cyanex introduction

Upload: andreakatovic

Post on 07-Aug-2018

240 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/20/2019 Cyanex Introduction

    1/20

     Part I Chapter 2: Introduction to Cyanex

    13

    2.1 Introduction to cyanex compounds

    Cyanex extractants are organophosphorous compounds. Depending on their

    chemical compositions and structural properties there are different types of

    cyanex compounds such as, cyanex 921, cyanex 272, cyanex 301, cyanex 923,

    cyanex 471X, cyanex 302, cyanex 925 etc. Cyanex extractants are phosphorus-

    based products that act in two different ways:

    a)  Chelating Extractants

    b)  Solvating Extractants

    a)  Chelating Extractants

    Cyanex 272 solvent extraction reagent was developed specifically for the

    separation of cobalt from nickel by solvent extraction. It is estimated that 40%

    of the cobalt in the western hemisphere is produced using cyanex 272 solvent

    extraction reagent, at plants Europe, South America , Canada , Africa, China

    and Australia. Cyanex 272 solvent extraction reagent can also be used to

    separate the rare earth elements from one another. The acid concentration

    required for metal stripping is lower than when phosphoric acid or phosphonic

    acid are used as extractants. Cyanex 301 solvent extraction reagent is an

    analogue of cyanex 272 solvent extraction reagent. Thiophosphinic acid cyanex

    301 solvent extraction reagent exhibits interesting extraction characteristics for

    the recovery of cobalt and nickel. A potential advantage of the dithiophosphinic

    acid cyanex 301 over cyanex 272 is its ability to extract both cobalt and nickel

    under very acidic conditions avoiding therefore the need for pH adjustment of

    the acidic leach liquors.

    b)  Solvating Extractants

    Cyanex 921 and 923 solvent extraction reagents have potential in a wide

    range of applications. Specific applications are the recovery of organic solutes

    and inorganic mineral acids from waste effluents, and metal extraction

    processes.  Unlike its phosphine oxide analogues, cyanex 471X solvent

    extraction reagent is a soft Lewis base. Under the HSAB principle, it will only

  • 8/20/2019 Cyanex Introduction

    2/20

     Part I Chapter 2: Introduction to Cyanex

    14

    complex readily with metals that exhibit the characteristics of soft Lewis acids.

    Specific characteristics of these so-called soft Lewis acids are their large ionic

    radius, their low oxidation state and their ease to be polarized. Examples of

    metals falling upon those criteria are Pd(II), Pt(II), Ag(I), Cd(II), Hg(I), Hg (II)

    and Au(III).

    The cyanex compounds are very useful and effective in case of solvent

    extraction of metal ions. Now a days these cyanex compounds are widely used

    extractants for separation of metal ions. The detailed information of some of

    the cyanex compounds are described [1].

  • 8/20/2019 Cyanex Introduction

    3/20

     Part I Chapter 2: Introduction to Cyanex

    15

    2.2 Properties of cyanex compounds

    The properties of different cyanex compounds are shown in Table 2.2.

    Table 2.2 Properties of different cyanex compounds

    Name of

    cyanex

    Properties

    Cyanex

    921

    Cyanex 272 Cyanex

    923

    Cyanex

    301

    Cyanex

    471X

    % Purity 93 85 93 75-80

    Appearance Off-white,

    waxy

    solid

    colourless to

    light amber

    liquid

    colourless

    mobile

    liquid

    Green

    mobile

    liquid

    Off-white

    crystalline

    solidMolecular

    Weight

    386 290 322

    Specific

    gravity

    0.88 at 250C

    0.92 at 240C 0.88 at 25

     

    0C

    0.95 at 240C

    0.91 at 220C

    Viscosity 150 cp 37 cp 40 cp at 250C

    78 cp at

    240C

    Solubility

    In Distilled

    water

    16µg/mL at

    pH 2.6

    10 mg/L 7 mg/L 43µg/mL

    at 240C

    Boiling

    point

    >3000C 310

    0C at

    50 mm Hg

    2200C

    Pour point -320C -34

    0C

    Flash point >1080C(closed

    cup)

    1820C

    (Closed

    cup

    setaflash)

    74 0C

    (closed

    cup)

    Specificheat

    0.48cal/gm/ 

    0C at

    250C

    0.45cal/gm/ 

    0C

    at 250C

    Thermal

    conductivit

    y

    2.7x 10-4

    cal/cm/sec./ 0

    C

    0.000302

    cal/cm/sec.

