d pr therapeutic ratio n.b. for a given fraction size

35
RadyobiyolojikTedaviPlanlam a ( Radiobiologically Guided Radiotherapy) Alan E.N ahum PhD Physics Departm ent C latterbridge C entre forO ncology Bebington,W irral C H 63 4JY UK ( [email protected] ) XI.U LU S A L M ED IK A L FIZIK K O NG R ES I,14-18 K ASIM 2007,C O NCORDE H OTEL,ANTALYA

Upload: paul-hutchinson

Post on 02-Jan-2016

224 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: D pr Therapeutic Ratio N.B. for a given fraction size

Radyobiyolojik Tedavi Planlama(Radiobiologically Guided Radiotherapy)

Alan E. Nahum PhD

Physics DepartmentClatterbridge Centre for OncologyBebington, Wirral CH63 4J Y UK([email protected])

XI. ULUSAL MEDIKAL FIZIK KONGRESI, 14-18 KASIM 2007, CONCORDE HOTEL, ANTALYA

Page 2: D pr Therapeutic Ratio N.B. for a given fraction size

Dose (Gy)

20 40 60 80 100

TC

P &

NT

CP

(%

)

0

20

40

60

80

100 TCP

NTCP

Dpr

Therapeutic Ratio

N.B. for a given fraction size

Page 3: D pr Therapeutic Ratio N.B. for a given fraction size

What uses might we have for TCP and NTCP models?

Analyze clinical+dose-volume data (retrospectively)

Evaluate treatment plans retrospectively

Modify treatment plans/Plan the treatment(!)

Put into an optimization/inverse -planning ‘loop’

Make direct use of clonogen radiosensitivity to improve the prediction of local control for an individual patient

Evaluate/estimate the benefit/harm of

- Changing the fraction size and total dose

- ‘Dose painting’ (e.g. to mitigate hypoxia ‘seen’ with PET)

- Patient movement

- Dosimetric errors, cold spots, partial tumour boosts etc.

Page 4: D pr Therapeutic Ratio N.B. for a given fraction size

The bottom lineA Mechanistic model for tumour (local) control probability

Page 5: D pr Therapeutic Ratio N.B. for a given fraction size

Poisson-based TCP model

NeNPTCP )0,(

The tumour is “controlled” when

NO SINGLE CLONOGENIC CELL SURVIVES (y = 0)

where N is the average value of the final number of clonogens

Page 6: D pr Therapeutic Ratio N.B. for a given fraction size

Single 2-Gy 0.6 0.3 2Dose fractions

1 10.876341 0.8763410.749762 0.7497620.626254 0.6262540.510686 0.5106860.40657 0.40657

0.316004 0.3160040.239788 0.2397880.177639 0.1776390.128478 0.1284780.090718 0.0907180.062537 0.07950.042088 0.0680170.027654 0.0568120.017739 0.0463280.011109 0.0368830.006792 0.0286670.004054 0.0217530.002363 0.0161150.001344 0.0116550.000747 0.008230.000405 0.0072120.000214 0.00617

CELL KILL IN 2-GY FRACTIONS

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12

DOSE(Gy)

SU

RV

IVIN

G F

RA

CT

ION

Single dose

2-Gy f ractions

Clonogenic cells after n fractions is given by

2220

dddddd eeeNN

N after 1st fraction

N after 2nd fraction...

n times

What do we know about cell killing by radiation?

NB the LQ expression assumes that the doserate is HIGH (cf. LDR brachy)and may be invalid below ≈ 0.8 Gy (low-dose hypersensitivity: HRS)

The Linear-Quadratic Model:

Page 7: D pr Therapeutic Ratio N.B. for a given fraction size

dDNN os

1exp

No. of cells surviving after n fractions (D = total dose = d * n):

Poisson-statistics-based TCP model

dDNTCP o

1expexp

Thus the expression for TCP is

for total dose D delivered in n equal fractionsof size d [final term 0 as 0

Page 8: D pr Therapeutic Ratio N.B. for a given fraction size

Fitting the Batterman et al ca. bladder data (Nahum and Tait 1992)

TLCP model:

Batterman data

Slope too steep

Page 9: D pr Therapeutic Ratio N.B. for a given fraction size

Building inter - patient heterogeneity into the TLCP model

It is assumed that radiosensitivity is normallydistributed over the patient population with SD =

dDNDTCP i

ii

1expexp),( 0

),()()( ii

i DTCPgDTCP

dDN io

1exp

TCP(D,

Page 10: D pr Therapeutic Ratio N.B. for a given fraction size

Fitting the Batterman et al ca. bladder data (Nahum and Tait 1992)

