dark energy with imperfect fluids - heidelberg universitycosmo/talks/... · 2012. 6. 18. ·...

31
IGNACY SAWICKI ITP, Heidelberg

Upload: others

Post on 18-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • IGNACY SAWICKI ITP, Heidelberg

  • Co-authors

    Luca Amendola

    Martin Kunz

    Ippocratis Saltas

    It’s still in preparation

    13 June 2012 ITP, Heidelberg 2

  • Gen. Jack D. Ripper

    “God willing, we will prevail, in peace and freedom from fear, and in true health, through the purity and k-essence of our natural... fluids. God bless you all.”

    13 June 2012 ITP, Heidelberg 3

  • We have an understanding gap!

    The ontological gap

    • Dark energy and modified gravity treated differently

    The universality gap

    • Is DE a fluid?

    • Does MG change the gravitational field?

    The epistemological gap

    • We only observe the motion of baryons

    13 June 2012 ITP, Heidelberg 4

  • 13 June 2012 ITP, Heidelberg 5

  • The background we know…

    13 June 2012 ITP, Heidelberg 6

    Supernova Cosmology Project Suzuki et al. (2011)

    𝑤 ≃ −1

  • …the perturbations, not yet.

    +𝑓𝜇𝜈 𝑔𝛼𝛽

    𝐺eff

    𝜂 ≡Φ +Ψ

    Φ−Ψ

    +𝑇𝜇𝜈DE

    𝑤

    𝑐s2

    Mo

    dified

    Gravity

    Dark En

    ergy

    13 June 2012 ITP, Heidelberg 7

    𝐺𝜇𝜈 = 𝑇𝜇𝜈DM

    Stuff Not Stuff

  • False Dichotomy?

    • Equivalent to ℒ𝜙 = 𝑓′(𝜙)𝑅 + 𝑉(𝜙)

    𝑓(𝑅)

    • Just like 𝑓 𝑅 but not universally coupled Coupled DE

    • Scalar must be coupled to gravity for consistency Galileons

    13 June 2012 ITP, Heidelberg 8

    All

    an e

    xtra

    fo

    rm o

    f m

    atte

    r

  • The Purity of ?-Essence

    Name Terms Extra Features

    C.C. Λ No perturbations

    Quintessence 𝑋 − 𝑉(𝜙) 𝑤 ≠ −1

    k-essence 𝐾(𝜙, 𝑋) 𝑐s2 ≠ 1

    KGB 𝐺(𝑋)□𝜙 𝑤 < −1 possible, coupling

    ℒ4, ℒ5 𝐺𝑋 𝑋 𝐵𝜇𝜈𝐵

    𝜇𝜈 − 𝐵2

    + 𝐺 𝑋 𝑅 𝜋, ?

    𝑓 𝑅 𝑓′ 𝜙 𝑅 + 𝑉(𝜙) Coupling, 𝜋

    13 June 2012 ITP, Heidelberg 9

    𝑆 = d4𝑥 −𝑔 𝑅 + ℒ 𝜙, 𝛻𝜇𝜙,𝐵𝜇𝜈 , 𝑅𝜇𝜈 + ℒext

    1 diff

    2 diff

    𝑋 = 𝜕𝜇𝜙2/2

    𝑚 ≡ 2𝑋 𝐵𝜇𝜈 = 𝛻𝜈𝛻𝜇𝜙

  • Why not just solve EoM?

