curved water jet guided laser micro-...

41
SmartManufacturingSeries.com Curved Water Jet Guided Laser Micro- Manufacturing Yi Shi, Jian Cao, Kornel Ehmann

Upload: others

Post on 24-Dec-2019

28 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

SmartManufacturingSeries.com

Curved Water Jet Guided Laser Micro-ManufacturingYi Shi, Jian Cao, Kornel Ehmann

Page 2: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Contents

• Motivation• Dielectrophoresis• Experimental Setup• Experiments and Results• Applications • Conclusions

Page 3: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Motivation Water Jet Technology

[1] Kong, M. C., and D. A. Axinte. "Capability of advanced abrasive waterjetmachining and its applications." Applied Mechanics and Materials. Vol. 110.Trans Tech Publications, 2012.[2] Kulekci, Mustafa Kemal. "Processes and apparatus developments inindustrial waterjet applications." International Journal of Machine Tools andManufacture 42.12 (2002): 1297-1306.[3] Tönshoff, H. K., F. Kroos, and C. Marzenell. "High-pressure waterpeening-a new mechanical surface-strengthening process." CIRP Annals-Manufacturing Technology 46.1 (1997): 113-116.[4] Guha, Anirban, Ronald M. Barron, and Ram Balachandar. "Anexperimental and numerical study of water jet cleaning process." Journal ofMaterials Processing Technology 211.4 (2011): 610-618.

Abrasive water jet (AWJ) cutting [1]

Water jet cutting [2]

Water jet peening [3] Water jet cleaning [4]

Water jet without abrasive particlesWater jet with abrasive particles

Page 4: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Motivation Water Jet Cutting

Advantages• Uniform energy transfer• No heat effects• Environmentally clean• No material restrictions

Limitations• Accuracy (limited by orifice and particle size) >

100 µm • Instability of jet in micro domain• Short workable distance

Abrasive water jet cutting [1]

Water jet cutting[1] Kong, M. C., and D. A. Axinte. "Capability of advanced abrasive waterjet machining and its applications." Applied Mechanics and Materials. Vol. 110. Trans Tech Publications, 2012.

Page 5: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

MotivationLaser Technology

[1] http://www.ionix.fi/en/technologies/

Laser Cutting [1]

Laser Cladding

Laser Drilling

Laser Welding Laser Marking

Laser Cleaning

Page 6: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

MotivationWater Jet Guided Laser Processing

[1] Richerzhagen, Bernold, et al. "Water jet guided laser cutting: a powerful hybrid technology for fine cutting and grooving." Advanced Laser ApplicationsConference and Exposition. 2004.[2] Sokołowski, Z., and I. Malinowski. "Perspectives of applications of micro-machining utilizing water jet guided laser." Recent Advances in Mechatronics.Springer Berlin Heidelberg, 2007. 365-369.

Water Jet Guided Laser Process [1]

Principle

Laser beam is focused at the nozzle exit into the water jet mediumand transmitted by total internal reflection to the point of impingementof the jet [1].

Advantages [2]

• Minimum thermal damage• High quality cuts• Not restricted by focal length of the optics• No burrs, charring, or contaminations• Small cutting radius (25-100 )• No recrystallization, oxidation or micro cracks

Page 7: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Motivation Water Jet Guided Laser Processing Applications

[1] Gobet, Mathilde, et al. "Implementation of short pulse lasers for wafer scribing and grooving applications." Journal of Laser Micro/nanoengineering 5 (2010): 16‐20.[2] Perrottet, Delphine, et al. "GaAs‐wafer dicing using the water jet guided laser." CS Mantech 2005 (2005).[3] Perrottet, Delphine, Simone Amorosi, and Bernold Richerzhagen. "New process for screen cutting: water‐jet guided laser." Workshop on Building European OLED Infrastructure. International Society for Optics and Photonics, 2005.

Deep Groove on Wafer [1] GaAs-Wafer Dicing [3] Screen Cutting [3]

100 μm

Page 8: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Conception of a New Process Water Jet Guided Laser Processing Applications

100 μm

Deflection of free falling stream of water under the influence ofcharged rod.

To achieve a paradigm shift in the process capabilities ofwaterjet-guided laser micro-manufacturing through aninnovative method of waterjet spatial control and todemonstrate the utility of the developed methodology in arange of newly developed micro-incremental formingprocesses.