     /0C

    Melting

    point

    47-520C 58-59

    0C

  • 8/20/2019 Cyanex Introduction

    4/20

     Part I Chapter 2: Introduction to Cyanex

    16

    2.3 Cyanex 921 extractant

    Cyanex 921 is commonly known as trioctylphosphine oxide (TOPO). It was the

    first member of a family of solvent extraction reagents developed by Cytec.

    This reagent has been used commercially for many years to recover uranium

    from wet process phosphoric acid. It is also used in the extraction of different

    metals.

    2.3.1 Chemical Structure of cyanex 921

    The chemical structure of cyanex 921 is as follows:

    CH3(CH

    2)7-P-(CH

    2)7CH

    3

    O

    (CH2)7CH

    3  

    2.3.2 Stability of cyanex 921

    Among trialkylphosphine oxides, cyanex 921 is most stable member of

    the group of organophosphorous solvating reagents.

    2.3.3 Organic solubility of cyanex 921

    The solubility of cyanex 921 is higher in aromatic diluents than the

    aliphatic ones.

    2.3.4 Toxicity of cyanex 921

    The acute oral and acute dermal LD50 values for cyanex 921 extractant

    are > 10.0 g/ kg and 2.83 g/ kg, respectively. Marked skin and eye irritation

    were produced during primary irritation studies with rabbits. Inhalation of

    airborne material may be irritating to the respiratory tract. Cyanex 921 was

    determined to be not mutagenic in the Ames Salmonella Assay.

  • 8/20/2019 Cyanex Introduction

    5/20

     Part I Chapter 2: Introduction to Cyanex

    17

    2.3.5 Applications of Cyanex 921

    Cyanex 921 is a better extractant because of its higher stability, lower

    aqueous solubility and rapid phase engagement. There are numerous

    applications of cyanex 921. 

    1. The solvent extraction method was developed to recover small quqntities of

    uranium present in wet process phosphoric acid using cyanex 921.

    2. Processes in petrochemical plants, wood pulp mills and other chemical

    facilities often generate aqueous effluent streams containing small

    concentrations of carboxylic acids; particularly acetic acid. The use of cyanex

    921 and others reagents to recover acetic acid from these streams has formed

    the subject of informative papers in recent years.

    3. Cyanex 921 is used to extract niobium and tantalum from a hydrofluoric-

    sulphuric acid leach liquor and then selectively stripped from the loaded

    organic phase.

    4. Rhenium is an essential element in the production of petroleum reforming

    catalysts. Cyanex 921 was used to recover rhenium from these source

    materials.

    5. Removal of arsenic impurities from copper electrolytes by solvent extraction

    with cyanex 921 was carried out. It was found that cyanex 921 is stronger

    extractant for arsenic than tributylphosphate.

    6. Because of wide applications of lithium in batteries and ceramics a novel

    solvent extraction process using cyanex 921 extractant to recover lithium from

    its sources was developed.

    7. Selective separations can be made depending upon a variety of factors, e.g.

    the valence state of metal, the anionic nature of the solution and the

    concentration of the extractant in the solvent. Approximately 30 metals were

    known to be extracted by cyanex 921.

    8. Phenol occurs in aqueous effluent from many processes such as, in the

    petroleum, steel and coal gasification industries. Cyanex 921 is a strong

    extractant for phenol recovery and offers a lower cost alternative to

    conventional phenosolvan technology.

  • 8/20/2019 Cyanex Introduction

    6/20

     Part I Chapter 2: Introduction to Cyanex

    18

    2.4 Cyanex 272 Extractant

    Bis(2,4,4- trimethylpentyl)phosphinic acid commonly known as cyanex

    272. The active component of cyanex 272 extractant is a phosphoric acid;

    metals are extracted through a cation exchange mechanism. Though cyanex

    272 is a selective extractant for cobolt in the presence of nickel, a variety of

    other cations can be extracted depending upon the solution pH.

    2.4.1 Chemical Structure of cyanex 272

    The chemical structure of cyanex 272 is as follows

    CH3-C-CH

    2-CH-CH

    2

    CH3

    CH3

    CH3-C-CH

    2-CH-CH

    2

    CH3

    CH3

    P

    O

    OH

    CH3

    CH3  

    2.4.2 Stability of cyanex 272

    The hydrophilic stability of cyanex 272 extractant was examined in several

    tests and it was found that cyanex 272 is having highest stability.

