d. ene, d. ridikas, b. rapp, j.c david, d. doré cea-saclay...

37
HIAT'09, 8-12.06.2009-Venezia 0 D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay, IRFU/SPHN, F-91191 Gif-sur-Yvette, France for EURISOL Task#5 Safety & Radioprotection: GANIL, France, FZJ, Germany, LMU, Germany, CERN, EU CEA, France, NIPNE, Romania, FI, Lithuania, Univ. Warsaw, Poland

Upload: others

Post on 01-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 0

D. Ene, D. Ridikas, B. Rapp, J.C David, D. DoréCEA-Saclay, IRFU/SPHN, F-91191 Gif-sur-Yvette, France

for EURISOL Task#5 Safety & Radioprotection:

GANIL, France, FZJ, Germany, LMU, Germany, CERN, EUCEA, France, NIPNE, Romania, FI, Lithuania, Univ. Warsaw, Poland

Page 2: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 1

Radiation safety issues

⇒ the strategy used for the design of RNB facilities

EURISOL-DS project (illustration) –early stageProblems addressed:

Legislation framework sets-up safety requirements protection of the environment, public and staff

Radioactive sources identification and estimation deciding the radiation safety features

Safety design objectives:(Protection of workers, public & environment)

Page 3: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 2

1.1. Operation phaseOperation phase :

Protection against radiationsProtection against radiations => optimum shielding configurationoptimum shielding configuration

Containment of radioactive materialsContainment of radioactive materials=> risk analysis > risk analysis > equipments are adequate to minimize risk of radioactive material dispersion.

Compatibility with the environmentCompatibility with the environment=> impact of the radioactive releasesimpact of the radioactive releases

Radiological studies: Characterization of the prompt radiation field for normal and accident conditionsSafety studies: Classification of the events & Risk assessment Environmental studies: Characterization of the specific site & impact assessment

2.2. Post Post --operational phaseoperational phase:

Protection against radiationsProtection against radiations => measures to limit the exposure & working proceduresmeasures to limit the exposure & working proceduresduring maintenance and interventions machine will be dismantled and decommissionedwaste transportation/disposal

Compatibility with the environmentCompatibility with the environment=> impact of the radioactive releasesimpact of the radioactive releases>decommissioning & waste transportation/disposal

Radiological studies: assessment of the residual radiation field => specifications on the exposure of the personnel Environmental studies: Characterization of the specific site & impact assessment

Page 4: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 3

Page 5: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 4

• Direct: high energy spallation100 kW

- Converter: neutron fission 4MW

Al2O3, SiC, UCx, Pb, etc

p, 1GeV

Direct method

p, 1GeV Hg

UCx

UCx

Converter method (~1015 fiss/s)

Production yield (atoms s-1 mA-1)

40 50 60 70 80 90 100

Neutron number (N)

25 30 35 40 45 50 55 60 65

Ato

mic

num

ber

(Z)

6 7 8 9 10 11 12 13 14

Production yield (atoms s-1 mA-1)

40 50 60 70 80 90 100

Neutron number (N)

25 30 35 40 45 50 55 60 65

Ato

mic

num

ber

(Z)

235U + n( ~ 100 keV)

238U + p( 1GeV)

Direct target: R=1.8cm, L=40cm

Fission target(30kW)(Rext=1.75cm, Rint=0.4cm,H=20cm)

Production yield (atoms s-1)

0 20 40 60 80 100 120 140

Neutron number (N)

0

20

40

60

80

100

Ato

mic

num

ber

(Z)

6 7 8 9 10 11 12 13 14

Production yield (atoms s-1)

0 20 40 60 80 100 120 140

Neutron number (N)

0

20

40

60

80

100

Ato

mic

num

ber

(Z)

Page 6: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 5

H*(10)[μSv h-1]

Total_H*(10)[mSv y-1]

Public areas:inside fence

0.11

1

Controlled areas 10 20 / 2000 hFull beam loss: Total_H*(10) ≤ 50 μSv

JUSTIFICATION

LIMITATION

OPTIMISATION

Design limits for occupied areas/ ICRP 60

+ limited intervention time & remote handling>2

Remote handling essential>20

Planification and optimisation of all work>0.1

Maintenance constraintsH*(10) [mSv h-1]CERN guidelines:

Page 7: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 6

Design guidelines & previous experience => Basic estimates

Few exemples:Equipement primary Energy Intensity

(pps)Losses(pps)