Page 9: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Curved Water Jet Guided Laser ProcessProposed Hybrid Process

Manipulation of Water Jet Trajectory

Laser Beam

Water Jet Guided Laser

Laser Assisted Water jet Micro-Incremental Forming

Water Jet Guided Laser Micro-Machining

Water Jet Guided Laser Surface Texturing

Adaptive Hybrid Process Enhancement

Water Jet

Page 10: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

DielectrophoresisWater Jet Manipulation

[1] Van den Driesche, Sander, et al. "Continuous cell from cell separation by traveling wave dielectrophoresis." Sensors and Actuators B: Chemical 170 (2012): 207‐214.[2] Chiarot, Paul R., and T. B. Jones. "Dielectrophoretic deflection of ink jets." Journal of Micromechanics and Microengineering 19.12 (2009): 125018.[3] Hokmabad, B. Vajdi, et al. "Electric field‐assisted manipulation of liquid jet and emanated droplets." International Journal of Multiphase Flow 65 (2014): 127‐137.

Bioparticles (Cell) [1] Water droplets [2] Water stream [3]

Page 11: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Dielectrophoresis (DEP): A force of translation acting on a induceddipole subjected to a non-uniform electric field [1]

·1 2⁄

where is the dipole moment vector. is the dipole moment per unitvolume in unit field

DEP force on a spherical particle:

22

where is the permittivity of body, is the permittivity of surroundingfluid, and R is the radius of the particle.

• DEP force direction will be the same if the polarity of the electrodeis switched

DielectrophoresisDielectrophoresis Theory

[1] Pohl, H. A., 1978, Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields. , Cambridge University Press. Cambridge.

Page 12: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Governing equations for water jet’s motion in x direction:(Inside electric field region)

0 (Outside electric field region)For z direction, water jet speed considered to be constant[1]:

2

where K is discharge coefficient.The deflection can be expressed as:

1

→If is expressed as · , , , is solved from Laplace's equation,the deflection can be finally expresses as a function of and :

4,

,

DielectrophoresisWater Jet Deflection

[1] Couty, P., et al. "Laser‐induced break‐up of water jet waveguide." Experiments  in fluids 36.6 (2004): 919‐927.

d

Vj

FDEP

D

lL

xz

Electric Field

No Electric Field

Electrode

Voltage U

HFG FG

O

Page 13: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

H = 26

d

W ater Jet

O bjective

Electrode

N ozzle w ithO rifice Inside

Air Sw itch

W ater InletH igh SpeedCam era

Cutting Assem bly

N ozzle

Max. 448 MPa

10 μm/div

60 μm

Experimental SetupDielectrophoresis

Amplifier

NI DAQ

High-Pressure Water

Air Switch

Cutting Assembly

Water Inlet

High Speed Camera

Manual Stage

Page 14: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Design of Experiments (DoE)DielectrophoresisObjective:Study the relationships between water jet deflection and threeprocess parameters

Experimental Parameters:• Voltage (U)• Water pressure (P)• Distance between water jet and electrode (d)

Experimental Parameters

VoltageU (V)

Pressure P (MPa)

Distance d (μm)

Values

8001,0001,2001,400

17.2425.8634.4743.09

100200300400 25 μm

Water Jet Profile

Page 15: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

800 1000 1200 14000

10

20

30

40Distance d = 100 m

Voltage (V)

Def

lect

ion

( m

)

17.24 MPa25.86 MPa34.47 MPa43.09 MPa

800 1000 1200 14000

6

12

18

24Distance d = 200 m

Voltage (V)

Def

lect

ion

( m

)

17.24 MPa25.86 MPa34.47 MPa43.09 MPa

800 1000 1200 14000

3.5

7

10.5

14Distance d = 300 m

Voltage (V)

Def

lect

ion

( m

)

17.24 MPa25.86 MPa34.47 MPa43.09 MPa

800 1000 1200 14000

2.5

5

7.5

10Distance d = 400 m

Voltage (V)

Def

lect

ion

( m

)

17.24 MPa25.86 MPa34.47 MPa43.09 MPa

Experimental ResultsDeflection D vs. Voltage U; D ∝ U2

Page 16: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

10 20 30 40 500

3.5

7

10.5

14Voltage U = 800 V

Pressure (MPa)