    2.4.3 Organic solubility of cyanex 272

    Cyanex 272 extractant is totally miscible with common aromatic and

    aliphatic diluents, and is extremely stable to both heat and hydrolysis.

    2.4.4 Toxicity of cyanex 272

    The acute oral and acute dermal LD50 values for cyanex 272 extractant

    are > 3.5 g/ kg and 2.0 g/ kg, respectively. It is limited to skin and eye irritation

    during primary irritation studies with rabbits. Cyanex 272 was determined to be

    non-mutagenic in the Ames Salmonella Assay.

  • 8/20/2019 Cyanex Introduction

    7/20

     Part I Chapter 2: Introduction to Cyanex

    19

    2.4.5 Applications of Cyanex 272

    1. Cyanex 272 is used as a selectve extractant for the extraction and separation

    of cobalt in the presence of nickel.

    2. Cyanex 272 is found to be preferentially selective extractant for cobalt in the

    presence of calcium.

    3. Cyanex 272 can be used to recover cobalt from ammoniacal as well as acidic

    solutions.

    4. Using cyanex 272 metals like iron, zinc. Copper, manganese, calcium, nickel

    from sulphate solutions can be extracted.

    2.5 

    Cyanex 923 Extractant

    Cyanex 923 extractant is a liquid phosphine oxide which has potential

    applications in the solvent extraction recovery of both organic and inorganic

    solutes from aqueous solution, e.g. carboxylic acids from effluent streams and

    the removal of arsenic impurities from copper electrolytes.

    2.5.1 Compositions of cyanex 923

    Cyanex 923 extractant is a mixture of four trialkyl-phosphine oxides as

    follows:

    (1) Trihexylphosphine oxide (2) dihexylmonooctyl-phosphine oxide

    (3) dioctylmonohexyl-phosphine oxide (4) Trioctylphosphine oxide.

    R3P(O) R2R’P(O) RR2’P(O) R’3P(O)

    Where, R= [CH3(CH2)7]-normal octyl

    R’ = [CH3(CH2)7]-normal octyl

    2.5.2 Organic solubility of cyanex 923

    Cyanex 923 extractants are completely miscible with all common

    hydrocarbon diluents even at very low ambient temperatures. The major benefit

    of high solubility lies the ability to prepare concentrated, stable solvents which

    can recover solutes (e.g. acetic acid) that are normally only weakly extracted by

    this type of reagent. 

  • 8/20/2019 Cyanex Introduction

    8/20

     Part I Chapter 2: Introduction to Cyanex

    20

    2.5.3 Applications of Cyanex 923

    1.  Processes in petrochemical plants, wood pulping mills, and other

    chemical facilities often generate aqueous effluent streams containing

    carboxylic acids: particularly acetic acid. These carboxylic acids are

    recovered by cyanex 923. 

    2.  Phenols, like carboxylic acids are produced during coal liquefaction, coal

    gasification and in the petrochemical industry and they can be efficiently

    extracted by cyanex 923.

    3.  Cyanex 923 extractant exhibits a separation factor in ethanol/water

    solutions near the maximum useful limit for recovery from continuous

    fermentation broths, typically containing 5% ethanol.

    4.  Removing arsenic, antimony and bismuth impurities from copper

    electrolytes by solvent extraction with cyanex 923 improves the quality

    of electrolytic copper and consists of improvements in current efficiency.

    5.  Uranium recovery from wet-process phosphoric acid using synergic

    mixtures of phosphine oxides and D2EHPA.

    6.  Niobium and tantalum are extracted and separated by cyanex 923.

    7.  Cadmium sometimes occurs as an undesirable impurity in phosphoric

    acid and other acids can be removed by cyanex 923.

    2.6 Cyanex 301 extractant

    Cyanex 301 is a dialkyl dithiophosphinic acid extractant. This sulphur

    containing compound is a much stronger acid than its analogous oxy-acid,

    cyanex 272. It is capable of extracting many metals at lower pH (

  • 8/20/2019 Cyanex Introduction

    9/20

     Part I Chapter 2: Introduction to Cyanex

    21

    P

    S

    SHR

    R

     

    Where,

    R=CH3-C-CH

    2-CH-CH

    2-

    CH3

    CH3

    CH3  

    The active component of cyanex 301 is bis(2,4,4-trimethylpentyl)

    dithiophosphinic acid.

    2.6.2 Applications of cyanex 301

    Cyanex 301 extractant is capable of the selective recovery of heavy

    metals at low pH in the presence of alkaline earths.