TLCP model:

Batterman data

Page 11: D pr Therapeutic Ratio N.B. for a given fraction size

ii DD

iio

ii eNNN

1

,

Inhomogeneous dose distributions

But … not all the cells receive the same doseDVHs summarise the dose distributions in a convenient way

Volume

Dose

Cells in each single dose bin i

receive an uniform dose Di

vi

Di

icio vN ,

Total no. surviving cells

Differential DVH

Clonogen density

Page 12: D pr Therapeutic Ratio N.B. for a given fraction size

Effect of dose non-uniformity on TCP - Tumour dose distribution (diff DVH) normally distributed with varying width but constant mean dose of 60 Gy.

- inter-patient radiosensitivity varied from 0 to 0.05 to 0.10 to 0.15

Page 13: D pr Therapeutic Ratio N.B. for a given fraction size

TLCP as f'n of fraction size for N-T isoeffect (=3)

40

50

60

70

80

90

100

0 1 2 3 4 5

Fraction size [Gy]

TLC

P [%

]

TLCP (a/b = 1.5); 3groups

TLCP (a/b = 10); 3groups

TLCP (Chapman-Nahum); 3 groups

N-T isoeffect

Page 14: D pr Therapeutic Ratio N.B. for a given fraction size

Modelling Normal-Tissue Complication Probability

Page 15: D pr Therapeutic Ratio N.B. for a given fraction size

Lyman NTCP model (1985)

Basic assumptions:• sigmoid- shape dose response curve (error

function)• power law relationship for tolerance doses. It can be applied independently to each volume

element of the organ

• a ‘single step’ DVH represents the case of uniform irradiation of a partial volume (of the organ/tissue)

• extension to non-uniform irradiation through an algorithm (“DVH reduction”)

Page 16: D pr Therapeutic Ratio N.B. for a given fraction size

• Formal Equations (Lyman-Kutcher-Burman)for uniform partial irradiation: (with dose D of the partial volume v)

• Parameters: D50 dose to the whole organ 50% NTCP

m steepness

n volume exponent (volume effect : n=1 large,

n=0 small)

dttNTCPt

2/exp2

1 2

nvvDD *)1( 5050 v

v

Dm

DDt

50

50

*

- Error function- Doesn’t exhibit a “threshold” effect

Page 17: D pr Therapeutic Ratio N.B. for a given fraction size

Large volume effect

Page 18: D pr Therapeutic Ratio N.B. for a given fraction size

NTCP = ??

NTCP = ??

Page 19: D pr Therapeutic Ratio N.B. for a given fraction size

• Histogram reduction methodsCRT / IMRT dose distributions are unlike partial irradiation : therefore one has to convert the DVH to an equivalent partial irradiation– Effective volume method [Kutcher 1991]

• a certain partial volume veff receives the max Dose ( Dmax )

– Equivalent Uniform Dose [Niemierko 1999]• the entire volume ( Vtot ) receives a certain equivalent uniform dose

(EUD)

n/1

max

i

iieff D

D*vv

n

i

n/1ii D*vEUD

EUD*VD*v totmaxeff

Page 20: D pr Therapeutic Ratio N.B. for a given fraction size
Page 21: D pr Therapeutic Ratio N.B. for a given fraction size
Page 22: D pr Therapeutic Ratio N.B. for a given fraction size

Parotid glands – xerostomiaClinical criteria: mean dose ≤ 25Gy

Available data: mean dose threshold 24 – 26 Gy

(suppression of salivary flow)

mean dose (no thereshold) 35 – 45 Gy

(decreased salivary flow)

1 (fixed)

0.45(0.33 - 0.65)

39 Gy(34 - 44)

Reisink (2001)

180 pts – prosp.95% CI

1 (fixed)

0.18(0.10 – 0.33)

28.4 Gy(25 – 34.7)

Eisbruch (1999)

88 pts – prosp.

