cylindrical and flat solar collector geometries: theory and experiment

28
!"#$%&'$()# )%& +#), -.#)' !.##/(,.' 0/.1/,'$/23 45/.'" )%& 678/'$1/%, !"# %#&'(&)*+,# *+- ./0,1 (' 2"# 34(56+-&*7 %8 %*+#5 9: ;.5% <.25/#= >=? 0'/@ A: -1/2,)&= B C)%$/# -5D##= E A/,/' -,/85/%2= E )%& 4$1 F/)#" E > A5.,.% 6%@$%//'$%@= GG! ? !.##/@/ .H I8J()# -($/%(/2= 45/ K%$L: .H M'$N.%) B -.# O&/)2 )%& -.#)' 6%/'@" P),/'$)#2 )%& -.#)' !/##2 E 6#/(,'$()# 6%@$%//'$%@ C/8)',1/%,= -)%,) !#)') K%$L/'2$," I-M -IGM9 ?Q>? R 6$%&5.L/%= 45/ S/,5/'#)%&2 > >B S.L/1T/' ?Q>?

Upload: greg-smestad

Post on 10-Jun-2015

282 views

Category:

Technology


0 download

DESCRIPTION

Optical Society of America's (OSA's) RENEWABLE ENERGY AND THE ENVIRONMENT Conference, 11 November - 15 November 2012, Hotel Pullman Eindhoven Cocagne, Eindhoven, Netherlands, TITLE: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment AUTHORS/INSTITUTIONS: J. Koshel, , Photon Engineering LLC, Tucson, AZ; J. Koshel, College of Optical Sciences, University of Arizona, Tucson, AZ; G. Smestad, , Solar Energy Materials and Solar Cells, San Jose, CA; D. Shull, P. Stephens, T. Healy, Electrical Engineering Department, Santa Clara University, Santa CLara, CA; KEYWORDS: Other areas of optics: Solar energy, nonimaging optical systems, geometrical optics, Etendué. http://www.osa.org/meetings/optics_and_photonics_congresses/renewable_energy_and_the_environment/

TRANSCRIPT

Page 1: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

!"#$%&'$()#*)%&*+#),*-.#)'*!.##/(,.'*0/.1/,'$/23*45/.'"*)%&*678/'$1/%,*

!"#$%#&'(&)*+,#$*+-$./0,1$('$2"#$34(56+-&*7$%8$%*+#5$*

9:*;.5%*<.25/#=>=?*0'/@*A:*-1/2,)&=B*C)%$/#*-5D##=E*A/,/'*-,/85/%2=E*)%&*4$1*F/)#"E*

*>*A5.,.%*6%@$%//'$%@=*GG!*

?*!.##/@/*.H*I8J()#*-($/%(/2=*45/*K%$L:*.H*M'$N.%)*B*-.#*O&/)2*)%&*-.#)'*6%/'@"*P),/'$)#2*)%&*-.#)'*!/##2*

E*6#/(,'$()#*6%@$%//'$%@*C/8)',1/%,=*-)%,)*!#)')*K%$L/'2$,"**

I-M*-IGM9*?Q>?*R*6$%&5.L/%=*45/*S/,5/'#)%&2**

>*>B*S.L/1T/'*?Q>?*

Page 2: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

O%,'.&D(J.%*

U  !"#$%&'$()#*2.#)'*(/##*,DT/2*D2/*,5$%VW#1*!O0-*,/(5%.#.@"3*R  4')(X$%@*%.,*'/YD$'/&*R  6)2/*.H*1.D%J%@=*(..#$%@=*)%&*

(#/)%$%@*R  !O0-*Z*?Q[*/\($/%,*R  ]$%&*#.)&2*'/&D(/&*R  G.^*'..H*8/%/,')J.%*

U  -$@%$W()%,*1/&$)*(.L/')@/*.H*,5/*,/(5%.#.@"3*R  F.^*&./2*$,*^.'X_*R  C./2*$,*^.'X*^/##_*R  ]/*)'/*%.,*$%,/'/2,/&*$%*,5/*

8.#$J(2*`1D(5a*

?*>B*S.L/1T/'*?Q>?*

Photo by Greg P. Smestad

Page 3: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

P.JL)J.%*

U  b/c/'*D%&/'2,)%&*,5/*("#$%&'$()#*,DT/*,/(5%.#.@"3*R  ]5),*$2*,5/*,5/.'"*T/5$%&*