Specificsources

Linac p 1GeV (1-4)*6*1015 6*1012/E[MeV] m-1

(6*107 - 6*108 )m-1

(6*107 - 6*108 )m-1

~4*1012

( stripper zone)

-Few hot spots -Neutron

backscatter

Linac#1(L=209m)

132Sn (0.6 – 150) MeVu-1

6*1012 No spotsspecification

Linac#2(L=156m)

132Sn (0.6 – 150) MeVu-1

6*1012 - 2.5*1012 No spotsspecification

Page 8: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 7

• Prompt radiationPHITS, FLUKA, MCNPX-HI

Mixed Φ & Conversion factors->H*(10)

10-2

10-1

1

10

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

10 11

10 12

1 10 102

103

40 ° (×10 7)

100 ° (×10 4)115 ° (×10 3)

145 ° (×10)

0 ° (×1010)

10 ° (×10 9)

25 ° (×10 8)

55 ° (×10 6)

85 ° (×10 5)

130 ° (×10 2)

160 °

Energie (MeV)

d2 σ/dΩd

E (m

barn

/MeV

/sr)

Fe(p,xn)X à Ep = 1600 MeV

Données

Cascade Bertini

Cascade Cugnon

PHITS

30°

50°

80°

110°

Ar(95MeV/u)+Cu neutrons

PHITS

p(1.6 GeV) + Fe neutrons

(MCNPX)

100 200 300 400 500 60010-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

d=60 cm (x10-3)

d=40 cm (x10-2)

d=20 cm (x10-1)

Neu

tron

flux,

n/M

eV/s

r/ion

E, MeV

experiment MCNPX

d=0 cm

Neutron penetration in concrete shieldMCNPX

Benchmarks related to prompt radiation

Page 9: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 8

• Residual radiation:

1GeV p+Pb

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

Production of Residual Nuclei

Benchmarks related to induced activityNeutron flux in ith cellGeometry

and materialsdescription

DCHAIN-SP-2001/CINDER

PHITS/MCNPX

Residues in ith cell

Irradiation Scheme

H*(10)MCNPX

Activation products&

Photon sources

5000h irradiation at 4MW40 years & duty factor 0.7

Page 10: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 9

Hg converter and secondary fission targets

MAFF-like configuration =>

NEUTRON STREAMINGNEUTRON STREAMING

Monte Carlo & generic studies -> choices of materials & shielding effect

First version of design =>

BULK SHIELDINGBULK SHIELDING

Biasing methods

Page 11: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 10

• Prompt radiation: BULK SHIELDING

+Attenuation formula

Iron 100 cm140180220260300

conc

rete

• 1 m of iron• For θ= 0, 90, 180°

9.0, 8.0 & 6 m of concrete

FLUKA (CERN)

Page 12: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 11

• Prompt radiation: NEUTRON STREAMING FLUKA (CERN)

Ion extraction

tubes

Spallation target

600

cm

Fission targets

12 3

concrete

Fission target handling room

6 m

con

cret

e

RIBlines

Laserportholes

~9 m

Z=0

Fission target handling room

Page 13: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 12

10-2

10-1

100

101

102

103

104

105

0 100 200 300 400

H*(

10)

(μS

v h-1

)

Concrete depth (cm)

I = 6.25*109 ion s-1 | 10-4 m-1 loss over 10 m concentrated at one point

150MeV/u | Normal operation: continuous loss of 10-5 - 10-4 m-1

---------- 225 cm ---------

------------------- 340 cm -----------------

limit controlled areas

limit public areas

10-2

10-1

100

101

102

103

104

105

106

107

108

0 100 200 300 400 500H

*(10

) (μ

Sv

h-1)

Concrete depth (cm)

150MeV/u | Full beam loss: I = 6.25*1012 ion s-1

------ 225 cm ------

-------------- 340 cm -------------

10 mSv h-1*tcut(=1s)

0.1 mSv h-1*tcut (=1 s)

2.78 μSv

27.8 nSv

A shield designed for a continous beam loss of 10-4 m-1 (point loss of 6.25*109 ion s-1 ) during the routine operation is also adequate for an accident loss of the full beam at a localised point, providing that the linac cutoff time is less than

1s.

z (cm)-600 -400 -200 0 200 400 600

x (c

m)