    1. Cadmium from wet process phosphoric acid and amino acids from

    fermentation broths were capable to extract by cyanex 301.

    2. Cyanex 301 was developed to extract and recover zinc from the effluentstreams of viscose rayon plants in the presence of calcium.

    3. Dialkyl dithiophoshinic acids, or their salts, have shown to be effective in

    extracting a number of alpha amino acids from fermentation broths. The

    recovery of L-phenylalanine was done using cyanex 301 extractant.

    2.7 Cyanex 471X extractant 

    Cyanex 471X extractant is a new phosphine –based extractant developed

    by Cyanamid for the hydrometallurgical industry. It is particularly useful for

    the selective recovery of silver and in the separation of palladium from

    platinum.

    2.7.1 Chemical Structure of cyanex 471X

    The chemical structure of cyanex 471X is as follows

  • 8/20/2019 Cyanex Introduction

    10/20

     Part I Chapter 2: Introduction to Cyanex

    22

    CH3-CH

    2-CH

    2

    CH3

    3

    P=S

     

    2.7.2 Toxicity of cyanex 471X

    The acute oral (rat) and acute dermal (rabbit) LD50 values for the active

    phosphine sulphide contained in cyanex 471X extractant are 10,000 mg/kg of

    body weight. No significant skin irritation and only mild eye irritation were

    produced during primary irritation studies with rabbits. The sulfide was

    determined to be non-mutagenic in the Ames Salmonella Assay.

    2.7.3 Applications of cyanex 471X

    1. Cyanex 471X is a solvating reagent and will extract silver from sulfate,

    nitrate and chloride systems.

    2. Cyanex 741X extractant has potential in the separation of palladium from

    chloride solutions containing platinum(IV) and palladium(II). Palladium

    extraction occurs with silver through a solvating mechanism. Stabilized

    thiosulfate solutions are an effective strip feed. If present, Ag, Hg(II), Au(III)

    will be co-extracted with palladium.

    2.8 Scope of Solvent extraction with cyanex compounds 

    Extraction of metals by cyanex compounds takes place by ion-pair

    extraction. In the present days large numbers of cyanex compounds are using

    because of their selective extraction properties. In the presence of various

    counter anions the extraction properties of cyanex compounds differs and

    provides wide variability to extract different metals. Literature survey reveals

    the applicability of cyanex compounds in separation of metals by solvent

    extraction. The literature survey of cyanex compounds used in the extraction of

    various metal ions is given in the following table 2.8.

  • 8/20/2019 Cyanex Introduction

    11/20

     Part I Chapter 2: Introduction to Cyanex

    23

    Table 2.8 Different cyanex compounds used for various metal extractions

    under different conditions

    Sr.

    no.

    Cation Technique Cyanex Media Solvent Ref.

    No.

    1 Ga(III) SE CX-921 HCl Toluene 2

    2 Pd(II) SE CX-302 HCl Toluene 3

    3 Zn(II) SE CX-923 HCl Solvesso-

    100

    4

    4 Pd(II) Ex-Chrom. CX-302 0.1M HNO3  5

    5 Au(III) SE CX-302 HCl Toluene 6

    6 Zn(II) SFC CX-302 CO2  7

    7 Am(III) Ex-Chrom. CX-301 HNO3  Silica-

    Polym.

