use

    and CO2 emissions.

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    26/82

    26/822012-05-01

    Hydrophobic Treatment of Fumed Silica

    Silica is hydrophilic in due to silanol (Si-OH) groups on the surface.These silanol groups may be chemically reacted with various reagentsto render the silica hydrophobic

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    27/82

    27/822012-05-01

    Properties of Hydrophobic Fumed Silica

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    28/82

    28/822012-05-01

    Production of Monodisperse Nanoparticles

    3) Stber-Process

    HydrolysisSi(OC2H5)4+ 4H2O Si(OH)4+4C2H5OHCondensationSi(OH)4SiO2+ 2H2O both in a NH3alcohol solution

    -monodisperse, spherical silicananoparticles that range in sizefrom 52000 nm.

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    29/82

    29/822012-05-01

    Particle-Matrix Compatibility

    Regardless of filler size and shape, intimate contact between the matrixand mineral particles is essential, since air gaps represent points ofpermeability and zero strength.

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    30/82

    30/822012-05-01

    SiIane Coupling Agent

    General Formula:

    R: Amino, vinyl, epoxy, chloro, mercapto, methacryloxy,acryloxy, etc.)

    X: Hydrolyzable group typically alkoxy, acyloxy, halogen oramine.

    Gelest Catalog 3000-A, Silicon compounds: Silanes & Silicones, p. 166, Gelest Inc.

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    31/82

    31/822012-05-01

    SiIane Coupling Agent

    Silane coupling agents have the ability to form a

    durable bond between organic and inorganic materials.Enhance interfacial adhesion via chemical bonding.

    Gelest Catalog 3000-A, Silicon compounds: Silanes & Silicones, p. 166, Gelest Inc.

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    32/82

    32/822012-05-01

    Silane Coupling agent Treatment

    Modification with organosilane depends on the ability to form a bondwith silanol groups, -Si-OH, and/or aluminol groups (-Al-OH) on the fillersurface.

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    33/82

    33/822012-05-01

    Typical Silane Coupling Agents

    Generally the reactivitydifferences betweenmethoxy and ethoxysilanes are not a problem.At typical hydrolysis pH(acidic ~5, basic ~ 9),both versions hydrolyzein under 15 minutes at

    2% silane concentrations.

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    34/82

    34/822012-05-01

    Applying a Silane Coupling Agent

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    35/82

    35/822012-05-01

    Silane Effectiveness on Inorganics

    Hydroxyl-containing substrates

    vary widely in concentration andtype of hydroxyl groups present.

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    36/82

    36/822012-05-01

    Silane Coupling agent Treatment

    SEM photomicrographs of fractured silica-filled epoxy compositea) silica without silane treatment, b) silica with silane treatment.

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    37/82

    37/822012-05-01

    CO2 Reduction

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    38/82

    38/822012-05-01

    Established Nanotechnologies

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    39/82

    39/822012-05-01

    Green Tires

    Lower rolling resistance Fuel economy lower carbon dioxide emissions lower global warming impact

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    40/82

    40/822012-05-01

    Green Tires

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    41/82

    41/822012-05-01

    Green Tires

    How can the Silane coupling agent meet the needs?

    Si-69; Bis-[-3-(triethoxysilyl)-propyl]-tetrasulfide

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    42/82

    42/822012-05-01

    Green Tires

    SilicaSilane: How it Works

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    43/82

    43/822012-05-01

    Green Tires

    SilicaSilane: How it Works

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    44/82

    44/822012-05-01

    Green Tires How it works

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    45/82

    45/822012-05-01

    Silanes to Meet the Need

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    46/82

    46/822012-05-01

    New Silanes for Silica Tire 1

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    47/82

    47/822012-05-01

    Green Tires

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    48/82

    48/822012-05-01

    Experimental

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    49/82

    49/822012-05-01

    Properties of SiIica (OX-50 & Aerosil 380)

    1) Noncrystalline form of silicon dioxide (SiO2) Fumed silica

    - OX-50: Low specific surface and only slight tendency toagglomerate. ( 2.2 Si-OH/nm2)- Aerosil 380: Highest specific surface area (2.5 Si-OH/nm2)- Hydrophilic grades.2) BET Surface Area [m2/g]: 50 (+-) 15, 380 (+-) 30

    3) Average primary particle size: 40 nm, 7 nm4) Tapped density: 130 g/L, 50g/L5 Density: 2.2g/cm3

    6)Hardness: 5.36.5 (Mohs Scale)Fillers for transparentscratch-resistant coating

    7) Refractive index: 1.46Very close to the most organic monomers8) Tensile strength: 48.3 MPa9) Bulk modulus: ~37 Gpa10) Youngs modulus: 71.7 GPa Fillers for reinforcing

    E i t l

    http://en.wikipedia.org/wiki/Mohs_scale_of_mineral_hardnesshttp://en.wikipedia.org/wiki/Mohs_scale_of_mineral_hardness
  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    50/82

    50/822012-05-01

    Experimental

    Three parameters which will be dealt here:

    1)Filler surface modification

    2) Filler concentration

    3) Particle size and the particle dispersion state.

