d. attié, p. colas, giganon, i. giomataris, v. lepeltier, m. was

39
[email protected] TPC Jamboree, Aachen – March 2007 1 D. Attié, P. Colas, A. Giganon, I. Giomataris, B. V. Lepeltier, M. Was Gain measurement in Gain measurement in various gas mixtures and various gas mixtures and optimization of the optimization of the stability stability TPC Jamboree, Aachen 14-16 March 2007 TPC Jamboree, Aachen 14-16 March 2007

Upload: tierra

Post on 07-Feb-2016

37 views

Category:

Documents


0 download

DESCRIPTION

Gain measurement in various gas mixtures and optimization of the stability. D. Attié, P. Colas, Giganon, I. Giomataris, V. Lepeltier, M. Was. TPC Jamboree, Aachen 14-16 March 2007. Overview. Systematic measurements to provide gain curves Simulations using GARFIELD/Magboltz - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 1

D. Attié, P. Colas, A. Giganon, I. Giomataris,

B. V. Lepeltier, M. Was

Gain measurement in Gain measurement in

various gas mixtures and various gas mixtures and

optimization of the optimization of the

stabilitystability

TPC Jamboree, Aachen 14-16 March 2007TPC Jamboree, Aachen 14-16 March 2007

Page 2: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 2

•Systematic measurements to provide gain curves

•Simulations using GARFIELD/Magboltz

•Comparisons between measurements and simulations for gain curves

•How to optimize the detector stability for ILC-TPC ?

Overview

Page 3: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 3

• Micromegas is a parallel plate gas avalanche detector with a small gap

• Micromesh held by pillars 50 m above the anode plane

Micromegas: gas amplification system

Edrift = 100-1kV/cm

Eamp = 50k-100 kV/cm

Micromesh

Drift electrode

Am

plifi

cati

on

gap ~

50

mC

onvers

ion

gap ~

13 m

m

― Pillars ―

Charge particle

Pads

Page 4: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 4

Setup

Description:

• Transparent plastic box of 23 cm x 23cm x 8 cm size

• “Standard” 50 m mesh of 10 cm x 10 cm size

• Sources: - Fe 55 (5.9 keV) - COOL-X (8.1 keV)

• Monitoring of: - pressure - H2O

• Gas mixing system with triple mixture available

Goals:

• find gas mixture comfortable gain margin to use into a Micromegas TPC• know as much as possible the maximum gain (to avoid spark)

Page 5: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 5

Gain measurements : simulation

Edrift ~ 220 V/cm

Longitudinal diffusion

Transversal diffusion

Drift Velocitiy

Simulations from GARFIELD/MAGBOLTZ

Page 6: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 6

Gain measurements : simulation

Simulations from GARFIELD/MAGBOLTZ

Choice : Edrift = 150 V/cm

Page 7: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 7

Gain measurements : simulation

Simulations from GARFIELD/MAGBOLTZ

Choice : Edrift = 300 V/cm

Page 8: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 8

100

1000

10000

100000

50 55 60 65 70 75 80 85 90 95 100

Field (kV/cm/atm)

Ga

in

Iso : 1%

Iso : 2%

Iso : 3%

Iso : 4%

Iso : 5%

CF4 : 3%, Iso : 1%

CF4 : 3%, Iso : 2%

CF4 : 3%, Iso : 3%

CH4 : 6%

CH4 : 7,5%

CH4 : 9%

CH4 : 10%

CH4 : 5%, CF4 : 3%

CH4 : 5%, CF4 : 5%

CH4 : 5%, CF4: 10%

CH4 : 10%, CF4 : 3%

CH4 : 5%, CO2 : 3%

CH4 : 10%, CO2 : 10%

CO2 : 10%

CO2 : 20%

CO2 : 30%

CO2 : 10%, Iso 2%

CO2 : 10%, Iso 5%

CO2 : 10%, Iso 10%

CF4 : 3%, CO2 : 1%

CF4 : 3%, CO2 : 3%

CF4 : 3%, CO2 : 5%

Iso : 2%, CH4 : 10%

Iso : 5%, CH4 : 10%

Iso : 10%, CH4 : 10%

Ethane 10%

Ethane 5%

Ethane 3,5%

Ethane 2%

Ethane 3,5% - CO2 10%

Ethane 3,5% - CF4 3%

Ethane 3,5% - CF4 10%

Ethane 3,5% - Iso 2%

Mixtures of gases containing argon: gain curves

iC4H10

Cold gases: CO2, CH4

C2H6

Micromegas Mesh : 50 m gap of 10x10 cm² size

Page 9: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 9

5%

10%

15%

20%

25%

30%

35%

40%

100 1000 10000 100000 1000000

Gain

RM

S

Iso : 1%

Iso : 2%

Iso : 3%

Iso : 4%

Iso : 5%

Resolution vs. gain

Argon/Isobutane

• Best RMS for a gain between 3.103 & 6.103

• Degradation increase in inverse proportion to the quencher

Page 10: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 10

100

1000

10000

100000

50 55 60 65 70 75 80 85 90 95 100

Field (kV/cm/atm)