    8

    8 Zn(II) SE CX-923 HCl 9

    9 Ag(I) BLM CX-471X HNO3  Alkenes +

    Isodecanol

    10

    10 Co(II), Ni(II) SLM CX-

    272,301,302

    H2SO4  11

    11 Cd(II) Ex-Chrom. CX-301 H3PO4  12

    12 Am(III), Eu(III) SE CX-301 HNO3  Kerosene 13

    13 Cr(III) SE CX-301 HCl Toluene 14

    14 As(III), (V) SE CX-925 H2SO4  Toluene 15

    15 V(IV) Ex-Chrom. CX-272,

    CX-301

    Silica Gel 16

    16 Ln(III) HPCPC CX-302 HCl 17

    17 Ti(IV) SE CX-272 HCl Xylene 18

  • 8/20/2019 Cyanex Introduction

    12/20

     Part I Chapter 2: Introduction to Cyanex

    24

    18 Sc(III) SE CX 923,

    CX 925

    HCl 19

    19 Rh, Pt, Pd SE CX 921 HCl Toluene 20

    20 Os, Ru, Ir SE CX 921 HCl 21

    21 Sc, Y, La, Gd SE CX 302 HCl 22

    22 Ce, Th SE CX 923 H2SO4  n-hexane 23

    23 Th(IV) SE CX 272 HNO3  24

    24 U(VI) SE CX 272 Salicylate Toluene 25

    25 Th(IV) SE CX 272 Salicylate Kerosene 26

    26 Cu(II) SE CX 921 HCl Kerosene 27

    27 Be(II) SE CX 921 H2SO4  Kerosene 28

    28 Ln(III), Y(III) SE CX 925 HNO3  n-heptane 29

    29 Eu(III) SE CX 921 HNO3  Toluene 30

    30 Al(III) SE CX 272 H2SO4  Exxsol D-80 31

    31 Zr(IV), Hf(IV) SE CX 921,

    923, 925

    HNO3  Kerosene 32

    32 Pt(IV) SE CX 921,

    925

    HCl Toluene 33

    33 La(III) SE CX 923 HNO3  Heptane 34

    34 U(VI) SE CX 302 HNO3  Kerosene 35

    35 Ln(III), Y(III) SE CX 925 HNO3  n-heptane 36

    36 Ln(III), Sm(III) SE CX

    921,923,925

    HNO3  Kerosene 37

    37 Cu(II) SE CX 272 H2SO4  38

  • 8/20/2019 Cyanex Introduction

    13/20

     Part I Chapter 2: Introduction to Cyanex

    25

    38 Co(II), Ni(II) SE CX 272 H2SO4  DX 3641 39

    39 Zn, Ni SE CX 272,

    D2EHPA

    H2SO4  Kerosene 40

    40 Ni(II) SE CX 272 H2SO4  Kerosene 41

    41 Cd(II) SE D2EHPA H2SO4  Toluene 42

    42 Zr(IV) SE CX 272 HCl Toluene 43

    443 CO(II) SE CX 272 CH3COONa Toluene 44

    44 CU(II), Zn(II) SE CX 272,

    Versatic 10

    acid

    H2SO4  Kerosene 45

    45 Cd, Ni, Co SE Cx 272,

    923, TOPS

    HCl Kerosene 46

    46 Al, Ni SE TOPS 99,

    PC 88 A,

    CX 272

    H2SO4  Kerosene 47

    47 Ga(III), Al(III) SE DBTPA,

    DETPA

    Kerosene 48

    48 Be(II), Al(III) SE CX 921 Cyclohexane 49

    49 Cd, Co, Ni SE CX 923 HCl Kerosene 50

    50 Cd(II) SLM CX 923 HCl Solvesso

    100

    51

    51 Ti(IV) SE CX 923 HCl Xylene 52

    52 Mo(VI), W(VI) SE CX 923 HCl Toluene 53

    53 U(VI) SE CX 923 HNO3  Xylene 54

    54 Rh, Pt, Pd SE CX 921 HCl Toluene 55

    55 Sc(III) SE CX 923, H2SO4 / HCl 56

  • 8/20/2019 Cyanex Introduction

    14/20

     Part I Chapter 2: Introduction to Cyanex

    26

    925

    57 Ln(III) SE CX 272 HClO4  57

    58 Sn(II) SE CX 925 HCl Toluene 58

    59 Zn(II) SE CX 923 NH4Cl Solvesso

    100

    59

    60 U(VI), TH(IV) SE CX 923 HBr Toluene 60

    61 U(VI), Th(IV) SE CX 923 HNO3  Xylene 61

    62 U(VI),Th(IV),Ce(III),

    Ce(IV), Y(III)

    SE CX 923 Mineral

    acids

    Toluene 62

    63 Th(IV) SE PC-88A Chloride Dodecane 63

    64 Th(IV), Pr(III) SE CX 301,

    302

    Nitrate Kerosene 64

    65 Th(IV) SE CX 272 Nitrate Kerosene 65

    66 Ti(IV), V(V), Fe(III) SE CX 923 Kerosene 66

    67 U(VI) SE CX 302 HNO3  Xylene 67

    68 Sc(II), Zr(IV),

    Th(IV), Fe(III),

    Lu(III)