    E. Chabert, M. Bornert, E. Bourgeat-Lami, J.-Y. Cavaille, R. Dendievel, C. Gauthier,J. L. Putaux, and A. Zaoui, Materials Science and Engineering A 381, 302-330 (2004)

    E i t l

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    51/82

    51/822012-05-01

    Experimental

    1) Silica OX-50 & Aerosil 3802) -methacryloxypropyltrichlorosilane (MPTS)3) [(Biscycloheptenyl)ethyl]tricholorosilane (BCTC)

    Materials:

    4) TMPTMP (Trimethylolpropane tris(3-mercaptopropionate)

    -3 functional S-H-n20 = 1.518, d=1.21 g/ml-b.p. = 220 at 0.3mm Hg, m.w. = 398.565) TMPDE (Trimethylolpropane diallyl ether)

    -2 functional allyl ether groups-nD =1.458, d= 0.955 g/ml-b.p. = 135/13mmHg, m.w. = 214.30

    Experimental

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    52/82

    52/822012-05-01

    Experimental

    6) GDMP (Glycol Dimercaptopropionate)

    Chemical Formula: (HSCH2CH2COOCH2)2CAS #: 22504-50-3- 2 functional S-H

    b.p.: 175-195C, m.w.: 238.32n

    25= 1.5-1.51, d = 1.219

    7) DMPA (2,2-dimethoxy-2-phenyl-acetophenone)C6H5COC(OCH3)2C6H5, photoinitiator, m.p. = 67~70)

    Silane treatment proced re (D St k t )

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    53/82

    53/822012-05-01

    1) Silica particles were dried by heating under vacuum2) Dean-Stark trap was used to remove waterin the toluene solvent.

    3) Dried silica particles were added to the reaction flaskwith dried toluene.4) Silane solution and triethylamine (catalyst) wereadded and stirred under nitrogen for 18 hrs.

    5) The particles were washed with several kinds of solvents anddried in the vacuum oven.

    Silane treatment procedure (Dean-Stark trap)

    To make monolayer of silane coupling agent on the silica, water

    must be removed from the reaction system.

    S f G f SiO P i l

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    54/82

    54/822012-05-01

    Surface Groups of SiO2 Particles

    Evonik technical bulletin No. 11

    or isolated

    Drying of OX 50

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    55/82

    55/822012-05-01

    Drying of OX-50 (FTIR Spectrum of of Pressed Disks)

    Pressed OX-50 without any treatment

    By drying process, increase of the intensity at 3747cm-1, which is causedby isolated Si-OH was observed (150 for 1hr).

    After 1hr heating at150

    Before heating

    MPTS OX 50 FTIR S t

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    56/82

    56/822012-05-01

    MPTS OX-50 FTIR Spectrum

    Pressed MPTS OX-50 Pressed Disk

    C=C-H stretchingpeak of

    methacrylate

    AliphaticC-H

    C=O

    stretching

    C=C

    Disappearanceof isolated Si-OH

    FTIR Results (C O P k Ch )

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    57/82

    57/822012-05-01

    (a)

    (b)

    (c)

    FTIR Results (C=O Peak Change)

    (a): Pure MPTS liquid, (b): Anhydrous toluene was used toprepare (multilayer), (c) Reflux method was used to prepare.

    Q. Liu et al., JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 57(3), 384-393 (2001).

    Free C=O

    H-bonded C=O C=C

    Degradation Pattern by TGA

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    58/82

    58/822012-05-01

    Degradation Pattern by TGA

    TGA can be used to determine silane content (MPTS on OX-50

    & AS380)

    M.W. of degrading part: 7 C + 2 O + 11 H= 7 x 12 + 2 x 16 + 11 x 1 = 127 (Assuming all Si-OHgroups reacted; T3 formation)Bond energy of the Si-O-Si bond (444 kJ/mol)Bond energy of the Si-C bond (306 kJ/mol)Bond energy of the C-C bond (345 kJ/mol).