Ga

in

Iso : 1%

Iso : 2%

Iso : 3%

Iso : 4%

Iso : 5%

CF4 : 3%, Iso : 1%

CF4 : 3%, Iso : 2%

CF4 : 3%, Iso : 3%

CH4 : 6%

CH4 : 7,5%

CH4 : 9%

CH4 : 10%

CH4 : 5%, CF4 : 3%

CH4 : 5%, CF4 : 5%

CH4 : 5%, CF4: 10%

CH4 : 10%, CF4 : 3%

CH4 : 5%, CO2 : 3%

CH4 : 10%, CO2 : 10%

CO2 : 10%

CO2 : 20%

CO2 : 30%

CO2 : 10%, Iso 2%

CO2 : 10%, Iso 5%

CO2 : 10%, Iso 10%

CF4 : 3%, CO2 : 1%

CF4 : 3%, CO2 : 3%

CF4 : 3%, CO2 : 5%

Iso : 2%, CH4 : 10%

Iso : 5%, CH4 : 10%

Iso : 10%, CH4 : 10%

Ethane 10%

Ethane 5%

Ethane 3,5%

Ethane 2%

Ethane 3,5% - CO2 10%

Ethane 3,5% - CF4 3%

Ethane 3,5% - CF4 10%

Ethane 3,5% - Iso 2%

Mixtures of gases containing argon: gain curves

Micromegas Mesh : 50 m gap of 10x10 cm² size

Page 11: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 11

• Rose-Korff approximation:

= P×A×e-B(P/E)

A, B: constants to be determined in measurements

Only applicable to fields E << 100 kV/cm.

The Townsend coefficient

• We assumes homogeneous field gain vs. amplification gap d:

G(d) = ed = (E)

is calculated by Magboltz

• But, in reality field could not be very homogeneous, not for very small gaps (i.e. high field) = (E(z))

G(d) = e[E(z)]dz

Page 12: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 12

Townsend coefficients measurements

G = N/N0 = exp[×d]

With = A×P×exp[-B×P/E]

Argon-Isobutane

B = 90,767

B = 89,1

B = 87,1

B = 90,2

B = 109,7

B = 121,4

6,8

6,9

7,0

7,1

7,2

7,3

7,4

7,5

7,6

7,7

0,01 0,011 0,012 0,013 0,014 0,015 0,016 0,017 0,018 0,019 0,02

P/E

Ln(a

lpha

)

Iso : 5%

Iso : 4%

Iso : 3%

Iso : 2%

Iso : 1%

CH4 : 10%

Linéaire (Iso: 5%)Linéaire (Iso: 4%)Linéaire (Iso: 3%)Linéaire (Iso: 2%)Linéaire (Iso: 1%)Linéaire(CH4 : 10%)

Page 13: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 13

Ar/CH4 mixtures: measurements

10

100

1000

10000

100000

50000 55000 60000 65000 70000 75000 80000 85000 90000 95000 100000E/P (V/cm/atm)

Gai

n

ArCH4 10% : Mea.

ArCH4 9% : Mea.

ArCH4 7,5% : Mea.

ArCH4 6% : Mea.

ArCH4 10% : Sim

ArCH4 9% : Sim

ArCH4 7,5% : Sim

ArCH4 6% : Sim

G < 104

Page 14: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 14

Ar/CH4: simulation vs. measurements

10

100

1000

10000

100000

50000 55000 60000 65000 70000 75000 80000 85000 90000 95000 100000E/P (V/cm/atm)

Gai

n

ArCH4 10% : Mea.

ArCH4 9% : Mea.

ArCH4 7,5% : Mea.

ArCH4 6% : Mea.

ArCH4 10% : Sim

ArCH4 9% : Sim

ArCH4 7,5% : Sim

ArCH4 6% : Sim

Good agreement:measurements are Consistent with simulations,

Page 15: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 15

Ar/CO2 mixtures: measurements

10

100

1000

10000

100000

50000 55000 60000 65000 70000 75000 80000 85000 90000 95000 100000

E/P (V/cm/atm)

Ga

in

ArCO2 10%

ArCO2 20%

ArCO2 30%

ArCO2 10% : Sim.

ArCO2 20% : Sim.

ArCO2 30% : Sim.