    SE CX 302,

    301

    Acidic n-hexane 68

    69 Mn(II) SE CX 302 Sulphate Kerosene 69

    70 Pb(II) SE CX 302 Phosphoric

    acid

    Toluene 70

    71 Au(III) SE CX 471X HCl 71

    72 U(VI) SE CX 302,

    Alamine

    308, TBP,

    HCl/ HNO3  Toluene 72

    73 Ce(IV), Th(IV) SE CX 923 H2SO4  n-hexane 73

  • 8/20/2019 Cyanex Introduction

    15/20

     Part I Chapter 2: Introduction to Cyanex

    27

    74 Zr(IV) SE CX 923 Mineral

    acids

    Toluene 74

    75 Ce(III), La(III) SE LIX 54 NaCl n-heptane 75

    76 Ti(IV) SE PC-88 A HClO4  Toluene 76

    In the present study we have concentrated on the separation of

    lanthanides and actinides using cyanex compounds. The lanthanides and

    actinides show very close properties. Since, in these elements, the number of

    electrons in the outermost as well as the penultimate shell remains the same

    and is very difficult to separate from one another [77]. In the present work we

    have developed a reliable analytical method for extraction and separation of

    uranium, thorium and cerium. Still there were no reports for extraction and

    separation of uranium and thorium using cyanex 272 from sodium salicylate

    medium in toluene and kerosene respectively. We have also carried out the

    study of extraction and separation of cerium using cyanex 923 from sodium

    acetate medium in kerosene. In the present work we have studied various

    parameters like, concentration of cyanex extractant, concentration of counter

    anion, effect of diluents, tolerance limit, multicomponent mixture separation.

    The developed methods we have applied for the extraction and separation of

    metal ions from real and geological samples.

  • 8/20/2019 Cyanex Introduction

    16/20

     Part I Chapter 2: Introduction to Cyanex

    28

    References

    1.  www.cytec.com

    2.  Mishra B.Y., Rokade M.D., Dhadke P.M.,  Ind. J. Chem., 39A(10),

    1114, (2000).

    3.  Sarkar S.G., Dhadke P.M., Ind. J. Chem. Technol., 7(3),109 (2000).

    4.  Alguacil F.J., Martinez S.,  J. Chem. Technol. Biotechnol., 76(3), 298

    (2001).

    5.  Mimura H., Ohta H., Hoshi H., Akiba K., Onodera Y., Sepn. Sci.

    Technol., 36(1), 31 (2001).

    6.  Sarkar S.G., Dhadke P.M., J. Chin. Chem. Soc., 47(4B), 869(2000).

    7.  Tai C.Y., You G.S.,Chen S.L., J. Supercrit. Fluids., 18(3), 201 (2000).

    8.  Wei Y., Kumagai M., Takashima Y., Modolo G., Odoj R.,  Nucl.

    Technol, 132(3), 413 (2000).

    9.  Regel M., Sastre A.M., Szymanowski J.,  Environ. Sci. Technol, 35(3),

    630, (2001).

    10.  Vajda M., Schlosser S., Kovakova K., Chem. Pap., 54(6B), 423, (2000).

    11.  Gega, J., Walkowiak, W., Gajda, B., Sep. Purif. Technol., 22 and 23(1-

    3), 551 (2001).

    12.  Reyes, L., H., Medina, I. S., Mendoza, R. N., Vazquez, J. R., Rodriguez,

    M. A., Guibal, E., Ind. Eng. Chem. Res., 40(5), 1422 (2001).

    13.  Wang, Xing-Hai, Jiao, Rong-Zhou, Zhu, Yong-Jun,  He Huaxue Yu

    Fangshe Huaxue, 22(2), 94 (Chinese) (2000).

    14.  Khwaja, A.R., Singh, R., Tandon, S.N.,  J. Environ. Eng. (Reston, Va.),

    126(4), 307 (2000).

    15.  Iberhan L., Wisniewski M., Pr. Nauk. Inst. Technol. Nieorg., Nawozow

     Miner. Politech. Wroclaw., 48, 182(Polish) (2000).

    16.  Saily A., Tandon S.N.,  Indian J. Chem., Sect. A: Inorg., Bio-inorg.,

    Phys., Theor. Anal. Chem., 38A (12), 1300 (1999).

    17.  Lu J.M., Gengxiang L.D.,  Hydrometallurgy., Proc. Int. Conf., 3rd ,

    Edited by: Yang, Xianwan; Chen, Qiyuan; He, Aiping. International

    Academic Publishers: Beijing, Peop. Rep. China. (English) 469 (1998).

  • 8/20/2019 Cyanex Introduction

    17/20

     Part I Chapter 2: Introduction to Cyanex

    29

    18.  Saji J., John, K.S., Reddy, M.L.P., Solvent Extr. Ion Exch., 18(5),

    877(English) (2000).