    Too much info

    Solution properties clear

    Source of gravity

    Relations not closed without EoM

    13 June 2012 ITP, Heidelberg 10

    EoM

    EMT

  • 13 June 2012 ITP, Heidelberg 11

  • EMT Decomposition

    13 June 2012 ITP, Heidelberg 12

    𝐺𝜇𝜈 = 𝑇𝜇𝜈 +𝑇𝜇𝜈ext

    1 + 𝑓

    𝑇𝜇𝜈 = ℰ𝑢𝜇𝑢𝜈 + 𝒫 ⊥𝜇𝜈 +2𝑞(𝜇𝑢𝜈) + 𝜏𝜇𝜈

    𝑞𝜇 =⊥𝜇𝜆 𝛻𝜆𝑞

    𝜏𝜇𝜈 = ⊥𝜇𝛼⊥𝜈

    𝛽−1

    3⊥𝜇𝜈⊥

    𝛼𝛽 𝛻𝛼𝛻𝛽𝜋

    𝑢𝜇 = 𝛻𝜇𝜙/𝑚 ⊥𝜇𝜈= 𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

  • Perturbed EMT Conservation

    13 June 2012 ITP, Heidelberg 13

    𝛻𝜇𝑇𝜇𝜈 =𝑇𝜇𝜈ext 𝛻𝜇𝑓

    1 + 𝑓 2

    𝛿ℰ + 3𝐻 𝛿ℰ + 𝛿𝒫 + Ξ = 𝜌𝑆1

    Ξ + 5𝐻Ξ − ℰ + 𝒫𝑘2Ψ

    𝑎2−

    𝑘2

    𝑎2𝛿𝒫 +

    2

    3

    𝑘2

    𝑎2𝛿𝜋 = 𝜌𝑆2

    d𝑠2 = − 1 + 2Ψ d𝑡2

    + 𝑎2 𝑡 1 + 2Φ d𝒙2

    Ξ ≡ ℰ + 𝒫 Θ −𝑘2

    𝑎2𝛿𝑞 + 𝑞 Θ

  • Closure Relations: Hydrodynamics

    13 June 2012 ITP, Heidelberg 14

    Yakov Zel’dovich (1914-1987) Major T. J. “King” Kong (1919-1964)

  • Hydro in CMB Cosmology

    Lagrangian

    • QED

    Particles

    Thermal

    • 𝑓 𝜔, 𝑇, 𝜇 =2

    exp𝜔

    𝑇+1

    EMT

    Boltzmann

    • 𝛻𝜇𝑇𝜇𝜈 = 0

    No equations of motion for field values

    Variables are 𝑇 and 𝜇

    Evolution is conservation of perturbed EMT

    13 June 2012 ITP, Heidelberg 15

  • Hydrodynamics or Not?

    13 June 2012 ITP, Heidelberg 16

    𝒫 = 𝒫(𝑇, 𝜇) ℰ = ℰ 𝑇, 𝜇

    𝛿𝒫 = 𝒫,𝑇𝛿𝑇 + 𝒫,𝜇𝛿𝜇 𝛿ℰ = ℰ,𝑇𝛿𝑇 + ℰ,𝜇𝛿𝜇

    𝛿𝒫 = 𝑐s2𝛿ℰ+ ℰ 𝑐a

    2 − 𝑐s2 𝛿𝜇/𝜇

    𝑐s2 ≡ 𝒫,𝑇/ℰ,𝑇

    𝑐a2 ≡ 𝒫 /ℰ

    Fluid

  • A Real Hydrodynamical Fluid

    13 June 2012 ITP, Heidelberg 17

  • Hydrodynamics or Not?

    13 June 2012 ITP, Heidelberg 18

    𝒫 = 𝒫(𝑇, 𝜇) ℰ = ℰ 𝑇, 𝜇

    𝛿𝒫 = 𝒫,𝑇𝛿𝑇 + 𝒫,𝜇𝛿𝜇 𝛿ℰ = ℰ,𝑇𝛿𝑇 + ℰ,𝜇𝛿𝜇

    𝛿𝒫 = 𝑐s2𝛿ℰ+ ℰ 𝑐a

    2 − 𝑐s2 𝛿𝜇/𝜇

    𝑐s2 ≡ 𝒫,𝑇/ℰ,𝑇

    𝑐a2 ≡ 𝒫 /ℰ

    Fluid

    𝒫 = 𝒫(𝜏, 𝑇) ℰ = ℰ 𝜏, 𝑇

    𝛿𝒫rf = 𝒫,𝑇𝛿𝑇 𝛿ℰrf = ℰ,𝑇𝛿𝑇

    𝛿𝒫rf = 𝑐s2𝛿ℰrf

    𝛿𝒫 = 𝑐s2𝛿ℰ+ ℰ 𝑐a

    2 − 𝑐s2 𝛿𝜏

    Time-Evolving Substance

  • So what?

    Take k-essence

    The EMT is

    So the pressure perturbation is

    k-essence in general is not a fluid, since 𝜙 is the rest-frame clock

    But: shift-symmetric k-essence does describe a superfluid

    13 June 2012 ITP, Heidelberg 19

    𝛿𝒫 = 𝑐s2𝛿ℰ+ ℰ 𝑐a

    2 − 𝑐s2 𝛿𝜏

    ℒ = 𝐾(𝜙,𝑚)

    𝒫 𝜙,𝑚 = 𝐾 ℰ 𝜙,𝑚 = 𝑚𝐾𝑚 − 𝐾

    𝛿𝒫 = 𝐶2𝛿ℰ + ℰ 𝑐a2 − 𝐶2

    𝛿𝜙

    𝑚

  • Putting it all together:

    13 June 2012 ITP, Heidelberg 20

    𝛿ℰ + 3𝐻 𝛿ℰ + 𝛿𝒫 + Ξ = 𝜌𝑆1

    Ξ + 5𝐻Ξ − ℰ + 𝒫𝑘2Ψ

    𝑎2−

    𝑘2

    𝑎2𝛿𝒫 +

    2

    3

    𝑘2

    𝑎2𝛿𝜋 = 𝜌𝑆2

    𝛿𝒫 = 𝐶2𝛿ℰ − 3 𝑐a2 − 𝐶2

    𝑎𝐻

    𝑘

    2 Ξ

    𝐻 Ξ = ℰ + 𝒫 Θ

    𝛿′′ +1

    2− 3𝑤 −

    3𝑤eff

    2𝛿′ + 𝐶2

    𝑘2

    𝑎2𝐻2𝛿

    −3 Ω𝑋 1+𝑤 +𝑤−3𝑤𝑤eff

    2𝛿 =

    3

    21 + 𝑤 Ωm𝛿m

    Subhorizon

  • So is solving EoM OK?

    • BE/FD lowest state highly populated at 𝑇 = 0

    • Axions

    • Superfluid

    Condensates

    • Describe thermo potentials by scalars

    • All shift-symmetric

    Effective Thermo

    • Always classical because?

    • Scalar part of the gravity sector

    Gravity

    13 June 2012 ITP, Heidelberg 21

    We treat the scalar completely differently to all other “stuff”

  • 13 June 2012 ITP, Heidelberg 22

  • k-essence Brans-Dicke

    𝑓 = const is just k-essence

    𝐾 = 𝑉 𝜙 is ~𝑓 𝑅 gravity

    Simplest class containing anisotropic stress and 𝑐s

    2 ≠ 1

    Stay in the Jordan frame

    13 June 2012 ITP, Heidelberg 23

    𝑆 = d4𝑥 −𝑔 1 + 𝑓(𝜙)𝑅

    2+ 𝐾 𝜙, 𝑋 + ℒm[𝑔𝜇𝜈]

    Is this “stuff” or “not-stuff”?

  • Speed of Sound

    We can perturb this, collecting 2-derivative

    𝒢𝜇𝜈𝛻𝜇𝛻𝜈𝛿𝜙 + 𝒪 𝛻𝜇𝜙𝛻𝜇𝛿𝜙… = 0

    Contravariant acoustic metric

    13 June 2012 ITP, Heidelberg 24

    𝛻𝜇 𝐾𝑋𝛻𝜇𝜙 − 𝐾𝜙 =

    1

    2𝑓𝜙𝑅

    𝒢𝜇𝜈 = −𝐷𝑢𝜇𝑢𝜈 + 𝐷𝑐s2 ⊥𝜇𝜈

    𝐷 = 𝐸𝑚 + 3𝑓𝜙2/2 1 + 𝑓

    𝑐s2 = 𝐷−1(𝑃𝑚 + 3𝑓𝜙

    2 2 1 + 𝑓 )

    k-essence: 𝑐s2 = 𝑃𝑚/𝐸𝑚

    𝑓(𝑅): 𝑐s2 = 1

  • How many variables?

    13 June 2012 ITP, Heidelberg 25

    ℰ = 𝐸(𝜙,𝑚) − ϰ 𝜃

    𝒫 = 𝑃 𝜙,𝑚 + ϰ 𝑚 𝑚+ 2

    3𝜃

    𝜋 = −ϰ

    ϰ ≡ ln(1 + 𝑓)

    𝑚~𝜙 𝜃 = 𝛻𝜇𝑢

    𝜇

    𝛽 = ϰ 2

    𝑚2𝐷> 0

    ϰ 𝑚

    𝑚+ ϰ 𝑐s

    2𝜃 +ϰ 𝐸𝜙

    𝑚𝐷= 𝛽(𝐸 − 3𝑃 + 𝜌m)

    ℰ = 𝐸(𝜙,𝑚) − ϰ 𝜃

    𝒫 = 𝑃 𝜙,𝑚 − ϰ 𝑐s2 − 2

    3𝜃 + 𝛽𝜌m

    𝜋 = −ϰ(𝜙)