-400

-300

-200

-100

0

100

200

300

400

500

n/c

m^2

1

10

210

310

410

510

610

710

810

910

1010

(150 MeV/u) 132Sn + Cu | Neutron fluence given by a total beam loss of 1 second

PHITS132Sn

θ

Method(CEA)

Page 14: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 13

E[MeV/u]

Η1

[Sv m2 ion-1]λ1

[g cm-2]

H2

[Sv m2 ion-1λ2

[g cm-2]

150 2.00E-10 38.78 7.98E-11 62.00

115 1.13E-10 23.50 6.14E-11 57.32

76 6.18E-11 21.36 1.27E-11 53.20

45.5 1.69E-11 12.19 1.55E-11 40.52

21.3 - - 2.00E-12 33.57

⎥⎦⎤

⎢⎣⎡−+⎥⎦

⎤⎢⎣⎡−=

22

)(2

12

)(1 expexp)/,(*λλ

λ dr

EHdr

EHdEH ppp

10-1

100

101

102

103

104

105

106

0 50 100 150 200 250 300 350 400

H*(

10)

(μS

v h-1

)

Concrete depth (cm)

21 MeV45 MeV76 MeV

115 MeV150 MeV

Stripper zone

21MeV/u 150MeV/u

10-10

10-9

10-8

10-5 10-4 10-3 10-2 10-1 100 101 102

E d

Φ/d

E (

n cm

-2s-1

ion-1

)

Energy (MeV)

20 cm40 cm60 cm80 cm100 cm

10-8

10-7

10-6

10-5 10-4 10-3 10-2 10-1 100 101 102E

/dE

(n

cm-2

s-1 io

n-1)

Energy (MeV)

Spectral fluences at various depths in concrete for 150MeV/u

20 cm40 cm60 cm80 cm100 cm

* Agosteo S, Nakamura T , at al. NIM/B 217, 2004

!!

neutrons

Page 15: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 14

U-238 : 400 MeV/uHe-3 : 777 MeV/uproton : 1 GeV

Beam on stopping Cu targetRonningen & Remec, 2005

Beam direction

10-1

100

101

102

103

104

0 50 100 150 200 250 300

H*(

10)

(μS

v h-1

)

Concrete depth (cm)

I = 6*109 ion s-1 | 10-4 m-1 loss over 10 m concentrated at one point

6He2+ at 250 MeV/u

132Sn50+

neutronsphotons

Photon H*(10) < 3% Total H*(10)

3 m of concrete:Neutron H*(10) for 6He (250MeV/u)

Neutron H*(10) for 132Sn (150MeV/u) ~ 5

Safety operation domain:energy range and beam intensities.

!!

Other species & secondaries

Page 16: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 15

• Underground target position• Front-end retracts vertically • Hot-cell for target exchange• Separator in 3rd level• Neighboring hot-cell accessible during run

Effe

ctiv

e do

se r

ate

E (S

v/h)

Soil activation!

Effective dose rate maps

Conceptual design of 100kW target station (CERN)

Page 17: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 16

0.585MeV/u

RFQ150 MeV/u

beam

du

mp

L(1) L(2)

Experimentrooms

21.3 MeV/u

Experimentrooms

44 m 102 m

2.8

W

<= 10-4 m-1 =>10-4 m-1 => 7.92

W

6 W

4 W

2.4

W

Stripper

1.68

kW

Uncontrolled beam loss of

10-4 m-1

0.585MeV/u

RFQ L(1) L(2)

Experimentrooms

21.3 MeV/u 150 MeV/u

Experimentrooms

44 m 165 m2.8

W

<= 10-4 m-1 =>10-4 m-1 => 19.8

W

15 W

10 W

6 W

beam

du

mp

Shielding of Postaccelerator (CEA)

Energy[MeV]

21.3 45.5 76 115 150

Length [m] 44 40 40 40 45

Thickness (cm)

70 130 175 210 225

Vstaff (m3) 338.05* 4732.7 for a tunnel surface of 3 m x 4m

Thickness (cm)

140 195 245 320 380Public

Vpublic (m3) 536.6* 7512.4 for a tunnel surface of 3m x 4m

Staff

1501157645.5Stripper21.3Energy[MeV]

173321311044Length (m)

20018015011016070Thickness (cm)Staff

325295230185235140Thickness (cm)

Public

205.8* 2881.2 for a tunnel surface of 3 m x 4 mVstaff (m3)