    19.  Li D., Wang C., Hydrometallurgy, 48(3), 301(1998).

    20.  Mhaske A.A., Dhadke P.M., Hydromettalurgy, 61(2), 143 (2001).

    21.  Mhaske A.A., Dhadke P.M., Hydromettalurgy, 63(2), 207 (2002).

    22.  Wu D., Niu C., Li D., Bai Y., J. Alloys Comp., 347(1-2), 442 (2004).

    23.  Jun L., Zhenggui W., Dequin L., Gengxiang M., Zucheng J.,

     Hydromettalurgy, 50(1), 77 (1998).

    24.  Karve M., Belwalkar S., Rajgor R., Indian J. Chem., 45A, 406 (2006).

    25.  Madane N. S., Nikam G. H., Mahanwar K. R., Mohite B. S.,  J.

     Radioanal. Nucl. Chem., 288, 285-290 (2011).

    26.  Madane N. S., Mohite B. S.,  J. Radioanal. Nucl. Chem., 290, 649-654

    (2011).

    27.  Mishra S., Devi N., Hydrometallurgy, 107(1-2), 29-33 (2011).

    28.  Zaki E. E., Ismail Z.H., Daoud J.A., Aly H.F.,  Hydrometallurgy, 80(4),

    221-231 (2005).

    29.  Wei Li, Xianglan Wang Hui, Zhang Shulan, Meng, Deqian Li,  J. Chem.

    Technol. Biotech., 82, 376-381 (2007).

    30.  Awwad N.S., Gad H.M.H., Aly H.F.,  Intern. J. Phyc. Sci., 3(1), 22-27

    (2008).

    31.  Tsakiridis P.E., Leonardou S.A.,  Hydrometallurgy, 80(1-2) 90-97

    (2005).

    32.  Nayl A.A., El-Nadi Y.A., Daoud J.A., Sep. Sci. Technol., 44, 2956-2970

    (2009).

    33.  Mhaske A.A., Dhadke P.M.,  J. Chem. Eng. Japan,  34(8), 1052-1055

    (2001).

    34.  Tong Hul, Li De-qian, Wang Yi-ge, Lel Jai-heng, Wuhan Univ.,  J. Nat.

    Sci., 8(3A), 871-874 (2003),

    35.  Rahman N.A., Daoud J.A., Aly H.F., J. Radioanal. Nucl. Chem., 25(3),

    597-603 (2003).

  • 8/20/2019 Cyanex Introduction

    18/20

     Part I Chapter 2: Introduction to Cyanex

    30

    36.  Wei Li, xianglan Wang, Hui Zhang, Shulan Meng, Deqian li, J. Chem.

    Tech. Biotech., 82, 376-381 (2007).

    37.  El-Nadi Y.A., El-Hefny N.E., Daoud J.A., Sol. Ext. Ion Exch., 25(2),

    225-240(16) (2007).

    38.  Sole K.C., Hiskey J.B., Hydrometallurgy, 37(2), 129-147 (1995).

    39.  Fu Xun, Golding J.A., Sol. Ext. Ion Exch., 5(2), 205-226 (1987).

    40.  Silva J.E., Pavia A.P., Soares D., Labrincha A., Castro F.,  J. Hazard.

     Mater., B120, 113-118 (2005).

    41.  Leszek, Gotfryd, Physicochemical problemes of meneral processing, 39,

    117-128 (2005).

    42.  Asrafi F., Feyzbakhsh A., Entezari Heravi N.,  Intern. J. Chem. Tech.

     Research, 1(3), 420-425 (2009).

    43.  Reddy B.R., Kumar J.R., Reddy A.V., Anal. Sci., 20(3), 501 (2004).

    44.  Nikam G.H., Mohite B. S., Res. J. Chem.sci., 2(1), 75-82 (2012).

    45.  Sinha M.K., Sahu S.K., Meshram P., Pandey B.D., Kumar V., 15th

    Inter. Confer. On “ Non-ferrous metals” held at Hotel Oberoi Grand,

    Kolkata, 8-9th July 2011.

    46.  Neela P.D., eprints.csirexplorations.com/97/1/Abstract.doc , 1-14

    (2007).

    47.  Rao S.V., Yang D.H., Sohan J.S., Kim S. K., The scientific world J .,

    2012, Doi: 10.1100/2012/286494 (2012).