0.70.1846 GyEmami (1991)

No 3D - retrosp.

nmTD50LKB model

Page 23: D pr Therapeutic Ratio N.B. for a given fraction size

L-K-B model TD50 m n

Emami (1991)

No 3D - retrosp.24.5 Gy 0.18 0.87

Seppenwolde (2003) 382 pts–retrosp.- both lungs as paired organ(95%CI)

30.8(23 – 46)

0.37(0.28 – 0.56)

0.99(0.8 – 1.6)

Relative Seriality (RS) model

D50 s

Gagliardi (1998)

68 pts–retrosp-1 lung68%CI

30.1(27-32.53)

0.97(0.77 – 1.21)

0.01(at limit; 0.16)

Seppenwolde (2003)

382 pts–retrosp- 2 lungs95%CI

34 0.97 0.06

Lung – Grade-2 pneumonitis

Page 24: D pr Therapeutic Ratio N.B. for a given fraction size

TREATMENT PLAN OPTIMISATION

through

CONFORMAL RADIOBIOLOGY

Page 25: D pr Therapeutic Ratio N.B. for a given fraction size
Page 26: D pr Therapeutic Ratio N.B. for a given fraction size

Original Schedule: 55 Gy in 20 fractions

0

1

2

3

4

5

6

2.5 3

3.5 4

4.5 5

5.5 6

6.5 7

7.5 8

8.5 9

9.5 10

10.5 11

11.5 12

12.5 13

13.5 14

14.5 15

NTCP (%)

Pat

ient

freq

uenc

yMalik Z, Eswar Vee C, Dobson J, Fenwick J and Nahum A E

Biomathematical-model-based analysis of a standard UK dose and fractionation lung-tumour radiotherapy protocol; 4th UK Radiation Oncology Conference 19-21 March 2007, Edinburgh

CCO protocol: 55 Gy in 20 fractions

NTCP calculated (using L-K-B model)

Page 27: D pr Therapeutic Ratio N.B. for a given fraction size

Biomathematical-model-based analysis of a standard UK dose and fractionation lung-tumour radiotherapy protocol; 4th UK Radiation Oncology Conference 19-21 March 2007, Edinburgh

Malik Z, Eswar Vee C, Dobson J, Fenwick J and Nahum A E

Local Control almost doubled

Page 28: D pr Therapeutic Ratio N.B. for a given fraction size

Int. J. Radiation Oncology Biol. Phys., Vol. 51, No. 5, pp. 1290–1298, 2001

Prescribed dose, EUD of the CTV, and minimum dose in the CTV as a function of field size for an AP-PA irradiation of a phantom simulating a tumor located centrally in a lung. The mean lung dose is 20 Gy for each field size. The ellipse indicates the field size for which the minimum dose in the CTV is 95% of the prescribed dose (ICRU Report 50 recommendation).

The message – Biological models must be “inside” the optimisation process/inverse planning

Page 29: D pr Therapeutic Ratio N.B. for a given fraction size

LEVEL-II OPTIMISATION

‘Biologically motivated’ optimization:

Use expressions for NTCP and TCP directly in the ‘objective function’ of the inverse-planning process, thus allowing the mathematical and radiobiological properties of the models to drive the search for the optimum plan (e.g. Hoffmann, Larsson et al 2004; Peñagarícano et al 2005).

Page 30: D pr Therapeutic Ratio N.B. for a given fraction size

What should the objective be?

Maximise TCP for fixed NTCP (e.g. 4%)OR

For fixed TCP (e.g. 80%), minimise NTCP

Page 31: D pr Therapeutic Ratio N.B. for a given fraction size

Maximise TCP

for

NTCP (Lungs–GTV) <= 3%

Max. Dose anywhere 90 Gy

ORBIT (RaySearch Laboratories)

Biologically optimised lung-tumour IMRT plan

Page 32: D pr Therapeutic Ratio N.B. for a given fraction size

Courtesy of Marnix Witte, Netherlands Cancer Institute, Amsterdam.

A GLIMPSE INTO THE FUTURE

Page 33: D pr Therapeutic Ratio N.B. for a given fraction size

Fraction size?

• What is the scope for increasing the therapeutic ratio by changing the fraction size? (depends on the ratio)

• Is there a connection between the degree of conformality of the treatment and the ‘fractionation sensitivity’?

Page 34: D pr Therapeutic Ratio N.B. for a given fraction size

Freeware, runs on PCs (Beatriz Sanchez-Nieto)

Calculates:

i. TLCP (Marsden model)

ii. NTCP (L-K-B and Relative-Seriality Models)

with user-choosable parameters, given the differential DVHs

EMAIL ME: [email protected]

BIOPLAN

Page 35: D pr Therapeutic Ratio N.B. for a given fraction size

April 22-25 2008

CHESTER, UK

www.ccotrust.nhs.uk