dac_s05

Upload: anil-bains

Post on 07-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 DAC_S05

    1/42

    Digital to AnalogConverters (DAC)

    Adam Fleming

    Mark Hunkele

    3/11/2005

  • 8/3/2019 DAC_S05

    2/42

    2

    Outline

    Purpose

    Types

    Performance Characteristics

    Applications

  • 8/3/2019 DAC_S05

    3/42

    3

    Purpose

    To convert digital values to analog voltages

    Performs inverse operation of the Analog-to-

    Digital Converter (ADC)

    DACDigital Value Analog Voltage

    Reference Voltage

    ValueDigitalOUTV

  • 8/3/2019 DAC_S05

    4/42

    4

    DACs

    Types Binary Weighted Resistor R-2R LadderMultiplier DAC

    The reference voltage is constant and is set by the manufacturer.

    Non-Multiplier DAC The reference voltage can be changed during operation.

    CharacteristicsComprised of switches, op-amps, and resistors Provides resistance inversely proportion to

    significance of bit

  • 8/3/2019 DAC_S05

    5/42

    5

    Binary Weighted ResistorRf= R

    8R4R2RR Vo

    -VREF

    iI

    LSB

    MSB

  • 8/3/2019 DAC_S05

    6/42

    6

    Binary RepresentationRf= R

    8R4R2RR Vo

    -VREF

    iI

    LeastSignificant Bit

    MostSignificant Bit

  • 8/3/2019 DAC_S05

    7/42

    7

    Binary Representation

    -VREF

    LeastSignificant Bit

    MostSignificant Bit

    CLEAREDSET

    ( 1 1 1 1 )2 = ( 15 )10

  • 8/3/2019 DAC_S05

    8/42

    8

    Binary Weighted Resistor

    Rf= R

    8R4R2RR Vo

    -VREF

    iI

    LSB

    MSB

    Weighted

    Resistors

    based on bit

    Reducescurrent by afactor of 2 for

    each bit

  • 8/3/2019 DAC_S05

    9/42

    9

    Binary Weighted Resistor

    Result:

    Bi = Value of Bit i

    RB

    R

    B

    R

    B

    R

    BVIREF 842

    0123

    842

    0123

    BBBBVRIV REFfOUT

  • 8/3/2019 DAC_S05

    10/42

    10

    Binary Weighted Resistor

    More Generally:

    Bi = Value of Bit i n = Number of Bits

    ResolutionValueDigital

    2 1

    REF

    in

    iREFOUT

    V

    B

    VV

  • 8/3/2019 DAC_S05

    11/42

    11

    R-2R LadderVREF

    MSB

    LSB

  • 8/3/2019 DAC_S05

    12/42

    12

    R-2R Ladder

    Same input switch setup as BinaryWeighted Resistor DAC

    All bits pass through resistance of 2R

    VREFMSB

    LSB

  • 8/3/2019 DAC_S05

    13/42

    13

    R-2R Ladder

    The less significant the bit, the more resistors the signalmuss pass through before reaching the op-amp

    The current is divided by a factor of 2 at each node

    LSB MSB

  • 8/3/2019 DAC_S05

    14/42

    14

    R-2R Ladder The current is divided by a factor of 2 at each node

    Analysis for current from (001)2 shown below

    0I

    VREF

    RR R R 2R

    2R2R2R

    Op-Amp inputGround

    B0

    2

    0I

    4

    0I

    8

    0I

    R

    V

    RRR

    VI REFREF

    32220

    B1B2

  • 8/3/2019 DAC_S05

    15/42

    15

    R-2R Ladder

    Result:

    Bi = Value of Bit i

    842

    012 BBBVR

    RV

    REF

    f

    OUT

    Rf

    8423

    012 BBB

    R

    VI REF

  • 8/3/2019 DAC_S05

    16/42

    16

    R-2R Ladder

    If Rf = 6R, VOUT is same as Binary Weighted:

    Bi = Value of Bit i

    12 ini

    REFOUT

    BVV

    in

    iREF B

    R

    V

    I 23

  • 8/3/2019 DAC_S05

    17/42

    17

    0I

    VREF

    RR R R 2R

    2R2R2R

    Op-Amp inputGround

    B0 B2

    0I

    VREF

    R-2R Ladder

    Example:

    Input = (101)2

    VREF = 10 V

    R = 2 Rf = 2R

    mA67.13222

    0

    R

    V

    RRR

    VI REFREF

    mA04.128

    00

    III

    ampop

    V17.4 fampopOUT RIV

  • 8/3/2019 DAC_S05

    18/42

    18

    Pros & Cons

    Binary Weighted R-2R

    Pros Easily understood

    Only 2 resistor values

    Easier implementation

    Easier to manufacture

    Faster response time

    Cons

    Limited to ~ 8 bits

    Large # of resistors

    Susceptible to noise

    Expensive

    Greater Error

    More confusing analysis

  • 8/3/2019 DAC_S05

    19/42

    19

    Digital to Analog Converters

    Performance Specifications

    Common Applications

    Presented by: Mark Hunkele

  • 8/3/2019 DAC_S05

    20/42

    20

    Digital to Analog Converters

    -Performance Specifications

    Resolution

    Reference Voltages

    Settling Time

    Linearity

    Speed Errors

  • 8/3/2019 DAC_S05

    21/42

    21

    Resolution: is the amount of variance inoutput voltage for every change of the LSB

    in the digital input. How closely can we approximate the

    desired output signal(Higher Res. = finerdetail=smaller Voltage divisions)