Vpublic (m3) 343.4* 4120.2 for a tunnel surface of 3 m x 4 m

Page 18: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 17

z (cm)-200 -100 0 100 200 300 400

x (c

m)

-300

-200

-100

0

100

200

300 -1Sv

1

10

210

310

410

510

610

710

810

910

1010

) ->DUMP & SHIELD | Neutron H*(10)12, 6.25*10-1Sn (150MeV u132

SHIELD [cm]material

Η1

[Sv m2 ]λ1

[g cm-2]H2

[Sv m2]λ2

[g cm-2] Staff

60.36 364

steel - - 5.000E+04 112.14 254 320

Public

concrete 1.747E+03 23.7 1.338E+02 480

concrete

concrete / steel

soil

void

beam

Bea m 5o

Iron shieldCopper + 10% water

Graphite (1.84g/cm3)

100 cm40 cm

8 cm 16 cm

132 Sn 25+

Beam power = 19.8 kW (150 MeV/u)

Beam size σ = 2 mm

Beam Dump cavity: thickness of lateral wall (CEA)

Page 19: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 18

Dose in distance of 1m after 1 day decay time:1014 fission/sec235U ion source

~ 10 kCi ‘open’ source

Beam tube3.108 μSv/hnon-volatile activity

ions

slit aperture ofpre-separator(m=95, 140: 97%)~ 5.106 μSv/h

slit aperture ofhigh-resolution separator~ 104 μSv/h

~2%non volatile

~68%

Dispersion of radioactivity: from MAFFEURISOL 10 higher!P. Thirolf et al.

(LMU)

exhauststorage tanks

outer beam tube~ 300 μSv/h

~30%

~ 0.02%

atoms/gases

regeneration

decay on thecryopump

slits/targets of beam line~ 3.103 μSv/h

large small

Capability of Capability of CryotrapCryotrap3 cryotraps prototypes tested:Retention capability (vs. pressure behind cryotrap)‘carry over’: fraction of leaking gas load transported across cryotrap

Cryotrap workswithin (simulated) expectations 99.98% of volatileradioactivity canbe localized!

Page 20: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 19

EURISOL-DS RISK REGISTER

Equipment Operational phase and Risk RP [mSv/h] and intervention

Risk assessment before mitigation Mitigation of Risk Risk assessment after

mitigation

Owner Name and location Acronym -Number Action type desccription of failure Description of associated risk Dose rate Job

duration Probability Impact Score Comments - Needed actions Probability Impact Score

•The methodology used

•The file format

derived from the CERN-AB risk register elaborated by P. Bonnal (05/05/2003)

Page 21: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 20

EURISOL-DS RISK REGISTER

Equipment Operational phase and Risk RP [mSv/h] and intervention Risk assessment before mitigation Mitigation of Risk

Risk assessment

after mitigationOwner Name and location Acronym -

Number Action type desccription of failure Description of associated risk Dose rate Job

durationProbabi

lity Impact Score Comments - Needed actions Probability Impact Score

Loss of Hg flow, flow blockage and cavitation

2 2 4 Instrumentation to control Hg flowrates 2 1 2

Explosion by Hg boiling 1 5 5 Containement of Hg (safety hull) 1 1 1

Overheating of the window 3 3 9 Instrumentation to control Window

temperature 3 1 3

T2 CGS target vessel ??? Operation Rupture of the vanes

Partial melting of the window 1 5 5 Containement of Hg (safety hull) 1 1 1

Main risks for the Hg converter

EURISOL-DS RISK REGISTER

Equipment Operational phase and RiskRP [mSv/h]

and intervention

Risk assessment before mitigation Mitigation of Risk Risk assessment

after mitigation

Owner Name and location Acronym -Number Action type desccription of failure Description of associated risk Dose rate Job

duration Probability Impact Score Comments - Needed actions Probability Impact Score

T4 UC target/running

RU-T-06 operation firing target

stop of operation, target is lost, removal of target and replace with a new one, clean the pit region. The pit and beam line are highly contaminated.