    Maher Abboud, Michelle Turner, Etienne Duguet and Michel

    Fontanilleb, J. Mater. Chem., 1997, 7(8), 15271532.

    TGA Results

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    59/82

    59/822012-05-01

    TGA Results

    TGA thermogram of MPTS OX-50 & Aerosil 380

    TGA results: m (100 800)1.65 wt % loss for OX-50 and 11.8 wt % loss for Aerosil 380Surface area: 7.6 times, wt loss = 7.2 times

    TGA Results

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    60/82

    60/822012-05-01

    TGA Results

    TGA thermogram of BCTC silane coupling agent

    TGA results: m (100 800)Reflux method: (1.587% & 1.577% = avg. 1.58% ) weightloss Two step degradation characteristics

    Solid State NMR Results (13C & 29Si)

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    61/82

    61/822012-05-01

    Solid State NMR Results (13C & 29Si)

    29Si = DSX Bruker 400Mhz

    Delay time: 3 secContact time: 2 msecSpinning rate: 6kHz

    13

    C = Bruker Avance II+Spinning rate: 9KHzDelay time: 3 secContact time: 2.5 msec

    Cross-polarization combined with magic angle

    spinning (CP/MAS) were used to get NMR spectra.4 mm ZrO2 rotorCalibration: TMS

    Solid State 29Si NMR

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    62/82

    62/822012-05-01

    From 29Si CP/MAS NMR, it is possible to differentiate the different types of

    silicon atoms present in the silica particles:Q4, Q3, and Q2, that is, in the bulk, on the surface bonded to one OH and totwo OH, respectively.T1, T2, and T3 correspond to the silicon atoms contained in the silane moleculewhich have formed one (or two, or three, respectively) Si-O-Si bond with thesilica particle, or one Si-O-Si binding between two silanes.

    2

    29Si NMR Spectrum of Pristine OX-50 & AS380

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    63/82

    63/822012-05-01

    Si NMR Spectrum of Pristine OX-50 & AS380

    Pristine OX-50

    PPM

    -200-150-100-500

    Sig

    na

    l

    -400

    -200

    0

    200

    400

    600

    800

    1000

    29

    Si NMR can detect three types of silicon atoms at about -90, -100, and -110 ppm, designated Q2, Q3, and Q4 according to the number of OSi groupsbound, as shown below, where R is H or alkyl.Q2 = (RO)2Si(OSi)2,Q

    3 = ROSi(OSi)3,Q4 = Si(OSi)4

    R. Joseph, S. Zhang, and W. T. Ford, Macromolecules, 29, 1305-1312 (1996).

    -99.76(Q3)

    29Si NMR Spectrum of AS380

    PPM

    -200-150-100-500

    Signal

    -200

    0

    200

    400

    600

    800

    1000

    1200

    -100.1(Q3)

    -91.3(Q2)

    29Si NMR Spectrum of MPTS OX 50 & MPTS AS380

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    64/82

    64/822012-05-01

    29Si NMR Spectrum of MPTS OX-50 & MPTS AS380

    Silane Treated OX-50 (Reflux method)

    PPM

    -200-150-100-500

    Signa

    l

    -500

    0

    500

    1000

    1500

    2000

    2500

    3000

    Silanol signals of pristine OX-50 (Q2 & Q3) decrease upon silanization

    compared to Q4 signal for MPTS treated OX-50 sample.MPTS AS380 has lower T3 and higher T1 contents compared to MPTS OX-50.

    29Si NMR Spectrum of MPTS AS380

    PPM

    -200-150-100-500

    Signal

    -200

    0

    200

    400

    600

    800

    -99.9(Q3)

    -48.5(T1)

    -56.5(T2)

    -108.5(Q4)-101.2(Q3)

    -67.2(T3)-57.0(T2)

    13C NMR Spectrum of MPTS OX-50(3 days vacuum dried sample)

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    65/82

    65/822012-05-01

    C NMR Spectrum of MPTS OX 50(3 days vacuum dried sample)

    .R. Joseph, S. Zhang, and W. T. Ford, Macromolecules, 29, 1305-1312 (1996).