    A common DAC has a 8 - 12 bit Resolution

    Digital to Analog Converters

    -Performance Specifications

    -Resolution

    NLSB

    VV

    2

    ResolutionRef N = Number of bits

  • 8/3/2019 DAC_S05

    22/42

    22

    Digital to Analog Converters

    -Performance Specifications

    -Resolution

    Better Resolution(3 bit)Poor Resolution(1 bit)

    Vout

    Desired Analog

    signal

    Approximateoutput

    2Volt.Levels

    Digital Input0 0

    1

    Digital Input

    Vout

    Desired Analog signal

    Approximate

    output

    8Volt.Levels

    000

    001

    010

    011

    100

    101

    110

    111

    110

    101

    100

    011

    010

    001

    000

  • 8/3/2019 DAC_S05

    23/42

    23

    Reference Voltage: A specified voltageused to determine how each digital input

    will be assigned to each voltage division. Types:

    Non-multiplier: internal, fixed, and defined by

    manufacturerMultiplier: external, variable, user specified

    Digital to Analog Converters

    -Performance Specifications

    -Reference Voltage

  • 8/3/2019 DAC_S05

    24/42

    24

    Digital to Analog Converters

    -Performance Specifications

    -Reference Voltage

    Assume 2 bit DAC

    Non-Multiplier: (Vref = C)

    Digital Input

    Multiplier: (Vref = Asin(wt))

    0

    Voltage

    00

    01 01

    00

    10 10

    11

    0

    Voltage

    Digital Input00 00

    01 01

    10 10

    11

  • 8/3/2019 DAC_S05

    25/42

    25

    Settling Time: The time required for theinput signal voltage to settle to the

    expected output voltage(within +/- VLSB). Any change in the input state will not be

    reflected in the output state immediately.

    There is a time lag, between the twoevents.

    Digital to Analog Converters

    -Performance Specifications

    -Settling Time

  • 8/3/2019 DAC_S05

    26/42

    26

    Digital to Analog Converters

    -PerformanceSpecifications-Settling Time

    Analog Output Voltage

    Expected

    Voltage

    +VLSB

    -VLSB

    Settling timeTime

  • 8/3/2019 DAC_S05

    27/42

    27

    Linearity: is the difference between the desired

    analog output and the actual output over the

    full range of expected values. Ideally, a DAC should produce a linear

    relationship between a digital input and the

    analog output, this is not always the case.

    Digital to Analog Converters

    -Performance Specifications

    -Linearity

  • 8/3/2019 DAC_S05

    28/42

    28

    Digital to Analog Converters

    -Performance Specifications

    -Linearity

    Linearity(Ideal Case)

    Digital Input

    Perfect Agreement

    Desired/Approximate Output

    An

    alogOutputVolta

    ge

    NON-Linearity(Real World)

    AnalogOutputVolt

    age

    Digital Input

    Desired Output

    Miss-alignment

    Approximateoutput

  • 8/3/2019 DAC_S05

    29/42

    29

    Speed: Rate of conversion of a singledigital input to its analog equivalent

    Conversion RateDepends on clock speed of input signal

    Depends on settling time of converter

    Digital to Analog Converters

    -Performance Specifications

    -Speed

  • 8/3/2019 DAC_S05

    30/42

    30

    Non-linearity

    Differential

    Integral

    Gain

    Offset

    Non-monotonicity

    Digital to Analog Converters

    -Performance Specifications

    -Errors

  • 8/3/2019 DAC_S05

    31/42

    31

    Differential Non-Linearity: Difference in voltage step sizefrom the previous DAC output (Ideally All DLNs = 1

    VLSB)

    Digital to Analog Converters

    -Performance Specifications

    -Errors: Differential Non-Linearity

    Digital Input

    Ideal Output

    AnalogOu

    tputVoltage

    VLSB

    2VLSB Diff. Non-Linearity = 2VLSB

  • 8/3/2019 DAC_S05

    32/42

    32

    Integral Non-Linearity: Deviation of the actualDAC output from the ideal (Ideally all INLs = 0)

    Digital to Analog Converters

    -Performance Specifications

    -Errors: Integral Non-Linearity

    Digital Input

    Ideal Output

    1VLSB Int. Non-Linearity = 1VLSB

    Analog

    OutputVoltage

  • 8/3/2019 DAC_S05

    33/42

    33

    Gain Error: Difference in slope of the idealcurve and the actual DAC output

    Digital to Analog Converters

    -Performance Specifications

    -Errors: Gain

    High Gain Error: Actualslope greater than ideal

    Low Gain Error: Actualslope less than ideal

    Digital Input

    Desired/Ideal Output

    AnalogOutputVoltage

    Low Gain

    High Gain

  • 8/3/2019 DAC_S05

    34/42

    34

    Offset Error: A constant voltage differencebetween the ideal DAC output and the actual. The voltage axis intercept of the DAC output curve is

    different than the ideal.