G ~ 2.103

Page 16: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 16

Ar/CO2: simulation vs. measurements

10

100

1000

10000

100000

50000 55000 60000 65000 70000 75000 80000 85000 90000 95000 100000

E/P (V/cm/atm)

Ga

in

ArCO2 10% : Mea.

ArCO2 20% : Mea.

ArCO2 30% : Mea.

ArCO2 10% : Sim.

ArCO2 20% : Sim.

ArCO2 30% : Sim.

Agreement with the slopebut not with the absolute gain

Page 17: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 17

100

1000

10000

60 65 70 75 80 85 90

E/P (kV/cm/atm)

Ga

in

TDR

TDR Simu

TDR: Ar/CH4/CO2 (92:5:3)

G < 3.103

Page 18: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 18

100

1000

10000

60 65 70 75 80 85 90

E/P (kV/cm/atm)

Ga

in

TDR

TDR Simu

TDR: Ar/CH4/CO2 (92:5:3)

Page 19: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 19

Ar/C2H6: simulation vs. measurements :

10

100

1000

10000

100000

50000 55000 60000 65000 70000 75000 80000 85000 90000 95000 100000

E/P (V/cm/atm)

Ga

in

ArEth 2% : Mea.

ArEth 3,5% : Mea.

ArEth 5% : Mea.

ArEth 10% : Mea.

ArEth 2% : Sim

ArEth 3,5% : Sim

ArEth 5% : Sim

ArEth 10% : Sim

UV photons ?

G < 105

Page 20: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 20

Ar/C2H6: simulation vs. measurements :

10

100

1000

10000

100000

50000 55000 60000 65000 70000 75000 80000 85000 90000 95000 100000

E/P (V/cm/atm)

Ga

in

ArEth 2% : Mea.

ArEth 3,5% : Mea.

ArEth 5% : Mea.

ArEth 10% : Mea.

ArEth 2% : Sim

ArEth 3,5% : Sim

ArEth 5% : Sim

ArEth 10% : Sim

Penning effect

UV photons ?

Agreement with the slope at low fields but not with the absolute gain and the photons effects

Page 21: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 21

10

100

1000

10000

100000

1000000

50000 55000 60000 65000 70000 75000 80000 85000

E/P (V/cm/atm)

Gai

n

ArIso 1% : Mea.ArIso 2% : Mea.ArIso 3% : Mea.ArIso 4% : Mea.ArIso 5% : Mea.

Ar-CF4-Iso 1% : Mea.Ar-CF4-Iso 2% : Mea.Ar-CF4-Iso 3% : Mea.Ar-CF4-Iso 1% : SimAr-CF4-Iso 2% : SimAr-CF4-Iso 3% : Sim

Ar/iC4H10 mixtures: measurements

G ~ 105

Page 22: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 22

Ar/iC4H10: simulation vs. measurements

10

100

1000

10000

100000

1000000

50000 55000 60000 65000 70000 75000 80000 85000

E/P (V/cm/atm)

Gai

n

ArIso 1% : Mea.ArIso 2% : Mea.ArIso 3% : Mea.ArIso 4% : Mea.ArIso 5% : Mea.ArIso 1% : SimArIso 2% : SimArIso 3% : SimArIso 4% : SimArIso 5% : SimAr-CF4-Iso 1% : Mea.Ar-CF4-Iso 2% : Mea.Ar-CF4-Iso 3% : Mea.Ar-CF4-Iso 1% : SimAr-CF4-Iso 2% : SimAr-CF4-Iso 3% : Sim

Agreement with the slope at low fields but not with the absolute gain and the photons effects

Page 23: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 23

10

100

1000

10000

100000

1000000

50000 55000 60000 65000 70000 75000 80000 85000

E/P (V/cm/atm)

Gai

n

ArIso 1% : Mea.ArIso 2% : Mea.ArIso 3% : Mea.ArIso 4% : Mea.ArIso 5% : Mea.ArIso 1% : SimArIso 2% : SimArIso 3% : SimArIso 4% : SimArIso 5% : SimAr-CF4-Iso 1% : Mea.Ar-CF4-Iso 2% : Mea.Ar-CF4-Iso 3% : Mea.Ar-CF4-Iso 1% : SimAr-CF4-Iso 2% : SimAr-CF4-Iso 3% : Sim

Ar/iC4H10+ 3% CF4: simulation vs. measurements

+ 3% CF4

Page 24: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 24

10

100

1000

10000

100000

1000000

50 55 60 65 70 75 80 85 90 95 100

E/P (kV/cm/atm)

Ga

in

Neon - Iso 5%

Neon - Iso 5% - Simu

Penning effect

The Penning mixture is a mixture of inert gas with another gas, that has lower ionization voltage than either of its constituents

Penning effect : Is a energy transfer from molecule A to molecule Bwhich have lower ionization potential than the first excited state of molecule A.