1PBq 2000 2 5 10

avoid oxygen contamination, redondancy of safety valves. Neutral atmosphere during removal may be foreseen 1 5 5

Main risks for the Fission target

Page 22: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 21

10-1

100

101

102

103

104

105

10-810-710-610-510-410-310-210-1 100 101 102 103

Tot

al a

ctiv

ity (

GB

q)

Decay time (years)

min hour day yearmnth

235U20% 235U

3% 235UUnatUdep

Th

1 year after irradiation 10 years after irradiation

ISABEL-ABLA

CEM2k INCL4-ABLA

ISABEL-ABLA

CEM2k INCL4-ABLA

Total activity

Half life 9.8102 2.8 103 4.1 102 6.1 102 1.6 103 2.0 102

195Au 186.1 d 2.8 101 2.4101 2.6 101 2.1 10-4 1.8 10-4 2.0 10-4

148Gd 74.6 y 2.110-1 7.4 10-1 1.1 10-1 2.0 10-1 6.8 10-1 9.7 10-2

3H 12.32 y 1.9 102 2.3 103 3.9 101 1.1 102 1.4 103 2.3 101

172Hf 1.87 y 1.8 102 2.3 102 1.7 102 6.5 10-1 8.3 10-1 6.1 10-1

194Hg 444 y 3.0 1.2 101 2.6 3.0 1.2 101 2.5

UCx

Hg

10-1

100

101

102

103

104

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

Sp

eci

fic a

ctiv

ity (

GB

q c

m-3

)

Decay time (years)

min hour day yearmnth

Total145Sm

α emmiters210Po

Direct target | CEM2kUCx( L=40cm, R=1.8cm)

MMW target

Hg235U:

7% halogens

10% rare gases

1% actinides

Page 23: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 22

Z (cm)-1000 -500 0 500 1000

R (c

m)

-1000

-500

0

500

1000

-610

-410

-210

1

210

410

610

810

1010

1210 -1 B

q g

-610

-410

-210

1

210

410

610

810

1010

1210

1 MBq/g < A < 1GBq/g

1 kBq/g < A < 1MBq/g

1 Bq/g < A < 1kBq/g

A < 1Bq/g

40 years irradiation at 2.28 MW

105

106

107

108

109

1010

1011

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

Speci

fic a

ctiv

ity (

Bq g

-1)

Decay time (years)

min hour day yearmnth

Total56Mn

60Co170Tm

55Fe51Cr

63Ni59Ni

102

103

104

105

106

107

108

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

Specific

activity (

Bq g

-1)

Decay time (years)

min hour day yearmnth

Total3H

45Ca37Ar

41Ca55Fe

28Al104Rh

39Ar

Activity map at 100days

Stainless steel Concrete

Activities

10-4

10-3

10-2

10-1

100

101

102

103

104

105

10-1 100 101 102 103

Tot

al A

ctiv

ity (

TB

q)

Decay time (y)

LL-ILW steelLL-ILW concreteSL-ILW concrete

EW concrete

100

101

102

103

104

105

10-1 100 101 102 103

Mas

s (t

)

Decay time (y)

LL-ILW steelLL-ILW concreteSL-ILW concreteEW concrete

Mases

Waste categories

Page 24: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 23

Activation of Cu structure (150 MeV/u)

10-1

100

101

102

103

104

105

106

107

104 105 106 107 108

Sp

eci

fic a

ctiv

ity (

Bq

cm

-3)

Decay time (s)

1 d1 w

1 m

1 y10 y

1 h

Total64Cu (T1/2 =12.7h)61Cu (T1/2 = 3.34h)62Cu (T1/2 = 9.74m)65Ni (T1/2 = 2.52h)

51Cr (T1/2 = 27.7d)59Fe (T1/2 = 44.5d)60Co (T1/2 = 5.27y)

3H (T1/2 = 12.3y)63Ni (T1/2 = 100.1y)

100

102

104

106

108

1010

1012

100 101 102 103 104 105 106

Tota

l act

ivity

(Bq)

Decay time (s)

Point full beam implant (6.2*1012 ions) of 132Sn

1s 30s1min

1h 1d 1w

1m

Total132Sn (T1/2=39.7s)

132Sb (T1/2=2.79min)132Te (T1/2=3.2d)

132I (T1/2=2.3h)

10-4

10-3

10-2

10-1

104 105 106 107 108

Spe

cific

act

ivity

(B

q cm

-3)

Decay time (s)

1 h

1 d 1 w1 m

1 y10 y

Total 7Be

3H41Ar

38Cl39Cl

11C37Ar

10-3

10-2

10-1

100

101

104 105 106 107 108

Spe

cific

act

ivity

(B

q cm

-3)