    Digital to Analog Converters

    -Performance Specifications

    -Errors: Offset

    Digital Input

    Desired/Ideal OutputOutput Voltage

    Positive Offset

    NegativeOffset

  • 8/3/2019 DAC_S05

    35/42

    35

    Non-Monotonic: A decrease in outputvoltage with an increase in the digital input

    Digital to Analog Converters

    -Performance Specifications

    -Errors: Non-Monotonicity

    Analog

    OutputVoltage

    Digital Input

    Desired Output

    Monotonic

    Non-Monotonic

  • 8/3/2019 DAC_S05

    36/42

    36

    Generic use

    Circuit Components

    Digital Audio

    Function Generators/Oscilloscopes

    Motor Controllers

    Digital to Analog Converters

    -Common Applications

  • 8/3/2019 DAC_S05

    37/42

    37

    Used when a continuous analog signal isrequired.

    Signal from DAC can be smoothed by aLow pass filter

    Digital to Analog Converters

    -Common Applications

    -Generic

    0 bit

    nth bit

    n bit DAC011010010101010100101101010101011111100101000010101010111110011010101010101010101010111010101011110011000100101010101010001111

    Digital Input

    Filter

    Piece-wiseContinuous Output

    AnalogContinuous Output

  • 8/3/2019 DAC_S05

    38/42

    38

    Voltage controlled Amplifier

    digital input, External Reference Voltage as control

    Digitally operated attenuator

    External Reference Voltage as input, digital control

    Programmable Filters

    Digitally controlled cutoff frequencies

    Digital to Analog Converters

    -Common Applications

    -Circuit Components

  • 8/3/2019 DAC_S05

    39/42

    39

    CD Players

    MP3 Players

    Digital Telephone/Answering Machines

    Digital to Analog Converters

    -Common Applications

    -Digital Audio

    1. http://electronics.howstuffworks.com/cd.htm2. http://accessories.us.dell.com/sna/sna.aspx?c=us&cs=19&l=en&s=dhs&~topic=odg_dj

    1 23

    3. http://www.toshiba.com/taistsd/pages/prd_dtc_digphones.html

    http://configure.us.dell.com/dellstore/config.aspx?c=us&cs=19&l=en&oc=DDJ20M&s=dhshttp://configure.us.dell.com/dellstore/config.aspx?c=us&cs=19&l=en&oc=DDJ20M&s=dhs
  • 8/3/2019 DAC_S05

    40/42

    40

    Digital to Analog Converters

    -Common Applications

    -Function Generators

    Digital Oscilloscopes

    Digital Input

    Analog Ouput

    Signal Generators Sine wave generation

    Square wave generation

    Triangle wave generation

    Random noise generation

    1

    1. http://www.electrorent.com/products/search/General_Purpose_Oscilloscopes.html

    2

    2. http://www.bkprecision.com/power_supplies_supply_generators.htm

    http://www.electrorent.com/products/search/detail.aspx?Mfr=Lecroy+Corporation&MfrMod=LEC-LC584AL&Desc=1GHz+4CH+Digital+Scope
  • 8/3/2019 DAC_S05

    41/42

    41

    Cruise Control

    Valve Control

    Motor Control

    Digital to Analog Converters

    -Common Applications

    -Motor Controllers

    1

    1. http://auto.howstuffworks.com/cruise-control.htm

    2

    2. http://www.emersonprocess.com/fisher/products/fieldvue/dvc/

    3

    3. http://www.thermionics.com/smc.htm

  • 8/3/2019 DAC_S05

    42/42

    References

    Cogdell, J.R. Foundations of Electrical Engineering. 2nd ed. Upper Saddle River,NJ: Prentice Hall, 1996.

    Simplified DAC/ADC Lecture Notes, http://www-personal.engin.umd.umich.edu/~fmeral/ELECTRONICS II/ElectronicII.html

    Digital-Analog Conversion, http://www.allaboutcircuits.com. Barton, Kim, and Neel. Digital to Analog Converters. Lecture, March 21, 2001.

    http://www.me.gatech.edu/charles.ume/me4447Spring01/ClassNotes/dac.ppt.

    Chacko, Deliou, Holst, ME6465 DAC Lecture Lecture, 10/ 23/2003,

    http://www.me.gatech.edu/mechatronics_course/

    Lee, Jeelani, Beckwith, Digital to Analog Converter Lecture, Spring 2004,http://www.me.gatech.edu/mechatronics_course/