Page 25: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 25

10

100

1000

10000

100000

1000000

50 55 60 65 70 75 80 85 90 95 100

E/P (kV/cm/atm)

Ga

in

Neon - Iso 5%

Neon - Iso 5% - Simu

Neon - Iso 5% - Argon 1%

Neon - Iso 5% - Argon 1% - Simu

Penning effect

The Penning mixture is a mixture of inert gas with another gas, that has lower ionization voltage than either of its constituents

Penning effect : Is a energy transfer from molecule A to molecule Bwhich have lower ionization potential than the first excited state of molecule A.

Page 26: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 26

10

100

1000

10000

100000

1000000

50 55 60 65 70 75 80 85 90 95 100

E/P (kV/cm/atm)

Ga

in

Neon - Iso 5%

Neon - Iso 5% - Simu

Neon - Iso 5% - Argon 1%

Neon - Iso 5% - Argon 1% - Simu

Neon - Iso 5% - Argon 1,9%

Neon - Iso 5% - Argon 1,9% - Simu

Penning effect

Page 27: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 27

10

100

1000

10000

100000

1000000

50 55 60 65 70 75 80 85 90 95 100

E/P (kV/cm/atm)

Ga

in

Neon - Iso 5%

Neon - Iso 5% - Simu

Neon - Iso 5% - Argon 1%

Neon - Iso 5% - Argon 1% - Simu

Neon - Iso 5% - Argon 1,9%

Neon - Iso 5% - Argon 1,9% - Simu

Neon - Iso 5% - Argon 10%

Neon - Iso 5% - Argon 10% - Simu

Penning effect

Page 28: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 28

Penning effect

GasIonization energy Ei

(eV)

Xe 12,1

Ar 15,7

Ne 21,6

He 24,5

Possibilities of Penning mixtures:

• Ne-Ar• Ar-Xe• Ar-Acetylene• Ne-Xe• Ar-impurities who have lower Ei ?!• …

Page 29: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 29

Estimation of the gain

Gain depends on:

• Gas mixtures properties (Penning effect, ionization energies)• Detector geometry• Gas pressure• High voltage

• Simulation: suppose that the detector is perfect, pressure and high voltage stable and constant.

• Need to take care of Penning effect but the energy transfer from molecule A to molecule B in gases is not well simulated

• It may be possible to estimate this effect using the ionization P ioni and excitation Pexci probabilities extracted from MAGBOLTZ

• We suppose that a fraction of photons from molecule A deexcitation ionize molecule B with the measured probability of transfert Ptrans.

• For the Penning mixture, the Townsend coefficient α could be replaced by αeff:

ioni,B

exci,Atransferteff P

PPαα

• Pexci,A excitation probability for molecule A

• Pioni,B ionization probability for molecule B

• Pioni,B measured probability of transfert

Page 30: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 30

Cross section of gas

Drift velocity and diffusion coefficients depend on the precision δ of the gas cross sections. This precision decreases with the complexity of the rotational and

vibrationalcross sections.

• He: δ < 0.5 %

• Ar, Xe, Ne: δ < 1 %

• Hydrocarbons with small nC (CH4, C2H6) : δ ~ 1 %

• CO2, CF4 : δ ~ 1-2 %

• iC4H10 : δ ~ 3 %

• Heavier gases: δ > 3 %

Page 31: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 31

Conclusions

•Systematic measurements will help to choose and optimize the detector stability (best , low voltage) for ILC-TPC

•Simulations using Magboltz work well for drift velocities and diffusion

•But, need to add correction factor for the Townsend coefficient used for gain calculation

Page 32: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 32

Page 33: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 33

Pressure monitoring in Saclay

990

992

994

996

998

1000

1002

1004

1006

1008

1010

27/0

6/20

06

02/0

7/20

06

07/0

7/20

06

12/0

7/20

06

17/0

7/20

06

22/0

7/20

06

27/0

7/20

06

01/0

8/20

06

06/0

8/20

06

Pres

sure

(m

bar

)

Page 34: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 34

Gain vs. amplification gap

Page 35: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 35

Gain vs. amplification gap

Page 36: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 36

Gain vs. amplification gap

Page 37: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 37

Gain vs. amplification gap

Page 38: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 38

Gain vs. amplification gap

Page 39: D. Attié, P. Colas,  Giganon, I. Giomataris,  V. Lepeltier, M. Was

[email protected] TPC Jamboree, Aachen – March 2007 39

• The resistive foil prevents charge accumulation, thus prevents sparks

• Gains higher than obtained with standard anodes can be reached

Micromegas gain

― Without resistive foil

― With resistive foil (current)

― Without resistive foil

― With resistive foil (current)

ArIso5%