Decay time (s)

1 h1 d

1 w1 m

1 y 10 y

Inner concrete wall -(0-20)cm | Loss of 6.2*109 ion s-1 of 150MeV/u Dominant radioactive nuclides

Total37Ar

3H24Na

31Si45Ca

56Mn55Fe

32P238U

Activation of concrete (150 MeV/u)

Air activation (150 MeV/u)Total activity due to implantation

Contribution of the wall is

not significant

Air activation using PHITS (evaluated cross sections)

14,15O,13N |41Ar 0.35Bq cm-3

Activity vs Discharge limit

Inhalation dose received by workers intervening in tunnel

1011 Bq 132Sn implantation132I accumulation after 1h

Page 25: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 24

21MeV/u

150MeV/u

10-2

10-1

100

101

102

103

100 101 102 103

H*(

10)

(μS

v h-1

)

Decay time (h)

21MeV/u | H*(10) inside the tunnel

1 h1 d

1 w

1 m

6 m

10

Cu activationFull beam implantTotal

10-1

100

101

102

103

104

100 101 102 103

H*(

10)

(μS

v h-1

)

Decay time (h)

150MeV/u | H*(10) inside the tunnel

1 h

1 d1 w

1 m

6 m

Cu activation Full beam implantTotal

104

105

106

107

104 105 106 107 108

Act

ivity

(B

q)

Decay time (s)

21MeV/u | Total activity inside tunnel

1 h1 d

1 w

1 m

1 y

10 yCu activationFull beam implantConcrete wall

105

106

107

108

109

104 105 106 107 108

Act

ivity

(B

q)

Decay time (s)

150MeV/u | Total activity inside tunnel

1 h1 d

1 w1 m

1 y

10 y

Cu activationFull beam implantConcrete wall

Points -> contact

Lines -> 1m distance Total activity

H*(10)

Residual field:-high energy zone

copper structure copper structure activationactivation

-low energy zone

ion ion implantationimplantation

In the high energy zonecontinuous accessibilityafter ~ week cooling timeoroccupancy factor of minimum 570 hours/year=> 20 mSv y-1

Maintenance operations to be planed

Page 26: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 25

Isotope T1/2 Soil Groundwater3H 12.33y 3.149*10-5 3.299*10-6

7Be 53.12d 3.662*10-6 3.662*10-7

22Na 2.6y 7.782*10-6 7.784*10-7

24Na 14.96h 7.551*10-6 7.583*10-7

32P 14.26d 1.047*10-8 9.584*10-9

35S 87.32d 2.262*10-23 4.938*10-9

45Ca 162.61d 8.111*10-6 7.800*10-7

46Sc 83.79d 6.833*10-7 2.540*10-21

54Mn 312.3d 2.217*10-7 3.674*10-13

55Fe 2.73y 2.679*10-6 4.912*10-12

65Zn 244.26d 3.867*10-8 5.880*10-12

Specific activity [Bq cm-3] in first 100 cm of soil/groundwatersurrounding the concrete wall after 40 y of continous irradiation

1.301*104 Bq < 105 Bq --LIMIT*

*IAEA TECDOC-1000, 1998,Clearance of materials resulting from the use of radionuclides in medicine, industry and research.

5.265*104 Bq < 1012 Bq --LIMIT*

Transport of radioactive species into the ground does not represent a hazard for

the population

POSTACCELERATOR

Page 27: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 26

A schematic layout for liquid Hg-target disposal strategy

Extrapolation from laboratory scale to “industrial” scale still to be done!

Disposal of liquid Hg (FZJ)

Chemical stabilization of Hg as an inorganic compound, e.g. HgS,HgSe, HgO, Hg2Cl2,

HgCl2

Page 28: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 27

Further steps:

• Derived Intervention Levels (DIL)• Exposure from underground water contamination• Development of a resident GIS platform• Cadastral Impact Analysis (GIS based)• …

Methodology validated, recommended & accepted by safety authoritiesTools, data & knowledge to be used in

Environmental and health Impact Assessment DESKTOP ASSISTANT

Point Source Exposure Acute Exposure to Environmental Releases

Prolonged Exposure toEnvironmental Releases

E-BOOK

DATA Libraries

Nuclear Facilities Derived Release Limit

The Map Manager

Combination of knowledge on Accelerator & Research Reactor based nuclear installationscreation of dedicated toolkit for EURISOL DS

Toolkit operational both for normal operation and accidental situations!