    48.  Imre Toth, Emo Brucher, Talanta, 37(12), 1175-1178, (1990).

    49.  Mishra B.Y., Dhadke P.M., Sep. Sci. Tech., 33(11), 1681-1692 (1998).

    50.  Reddy B.R., Priya D.N., J. Power Sources, 161(2), 1428-1434 (2006).

    51.  Rodriguez A.M., Gomez-Limon D., Alguacil F.J.,

    digital.csic.es/bitstream/10261/36800/1/cdmem3.doc  P.1-10 (2005).

    52.  Saji Jihn k., Saji J., Reddy M.L.P., Ramamohan t.R., Rao T.P.,

     Hydrometallurgy, 1(4), 9-18 (1999).

    53.  Talla R.G., Gaikwad S.U., Pawar S.D.,  Indian J. Chem. Tech., 17, 436-

    440 (2010).

  • 8/20/2019 Cyanex Introduction

    19/20

     Part I Chapter 2: Introduction to Cyanex

    31

    54.  Reddy M.L.P., Vani T.J.S., P.Rama S.Reddy, Reddy Krishna L., Reddy

    A.V.R., Rao Krishna K.S.V.,  Int.J. Res. Chem. Environ., 1(1), 55-59

    (2011).

    55.  Mhaske A.A., Dhadke P.M., Hydrometallurgy, 61(2), 143-150 (2001).

    56.  Deqian Li, Chun Wang, Hydrometallurgy, 48(3), 301-312 (1998).

    57.  Swain B., Otu E.O., Sep. Sci. Purif. Tech., 83, 82-90, (2011).

    58.  Mhaske A., Dhadke P.M., Sol. Ext. Ion Exch., 20(1), 127-137 (2002).

    59.  Franciso Jose Alguacil, Susana Martinez, J. Chem. Eng. Japan, 34(11),

    1439-1442 (2001).

    60.  Ghag, S.M., Pawar S.D., J. Serb. Chem. Soc., 75(11), 1549-1557 (2010).

    61.  Sahu S.K., Reddy M.L.P., Ramamohan T.R., Chakravortty V.,

     Radiochim. Acta, 88, 33-37 (2000).

    62.  Gupta B., Malik P., Deep A.,  J. Radioanal. Nucl. Chem., 251(3), 451-

    456 (2002).

    63.  Singh D.K., Singh H., Gupta C.K., Mathur J.N.,  J. Radioanal. Nucl.

    Chem., 250(1), 123-128 (2001).

    64.  El-Hefny N.E., Daoud J.A.,  J. Radioanal. Nucl. Chem., 26(2), 357-363

    (2004).

    65.  El-Dessouky S.I., El-hefny N.E., Daoud J.A.,  Radiochim. Acta, 92(1),

    25-29 (2004).

    66.  Remya P.N., Reddy M.L.,  J. Chem. Tech. Biotech., 79(7), 734-741

    (2004).

    67.  Karve M., Gaur C., J. Radioanal. Nucl. Chem., 273(2), 405-409 (2007).

    68.  Wang C., Li D., Sol. Ext. Ion Exch., 13(3), 503-523 (1995).

    69.  Devi N.B., Mishra S., Hydrometallurgy, 103, 118-123 (2010).

    70.  Menoyo B., Elizalde M.P., Almela A., Sol. Ext. Ion Exch., 19(4), 677-

    698 (2001).

    71.  Martinez S., Navarro P., Sastre A.M., Alguacil F.J.,  Hydrometallurgy,

    43(1-3), 1-12 (1996).

    72.  Senol A., J. Radioanal. Nucl. Chem., 258(2), 361-372 (2003).

  • 8/20/2019 Cyanex Introduction

    20/20

     Part I Chapter 2: Introduction to Cyanex

    73.  Lu Jun, Wei zhenggui, Li Deqian, Ma Gengxiang, Jiang Zucheng,

     Hydrometallurgy, 50(1), 77-87 (1998).

    74.  Gupta B., Malik P., Mudhar N., Sol. Ext. Ion Exch., 23(3), 345-357

    (2005).

    75.  Urbanski T.S., Fomari P., Abbruzzese C.,  Hydrometallurgy, 40(1-2),

    169-179 (1996).

    76.  Singh R.K., Dhadke P.M., J. Serb. Chem. Soc., 67(7), 507-521 (2002).

    77.  Puri B.R., Sharma L.R., Kalia K.C., “Principles of Inorganic

    Chemistry”, 13th

     ed., 705-719 (2006).