8/'H.'1)%(/_*R  C./2*$,*^.'X*T/c/'*,5)%*%.%V

,')(X$%@*d),*8)%/#2_*R  !)%*2.e^)'/*1.&/#$%@*T/*

D2/&*,.*)((D'),/*&/,/'1$%/*8/'H.'1)%(/_*

R  !)%*,5/*,/(5%.#.@"*T/*$18'.L/&_*

U  6&D()J.%)#*,..#*H.'*D%&/'@')&D),/*2,D&/%,2*),*-)%,)*!#)')*K%$L/'2$,"*

B*>B*S.L/1T/'*?Q>?*

Photos by Greg P. Smestad

Page 4: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

q

d D B

D 6

!5)')(,/'$2J(2*.H*!"#$%&'$()#*4DT/*A)%/#2*

U  4DT/*&$)1/,/'*f*!g*f*??*11*U  4DT/*28)($%@*f*"*f*?!g*f*EE*11*U  4DT/VT)(X8#)%/*2/8)')J.%*f*!#*f*>:h!g*f*BB*11*U  !/##*&$)1/,/'*f*!$*f*>h*11*U  4DT/*G/%@,5*f*%*f*>QQQ*11*U  M'')"*f*&'()*+*f*EQ*

E*>B*S.L/1T/'*?Q>?*

Direct sunlight

Glass Tubes

Index-Matching Fluid

CIGS

Page 5: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

!9:.;<$b)2/&*.%*,5/*'/2/)'(5*.H*/L)(D),/&*,DT/2*

h*>B*S.L/1T/'*?Q>?*

Page 6: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

C'$L$%@*9/)2.%*H.'*!"#$%&'$()#*4DT/2*

g*>B*S.L/1T/'*?Q>?*

!

-8 -6 -4 -2 0 2 4 6 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d/D6 = 1d/D6 = 2d/D6 = inf

Solar Hour

ED/E

0

Equinox Tilt = Latitude

Replicated: D. C. Beekley and G. R. Mather, Jr., “Analysis and experimental tests of a high-performance evacuated tubular collector,” DOE/NASA CR-150874, 1978. Manuscript Freely obtained at: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790008199_1979008199.pdf

Page 7: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

=>&#,2$(+$?65>+-&>,*5$!@A#1$ 4,*B#&$(+$?65>+-&>,*5$!@A#1$

O'')&$)%(/*9)J.*.%*!"#$%&'$()#*4DT/2*

i*>B*S.L/1T/'*?Q>?*

ED/E

0

ER/E

0 ED = irradiance on tilted cylindrical tubes from direct sunlight ER = irradiance on tilted cylindrical tubes from backplane scatter E0 = irradiance on flat panel normal to direct sunlight E = irradiance on horizontal flat panel from direct sunlight

Solar Hour Solar Hour

Latitude = 40° Tilt = 28°

d = 2D6

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790008199_1979008199.pdf

Latitude = 40° Tilt = 28°

White-Panel Backplane d = 2D6

Page 8: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

-8 -6 -4 -2 0 2 4 6 80

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

!.18)'$2.%3*!"#$%&'$()#*M'')"*j*+#),*A)%/#*

k*>B*S.L/1T/'*?Q>?*

0.5(

ED+E

R)/E

0 or

E /E

0

Solar Hour

Flat Panel

Cylindrical Tubes

The theory indicates flat

panels should be better around

noon, while the tubes are better in

early and late hours

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790008199_1979008199.pdf

1.0

- 0

Page 9: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

:C%:;DE:F!$P/)2D'/1/%,2*)%&*(.18)'$2.%2*,.*,5/.'"*

l*>B*S.L/1T/'*?Q>?*

Page 10: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

45/"*G..X*G$X/*+#),*A)%/#2m*

Greater than the critical angle

Photo by Greg P. Smestad

>B*S.L/1T/'*?Q>?* >Q*

Page 11: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

m)%&*45/"*G..X*G$X/*b#$%&2*

Less than the critical angle

Photos by Greg P. Smestad

Tubes Shadows

>B*S.L/1T/'*?Q>?* >>*

Page 12: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

6&@/V9)"*0/.1/,'"*.H*!"#$%&'$()#*4DT/2*

>?*>B*S.L/1T/'*?Q>?*

Cylindrical Tubes Performance Region

Critical or Acceptance

Angle

qa

qa

Flat Panel Performance

Region Flat Panel

Performance Region

Page 13: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

P/)2D'/&*On*!D'L/2*H.'*-.#)'*A)%/#2*

>B*S.L/1T/'*?Q>?* >B*

Page 14: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

!.18)'$%@*An*P.&D#/*A.^/'*First glance: cylindrical tube panel (Solyndra) performs better than flat panel (Solar Frontier) Second glance: we need to normalize for differences in solar cell active area Third glance: there is the characteristic kink in the curve due to critical angle phenomenon

Elec

tric

al

3 September 2012 Latitude = 37.3492°

Longitude = -121.9381° Altitude = 20 m

White-Panel Backplane

>B*S.L/1T/'*?Q>?* >E*

Page 15: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

S.,*-.*+)2,3*O,*$2*A.^/'*C/%2$,"*

First glance: flat panel (Solar Frontier) performs better than cylindrical tube panel (Solyndra) Second glance: we are gaining some power from the open regions in the panel, but not doubling Third glance: the kink is still there due to critical angle phenomenon