    MPTS modified OX-50

    PPM

    050100150200

    Intensity

    -200

    0

    200

    400

    600

    800

    1000

    1200

    C=C

    *

    13C NMR Spectrum of MPTS AS380 (after 3 days more

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    66/82

    66/822012-05-01

    C NMR Spectrum of MPTS AS380 (after 3 days morevacuum dried sample)

    R. Joseph, S. Zhang, and W. T. Ford, Macromolecules, 29, 1305-1312 (1996).

    MPTS modified Aerosil 380

    PPM

    050100150200

    Intensi

    ty

    -2000

    0

    2000

    4000

    6000

    8000

    58.4

    *

    One more peak at 58.4

    ppm observed:1)Rotation about the COC bond may be highlyrestricted due to hydrogenbonding of C=O groups ofmethacryl with Si-OH

    groups on the silicasurface, therefore peaksplittings due toconformational differencesmay be observed.2)Residual ethanol

    Ethanol: 18.4 and 58.3 ppm

    **

    * : 22.0 & 16.5 ppm

    29Si NMR Spectrum of BCTC OX-50

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    67/82

    67/822012-05-01

    Four peaks at-107.9, -103.2, -66.5, -58.0 ppm

    29Si Solid State NMR(bicycloheptenylethyltrichlorosilane treated OX-50)

    PPM

    -200-150-100-500

    Intensity

    0

    200

    400

    600

    800

    1000

    1200

    1400

    Si NMR Spectrum of BCTC OX-50

    Q4

    Q3T2

    T3

    13C NMR Spectrum of BCTC OX-50 ( ft 3 d

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    68/82

    68/822012-05-01

    C NMR Spectrum of BCTC OX-50 (after 3 daysvacuum dried)

    BCTC modified OX-50

    PPM

    050100150200

    Intensity

    -200

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    C=C

    Peaks at 136.2, 131.6,

    58.1, 48.8, 44.7, 41.9,32.0, 29.0(shoulder), 27.2,16.9, and 10.0 ppm 11peaksBut BCTC has 9 carbons

    in the molecule.Therefore, 2 more peaksmay be caused by endo-and exo- form of BCTC.Peaks at 136.2 and 131.6

    ppm are by olefinic C=C.

    Ethanol: 18.4 and 58.3 ppm

    Dispersion test in H2O

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    69/82

    69/822012-05-01

    Dispersion test in H2O

    2 ml water only in the vial.

    OX-50 silica dispersed wellin the water.Some MPTS OX-50dispersed, but most of them

    in the bottom of the vial.Most BCTC OX-50 stayed inthe bottom of the vial.

    HydrophiliciltyOX-50 > MPTS OX-0 >BCTC OX-50

    a) MPTS OX-50 in waterb) BCTC OX-50 in waterc) OX-50 in water

    RTIR measurement by NIR

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    70/82

    70/822012-05-01

    RTIR measurement by NIR

    BeforeUV

    After UVDecreaseof thispeak areawas used.

    5.0 mW/cm2 intensity

    320~500 nm wavelength[{10 mol % TMPTMP+ 90 mol %GDMP} + TMPDE] +0.2 wt % DMPAphotoinitiator

    1st overtone of TMPDE C=C-H band

    C=CHcombinationband

    S-Hband

    J. B. Ang, D. JT. Hill, P. J. Pomery, and H. Toh, Polym. Int., 52, 1689-1693 (2003).

    Real Time FTIR

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    71/82

    71/822012-05-01

    Real Time FTIR

    Monitoring reactions in real-time.

    Peak area change with UV irradiation was generated in realtime, that is, the data from both UV curing and FTIRmonitoring are collected simultaneously to follow the timedependent decrease of the C=C bond.

    Peak area change with UV irradiation time

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    72/82

    72/822012-05-01

    Peak area change with UV irradiation time

    Time (min)

    0 1 2 3 4 5

    PeakA

    rea

    -1

    0

    1

    2

    3

    4

    5

    6

    UV

    irradiationstartedhere

    Fabrication of Nanocomposite

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    73/82

    73/822012-05-01

    Fabrication of Nanocomposite

    Thiol monomer +DMPA solution

    Ene MonomerSilica particle

    Mixing Mixing + UVComposite

    DMA Measurement Conditions

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    74/82

    74/822012-05-01

    DMA Measurement Conditions

    1. 1 1/2 days storage in the dark at ambient conditions for UV

    irradiated samples2. Strain % = 0.8 %, frequency: 3Hz3. Room temperature -80 equilibrate for 2 mins heating

    3/ min rate to 180

    4. Measurement of three specimens to get average value

    DMA Curves for (TMPDE+GDMP) system

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    75/82

    R. B. Bogoslovov, C. M. Roland, A. R. Ellis, A. M. Randall, and C. G. Robertson, Macromolecules,2008, 41, 1289-1296.2012-05-01

    DMA Curves for (TMPDE+GDMP) system

    1. Modulus in the glassy(-70) and rubbery region (100)increased byaddition of fillers whether thefillers were modified or not. Good reinforcingeffects.