Site dependent analysis to be performed!

NIPNE

Page 29: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 28

Safety integration from the start hints innovative and flexible solutions in maters of safety

EURISOL has similarities with high-power spallation n-sources & small research reactors

Very specific features:

Use of pyrophoric actinide carbide targets;

Presence of alpha-emitters;

Distribution over extended buildings of intense RIBs and sources of all chemical nature

Dedicated technical standards to be applied under utmost reliable safety rules and procedures.

Page 30: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 29

BackBack--upup

Page 31: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 30

Target positions:Target positions:

Geometry : Geometry : Last design variant (L. Last design variant (L. TecchioTecchio): 30kW load heat ): 30kW load heat Volume = 181cmVolume = 181cm33 ((RRextext=1.75cm, =1.75cm, RRintint=0.4cm,H=20cm=0.4cm,H=20cm))Material:Material:Targets: graphite + U, density=1.88 g cmTargets: graphite + U, density=1.88 g cm--33, , (mass U=15g | (mass U=15g | masemase rate: U/C=1/20 , rate: U/C=1/20 , MKLNMKLN))Moderator: HModerator: H22O, Fe (O, Fe (232232Th)Th)Reflector: Reflector: BeOBeO, Fe (, Fe (232232Th)Th)PhysicsPhysics parametersparameters::

Source: p; E=1GeV,Gauss (Source: p; E=1GeV,Gauss (σσ = 1.5cm)= 1.5cm)Model:CEM2kModel:CEM2kT=239KT=239K

Moderator

Reflector

Mercury target

Iron shielding

Concrete

Proton beam

Fission target

z = 0 T#5 T#1 T#3z = 15 T#6 T#2 T#4x=> -15 0 15y=> -12.9 10 -12.9

Reflector

Iron

Fission target

Concrete xy

zy Results normalised at 1mA

Page 32: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 31

Neutron Flux – distribution over the targets

1013

1014

Target#5 Target#1 Target#3

Φ (

n cm

-2s-1

)

235U20%U5

3%U5Unat

Udep232Th

--------------z = 0 cm--------------

1013

1014

Target#6 Target#2 Target#4

Φ (

n cm

-2s-1

)

-------------z = 15 cm-------------

--------------z = 0 cm--------------

Configuration Average

z=0cm Average z=15cm

235U 5.1380E+13 5.6604E+1320% 235U 5.0084E+13 5.5219E+133% 235U 4.9764E+13 5.4867E+13

Unat 4.9707E+13 5.4811E+13Udep 4.9700E+13 5.4794E+13

232Th 5.2496E+13 5.8150E+13

10-6

10-5

10-4

10-3

10-910-810-710-610-510-410-310-210-1 100 101 102 103E

dΦ/d

E (

n cm

-2s-1

)

Energy (MeV)

100% 235U

20% 235U

3% 235UUnat

Udep232Th [Fe/Fe]

Neutron flux (n cm-2 s-1)

Neutron Flux – energy distribution (T#1)

Page 33: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 32

Fission Rates –energy distribution (T#1)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-910-810-710-610-510-410-310-210-1100 101 102 103

Fis

sion

rat

e (f

iss

prot

on-1

)

Energy (MeV)

100% 235U20% 235U3% 235U

UnatUdep

232Th

1011

1012

1013

1014

Target#5 Target#1 Target#3

Fis

sion

rat

e (f

iss

s-1)

235U20%U5

3%U5Unat

Udep232Th

--------------z = 0 cm--------------

1011

1012

1013

1014

Target#6 Target#2 Target#4

Fis

sion

rat

e (f

iss

s-1)

-------------z = 15 cm-------------

--------------z = 0 cm--------------

Configuration 235U* (fiss/s)

238U (fiss/s)

Total (fiss/s)

235U [%]

235U 5.7689E+14 5.7689E+14 100 20% 235U 1.3823E+14 1.2021E+12 1.3943E+14 99.143% 235U 2.1712E+13 1.3931E+12 2.3106E+13 93.97

Unat 5.2449E+12 1.4172E+12 6.6621E+12 78.73Udep 1.4591E+12 1.4223E+12 2.8814E+12 50.64