Elec

tric

al

3 September 2012 Latitude = 37.3492°

Longitude = -121.9381° Altitude = 20 m

White-Panel Backplane

>B*S.L/1T/'*?Q>?* >h*

Page 16: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

:G/#&>)#+2*5H$:5#,2&>,*5$%(I#&$=#+1>26$ !"#(&6H$D&&*->*+,#$;*0($

!.18)'$2.%*.H*45/.'"*)%&*678/'$1/%,*El

ectr

ical

>B*S.L/1T/'*?Q>?* >g*

Page 17: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

!"#$%&'$()#*4DT/*M'')"*!.18)'$2.%*,.*45/.'"*

28 October 2012 (AM1.5 Conditions) Latitude = 37.3492°

Longitude = -121.9381° Altitude = 20 m

Black Velvet Backplane

>B*S.L/1T/'*?Q>?* >i*

45/.'"3*&$'/(,*.%*("#$%&'$()#*,DT/2*

ED/E

0

Solar Hour

Latitude = 40° d = 2D6

Page 18: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

4.J!KL;:$E.=:MDFN$n)#$&)J.%*)%&*.8J1$N)J.%*

>k*>B*S.L/1T/'*?Q>?*

Page 19: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

-.D'(/*-/,D83*S96G*-.#)'*P.&/#*

0

200

400

600

800

1000

1200

9/2/12 7:12 PM 9/3/12 12:00 AM 9/3/12 4:48 AM 9/3/12 9:36 AM 9/3/12 2:24 PM 9/3/12 7:12 PM 9/4/12 12:00 AM

glob

al s

olar

rad

iatio

n (W

/m^2

)

BirdBrasRyan-Stolzenbach

>l*>B*S.L/1T/'*?Q>?*

Site data and time infolatitude in decimal degrees (positive in northern hemisphere) !"#!$%&longitude in decimal degrees (negative for western hemisphere) '(&(#%!)(ground surface elevation (m) 20.0time zone in hours relative to GMT/UTC (PST= -8, MST= -7, CST= -6, EST= -5) -8daylight savings time (no= 0, yes= 1) 1start date to calculate solar position and radiation 3-Sep-12start time 12:30 AMtime step (hours) 0.5number of days to calculate solar position and radiation 1Bird model parametersbarometric pressure (mb, sea level = 1013) 1013ozone thickness of atmosphere (cm, typical 0.05 to 0.4 cm) 0.225water vapor thickness of atmosphere (cm, typical 0.01 to 6.5 cm) 2aerosol optical depth at 500 nm (typical 0.02 to 0.5) 0.26aerosol optical depth at 380 nm (typical 0.1 to 0.5) 0.3forward scattering of incoming radiation (typical 0.85) 0.85surface albedo (typical 0.2 for land, 0.25 for vegetation, 0.9 for snow) 0.2Bras model parameterBras atmospheric turbidity factor (2=clear, 5=smoggy, default = 2) 2Ryan-Stolzenbach model parameterRyan-Stolzenbach atmospheric transmission factor (0.70-0.91, default 0.8) 0.8

Calculation of solar position based on NOAA's functions and clear-sky solar radiation based on Bird and Hulstrom's model, Bras model, and Ryan and Stolzenbach's model.

On horizontal surface

Page 20: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

-.e^)'/*0/.1/,'"*.H*-$%@#/*A)%/#*

?Q*>B*S.L/1T/'*?Q>?*

Solar Spectrum = AM1.5 CIGS QE = NREL literature 3 September 2012 Latitude = 37.3492° Longitude = -121.9381° Altitude = 20 m White-Panel Backplane

Solar noon results only shown on central tube

Pe,tube (tracing) = 2.53 W

Pe,array = 101.2 W

Page 21: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

O=$8>1@*5>P*0(+$ Q=$?"*&2$

9)"V4')($%@*9/2D#,2*

?>*>B*S.L/1T/'*?Q>?*

Note: irradiance on back surface of tube

Pe,tube = 2.53 W comparable to

experiment

1.30 pm

Page 22: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

P.&/#/&*6#/(,'$()#*A.^/'*0/%/')J.%*

??*>B*S.L/1T/'*?Q>?*

Comparison of Solyndra cylindrical tube panel: experiment and ray trace model – good agreement. Variations due to solar source assumptions, such as atmospheric conditions Indicates that software ray-tracing model validates virtual design method. El

ectr

ical

3 September 2012 Latitude = 37.3492°

Longitude = -121.9381° Altitude = 20 m

White-Panel Backplane

Page 23: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

o,/%&D/*

U  +'/%(5*].'&3*R  n/'T3*/7,/%&/&*R  S.D%3*'/)(5*

U  o,/%&D/*$2*)*@/.1/,'$(*H)(,.'3*

U  O,*&/2('$T/2*,5/*dD7*8'.8)@)J.%*(5)')(,/'$2J(2*.H*)%*.8J()#*2"2,/13*

?B*>B*S.L/1T/'*?Q>?*

!! "=aperture

2 cos ddAn s#E

( ) ,cosˆ,aperture!! "=# ddAL s$ar

2

aperture

cos

nL

ddAL

s

ss

E=

!=" ## $

dAs

q!

dW!