    2. The intensity of the tan peak

    in all the filler added polymerswas reduced compared topristine (TMPDE+GDMP)system through reduction of thepolymer concentration.

    3. Tg was very little affected bythe incorporation of fillers.

    4. Shoulder peak can not beremoved after heating, coolingand reheating cycle.

    lllllllllllllll

    l

    ll

    l

    l

    l

    l

    l

    ll

    llllllllllllllllllllllllllllllllllllllllllllllll

    llll

    lll

    llllllllllllll

    l

    lll

    l

    l

    ll

    lllll

    lllllllllllllllllllllllllllllllllllllllllllllllll

    llll

    ll

    llllllllllllll

    ll

    l

    lll

    ll

    l

    l

    lllllllllllllllllllllllllllllllllllllllllllllllll

    llll

    llll

    llllllllllllll

    l

    l

    ll

    l

    l

    l

    llllllllllllllllllllllllllllllllllllllllllllllllllllll

    llll

    lllllllllllll

    llll

    l

    ll

    l

    l

    l

    l

    l

    l

    l

    l

    l

    l

    l

    l

    llll

    llllll

    lllllllllllllllllllllllllllllllllllllllllllllllllllllllll

    lllllllllllllll

    ll

    l

    l

    l

    ll

    l

    l

    l

    l

    l

    l

    ll

    lllll

    llll

    ll

    lllllllllllllllllllllllllllllllllllllllllllllllllllllll

    lllllllllllll

    l

    ll

    l

    l

    l

    l

    l

    l

    l

    l

    ll

    l

    l

    l

    l

    l

    l

    l

    l

    ll

    l

    lll

    llll

    ll

    l

    l

    lllllllllllllllllllllllllllllllllllllllllllllllllllll

    lllllllllllllll

    l

    l

    ll

    l

    l

    ll

    l

    l

    l

    l

    l

    lll

    llll

    ll

    lll

    l

    l

    ll

    lllllllllllllllllllllllllllllllllllllllllllllllllllllll

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    TanDelta

    0.1

    1

    10

    100

    1000

    10000

    StorageModulus(MPa)

    -80 -30 20 70 120 170

    Temperature (C)

    DMA10%ox-aDMA10%mpts-a DMApri-b DMA10%bctc-a

    Universal V4.3A TA Instruments

    Black curve: Pristine

    Shoulder?

    Effects on Tg

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    76/82

    76/822012-05-01

    Effects on Tg

    (-25.4 ~ -27.5 : small effecton Tg meansweakinteractionsbetween resinmolecules andfiller surface)

    Glassy Region Storage Modulus

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    77/82

    77/822012-05-01

    Glassy Region Storage Modulus

    Storage Modulus at -70C

    Filler Contents (wt %)

    0 5 10 15 20

    StorageModul

    us(GPa)

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6

    2.8

    3.0

    OX-50

    MPTS OX-50

    BCTC OX-50

    AS380

    MPTS AS380

    Generallyincrease withfiller contents.

    Rubbery Region Storage Modulus

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    78/82

    78/822012-05-01

    y g g

    - Strong surface area

    effect. (AS380 and MPTSAS380 vs. OX-50 and AS380).- Resin system with OX-50showed lowest storage

    modulus at 20 wt% fillerconcentration, whichmay be caused by thepoor dispersion stabilityof OX-50, causingagglomeration.

    Particle Size Effect on Transparency

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    79/82

    2012-05-01

    Particle Size Effect on Transparency

    AS380 (primary particle size: 7 nm) incorporated nanocomposites

    are more transparent than those of OX-50 (primary particle size:40nm) incorporated nanocomposites.

    (a) 15% OX-50 (b) 15% AS 380

    FE-SEM Results for TMPTMP+TATATO

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    80/82

    80/822012-05-01

    To investigate the dispersion state of the silica nano-partilces inthe cured resin, cured composites were fractured in liquidnitrogen, and then the morphology of the fractured surface wereobserved with FE-SEM.

    Results for (TMPDE+GDMP) System

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    81/82

    81/822012-05-01

    ( ) y

    1. The moduli of the TMPDE+GDMP system with silica

    particles increased.

    2. Nanocomposite with smaller particle sizes such asAS380 & MPTS AS380 as fillers showed higher modulusthan those of OX-50 & MPTS OX-50 incorporatednanocomposites.

  • 8/2/2019 ._DataFiles_Attach_Board_4(11.5 )

    82/82

    Thank you for your kind attention.