232Th 5.2366E+11 5.2366E+11 * 232Th for Th case

Fission Rates – distribution over the targets

Fission Rates – total

Page 34: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 33

C(235U) vs D(UC3*)

Neutrons vs 1GeV protons

Neutron fission rate: fission | spallation

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-910-810-710-610-510-410-310-210-1 100 101 102 103

Fis

sion

rat

e (f

iss

prot

on-1

)

Energy (MeV)

235U

238U

235U |Converter method

UC3 |Direct method

Neutron flux: fission | spallation

10-6

10-5

10-4

10-3

10-2

10-910-810-710-610-510-410-310-210-1 100 101 102 103

EdΦ

/dE

(n

cm-2

pro

ton-1

)

Energy (MeV)

235U |Converter method:T#1

T#2

T#3

T#4

T#6

T#5

10-6

10-5

10-4

10-3

10-2

10-910-810-710-610-510-410-310-210-1 100 101 102 103

EdΦ

/dE

(n

cm-2

pro

ton-1

)

Energy (MeV)

235U |Converter method:

UC3 |Direct method

Configuration Φavg(n cm-2 s-1) z=0cm

Φavg(n cm-2 s-1) z=15cm

Φtotal (n cm-2 s-1)

Converter (235U) 5.1380E+13 5.6604E+13 Direct (UC3) 2.473E+13

Configuration 235U

(fiss/s) 238U

(fiss/s) Total (fiss/s)

Converter (235U) 5.7689E+14 5.7689E+14 Direct (UC3) 1.591E+11 4.0415E+13 4.0574E+13

* Direct target: R=1.8cm, L=40cm

Page 35: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 34

Yields – Kr: fission | spallation

75 80 85 90 95 100 0

20

40

60

80

100

Mass Number (A)

ratio

105106107108109

10101011101210131014

75 80 85 90 95 100

Pro

duct

ion

yiel

d (a

t. s-1

| at

. s-1

mA

-1)

Mass Number (A)

ratio

235U |Converter methodUC3 |Direct method Kr

115 120 125 130 135 140 145 150 0

20

40

60

80

100

Mass Number (A)

ratio

105106107108109

10101011101210131014

115 120 125 130 135 140 145 150

Pro

duct

ion

yiel

d (a

t. s-1

| at

. s-1

mA

-1)

Mass Number (A)

ratio

235U |Converter methodUC3 |Direct method Xe

105 110 115 120 125 130 135 140 0

20

40

60

80

100

Mass Number (A)

ratio

105106107108109

10101011101210131014

105 110 115 120 125 130 135 140

Pro

duct

ion

yiel

d (a

t. s-1

| at

. s-1

mA

-1)

Mass Number (A)

ratio

235U |Converter methodUC3 |Direct method Sn

65 70 75 80 85 0

20

40

60

80

100

Mass Number (A)

ratio

105106107108109

10101011101210131014

65 70 75 80 85

Pro

duct

ion

yiel

d (a

t. s-1

| at

. s-1

mA

-1)

Mass Number (A)

ratio

235U |Converter methodUC3 |Direct method Ga

Yields – Xe: fission | spallationYields – Sn: fission | spallation

Yields – Ga: fission | spallation

Neutrons vs 1GeV protons

Page 36: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 35

Major Risks:• breaking of target container• target firing

Consequences:Dissemination of radioactivity in the environment

1015 fission fragments/sec per target(~ 5 x 104 Ci)

1st container

2nd container

1st container2nd container

Main risks for the Fission target

Luigi Tecchio – Task 4

Page 37: D. Ene, D. Ridikas, B. Rapp, J.C David, D. Doré CEA-Saclay ...HIAT09/papers/presentazioni/MO9.pdf · HIAT'09, 8-12.06.2009-Venezia 1 Radiation safety issues ⇒the strategy used

HIAT'09, 8-12.06.2009-Venezia 36

large small

Capability of Capability of CryotrapCryotrap3 cryotraps prototypes tested: retention capability (vs. pressure behind cryotrap)‘carry over’: fraction of leaking gas load transported across cryotrap

2 trap types operated at different temperatures:

Cryotrap works within (simulated) expectations 99.98% of volatile radioactivity can be localized!

(LMU)

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-310-6

10-5

10-4

10-3

10-2

10-1

100

GP N 18KSP N 30KSP N 8KGP N 28KGP N 21K

Car

ry o

ver p

R/p

M

PCryo [hPa]

design goal