Arbitrary Source Radiance Lambertian Source Radiance

Aperture

Page 24: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

A'/#$1$%)'"*I8J1$N)J.%*-,D&$/2*

U  I8J1$N/&*(.%W@D')J.%*.H*,5/*2"2,/13*R  9/2D#,2*$%&$(),/*"*f*?!,*)%&*!#-f*

>:h!g*)'/*.8J1)#*R  4$#,*)%@#/*`+a*f*G)J,D&/*`.a=*

.8J1$N/2*8/'H.'1)%(/*T"*1)X$%@*'/28.%2/*1.'/*D%$H.'1*.L/'*"/)'*

R  C$p/'/%,*1/'$,*HD%(J.%*()%*T/*D2/&*,.*.8J1$N/*8/'H.'1)%(/*H.'*)*@$L/%*J1/*.H*,5/*&)"q"/)'3*U  Me/'%..%*,.*5)%&#/*(..#$%@*%//&2*U  P.'/*/YD$,)T#/*.L/'*,5/*"/)'*2D(5*

,5),*^$%,/'*8/'H.'1)%(/*&'$L/2*&/2$@%**

U  A'/#$1$%)'"*'/2D#,2*25.^*,5),*)*25)8/*,5),*5/#82*,')8*$%($&/%,*')&$)J.%*$2*T/c/'3*

R  !'.22*2/(J.%*.H*r,DT/s*D2$%@*SK9b-:*I8J1$N/&*^$,5*')"*,')($%@*2.e^)'/*

R  45/*'/(/22/2*,')8*#$@5,*R  45$2*@$L/2*#$@5,*)*r2/(.%&*(5)%(/*R  -5)8/*&/8/%&2*@'/),#"*.%*1/'$,*

HD%(J.%*

U  S.,/*,5),*8/'H.'1)%(/*^$##*)88'.)(5*)*d),*8)%/#*

?E*>B*S.L/1T/'*?Q>?*

Page 25: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

?.F?MR4D.F4$+D,D'/*2,D&$/2*

?h*>B*S.L/1T/'*?Q>?*

Page 26: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

?(+,5@1>(+1$U  !"#$%&'$()#*,DT/2*.%#"*.p/'*1$%.'*

$18'.L/1/%,2*`1.'%$%@*)%&*/L/%$%@*5.D'2a*

U  C/('/)2/&*8/'H.'1)%(/*)'.D%&*2.#)'*%..%*

U  6p/(JL/*')"*,')(/*1.&/#$%@*()%*T/*&.%/*

U  o,/%&D/*&'$L/2*,5/*&/2$@%3*

4.*$@%.'/*$,*()%*T/*5)N)'&.D2t*U  -"2,/1*()%*T/*$18'.L/&*`2#$@5,#"a*^$,5*

2.e^)'/*.8J1$N)J.%*R*S.,*/%.D@5*J1/*,.*@.*$%,.*,5/*&/,)$#2*5/'/*

J@2@&#$&#1#*&,"$U  P.'/*.8J1$N)J.%*()2/23*

R  P.&$W()J.%*.H*1/'$,*HD%(J.%*R  P.'/*2,D&"*.H*r,DT/s*25)8/*

U  O%(#D&/*S)J.%)#*]/),5/'*-/'L$(/*&),)*,)X$%@*$%,.*)((.D%,*#.()#*2X"*(.%&$J.%2*`$:/:=*$%*-)%,)*!#)')a*

U  -8/(D#)'*/&@/*')"*(.%(/%,'),.'*T/,^//%*,DT/2=*TD,*,5$2*2,/8*rL$.#),/2s*,5/*2$18#$($,"*.H*,5/*,DTD#)'*)'')"*@/.1/,'"*

!.%(#D2$.%*)%&*+D,D'/*9/2/)'(5*

?g*>B*S.L/1T/'*?Q>?*

,cosaperture

2 !! "= ddAn s#$

Page 27: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

M*-$#L/'*G$%$%@3*6&D()J.%*

>B*S.L/1T/'*?Q>?* ?i*

Page 28: Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

]5),*,.*&.*^$,5*>h*P$##$.%*4DT/2_*

www.solideas.com/GlassTubes.html

>B*S.L/1T/'*?Q>?* ?k*