  • Two Types of MDE

    Late Matter Domination Deep Matter Domination

    k-essence terms dominate background

    energy conserved

    𝛽 ≪ ϰ /𝐻

    𝑐s2 > 3𝛽

    Ωm can be large

    two-derivative terms dominate background

    𝑤 irrelevant for evolution of ℰ

    Physics just like 𝑓 𝑅 𝛽 = 1/3

    𝑐s2 = 1

    13 June 2012 ITP, Heidelberg 26

    ℰ + 3𝐻 ℰ + 𝒫 =ϰ 𝜌m1 + 𝑓

    ϰ ≪ 𝐻

  • Closure Relations

    Parameter Perfect Regime

    Imperfect Regime

    𝐶2 𝑐s2 𝑐s

    2 − 23

    Π 0 1

    Σ1 𝑐s2 − 𝑐a

    2 𝑐s2 − 𝑐a

    2 − 23

    Σ2 small 0

    𝜛1 0 1

    𝛽 𝛽 𝛽

    13 June 2012 ITP, Heidelberg 27

    𝛿𝒫 ≃ 𝐶2𝛿ℰ + Σ1𝑎𝐻

    𝑘

    2 Ξ

    𝐻+ Σ2

    Ξ

    𝐻+

    𝛽𝛿𝜌

    1 + 𝑓

    𝑘2

    𝑎2𝛿𝜋 ≃ Π𝛿ℰ + 𝜛1

    𝑎𝐻

    𝑘

    2 Ξ

    𝐻

    𝑘T2

    𝑎2𝐻2≡Ω𝑋 1 + 𝑤

    𝛽

    𝑘2

    𝑎2𝛿𝒫 + 2

    3𝑘2

    𝑎2𝛿𝜋

    ∼ 𝑐s2𝑘2

    𝑎2𝛿ℰ

  • Imperfect Regime

    Lensing potential

    • 𝑘2

    𝑎2Φ−Ψ = 𝛿ℰ + 𝛿𝜌m

    1+𝑓− 𝑘

    2

    𝑎2𝛿𝜋 ≃ 𝛿𝜌m

    1+𝑓

    Shear parameter

    • 𝜂 ≡Φ+Ψ

    Φ−Ψ=

    𝑘2 𝑎2𝛿𝜋 𝛿𝜌m1+𝑓

    ≃𝛿ℰ 1+𝑓

    𝛿𝜌m=

    Ω𝑋

    Ωm

    𝛿

    𝛿m

    13 June 2012 ITP, Heidelberg 28

  • Evolution from Conservation

    13 June 2012 ITP, Heidelberg 29

    𝛿′′ +1

    2− 3𝑤 −

    3𝑤eff

    2𝛿′ + 𝑐s

    2 𝑘2

    𝑎2𝐻2𝛿

    −𝑀12(Ω𝑋, 𝑤)𝛿 =

    3

    21 + 𝑤 Ωm𝛿m

    𝛿′′ −3

    2

    1

    2+ 2𝑤 + 𝑤eff 𝛿

    ′ + 𝑐s2 𝑘

    2

    𝑎2𝐻2𝛿

    −𝑀22(Ω𝑋, 𝑤)𝛿 = −𝛽

    Ωm

    Ω𝑋

    𝑘2

    𝑎2𝐻2𝛿m

    Imperfect

    Perfect

    𝑘T2

    𝑎2𝐻2= Ω𝑋(1 + 𝑤)/𝛽

  • Not the 𝑓(𝑅) solution

    DE very clustered inside Jeans length

    Particular solution 𝛿ℰ = −𝛽

    𝑐s2𝛿𝜌m1+𝑓

    ∝ 𝑎−2

    In deep MDE 2Φ +Ψ = 0

    But the homogeneous mode decays slower

    𝛿 = 𝑎(1+3𝑤)/2𝐴 cos2𝑐s

    1+3𝑤

    𝑘

    𝑎𝐻+ 𝜑

    Φ is dominated by DE and oscillates

    13 June 2012 ITP, Heidelberg 30

    𝛿′′ −3

    2

    1

    2+ 2𝑤 𝛿′ + 𝑐s

    2 𝑘2

    𝑎2𝐻2𝛿 ≃ −𝛽

    Ωm

    Ω𝑋

    𝑘2

    𝑎2𝐻2𝛿m

  • The Takeaway

    Conservation of the EMT contains all the useful and a minimum of useless information

    Classical scalar fields do not in general obey hydrodynamical closure relations given understanding of the d.o.f. can calculate them: we have a prescription

    More general scalar theories contain a new scale, separating the

    perfect and imperfect

    The real speed of sound (causality) determines the Jeans length

    Gravity not really modified in MG fluid carries anisotropy need perturbations of DE to split potentials coupling gives large DE perturbations inside Jeans horizon

    13 June 2012 ITP, Heidelberg 31