Def

lect

ion

(m

)

100 m200 m300 m400 m

10 20 30 40 500

5

10

15

20Voltage U = 1000 V

Pressure (MPa)

Def

lect

ion

( m

)

100 m200 m300 m400 m

10 20 30 40 500

7

14

21

28Voltage U = 1200 V

Pressure (MPa)

Def

lect

ion(m

)

100 m200 m300 m400 m

10 20 30 40 500

10

20

30

40Voltage U = 1400 V

Pressure (MPa)

Def

lect

ion

( m

)

100 m200 m300 m400 m

Experimental ResultsDeflection D vs. Voltage P; D ∝ 1/P

Page 17: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

0 100 200 300 400 5000

3.5

7

10.5

14Voltage U = 800 V

Distance (m)

Def

lect

ion

( m

)

17.24 MPa25.86 MPa34.47 MPa43.09 MPa

0 100 200 300 400 5000

5

10

15

20Voltage U = 1000 V

Distance (m)

Def

lect

ion

(m

)

17.24 MPa25.86 MPa34.47 MPa43.09 MPa

0 100 200 300 400 5000

7

14

21

28Voltage U = 1200 V

Distance (m)

Def

lect

ion

(m

)

17.24 MPa25.86 MPa34.47 MPa43.09 MPa

0 100 200 300 400 5000

10

20

30

40Voltage U = 1400 V

Distance (m)

Def

lect

ion

(m

)

17.24 MPa25.86 MPa34.47 MPa43.09 MPa

Experimental ResultsDeflection D vs. Voltage d; D ∝ 1/d

Page 18: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

0 1 2 3 4x 10-4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1U2/RPd

D/

e

Linear Regression

Experimental ResultsEmpirical Equation for Deflection

Base on the observations from theexperiments, D can be expressed as:

Φ

• , R and Φ , are permittivity of air,radius of the water jet and diameteror the electrode, respectively.

• R2 = 0.9968 with C = 90.

Page 19: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

DynamicsDesign of Experiments• Typical signals at different frequencies are used to obtain the water jet motion.• High-speed camera frame rate is set to 20,000 fps.

Waveforms Sinusoid Square Triangle Sawtooth

Frequencies 10, 100, and 500 Hz

Amplitude 1000 V

Distance (d) 300 μm

Pressure (P) 17.24 MPa

Page 20: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

DynamicsExperiments

Waveform: TriangleFrequency: 500 HzFrame Rate: 20,000 fpsPlay Rate: 30 fpsResolution: 520x248 PixelsScale: 0.5 μm/pixel

Page 21: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

• Considering the static relationship for voltage:

4,

,

• By fixing all other parameters, the equation will collapse to

where is fixed for all different scenarios because the waveform types and frequency will not change the value ofthis constant.• Normalized RMSE is calculated by the following equation to quantify the prediction capability of the model

above.

RMSE

Where n is the number of validation sites; and denote the predicted value from model and the realmeasured deflection at each validation site; is the full deflection when voltage is at maximal.

DynamicsModeling

Page 22: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Dynamics10 Hz Input Signals

Square Sinusoid

0.0268 0.0460

Page 23: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

SawtoothTriangle

0.0318 0.0149

Dynamics10 Hz Input Signals

Page 24: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Square Sinusoid

0.0598 0.0597

Dynamics100 Hz Input Signals

Page 25: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

SawtoothTriangle

0.0488 0.0674

Dynamics100 Hz Input Signals

Page 26: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

SquareSinusoid

0.0486 0.2412

Dynamics500 Hz Input Signals

Page 27: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

SawtoothTriangle

0.0499 0.0592

Dynamics500 Hz Input Signals

Page 28: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

• The behavior of the water jet motion is very similar to typical first order system.• Time constant can be obtained by definition to characterize the first order system.• Pressure was found to have impact on the time constant.

DynamicsDelay

• Data was fitted by a simple model:1

is obtained to be 0.2126 with R-squarevalue to be 0.9889.

1

Page 29: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

= 34.47 MPa= 17.24 MPa

0.0776 0.0321

Experimental Results500 Hz with First Order System Model

Page 30: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

= 103.42 MPa= 68.95 MPa

0.0300 0.0568

Experimental Results500 Hz with First Order System Model

Page 31: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

= 137.90 MPa

Experiment Results500 Hz with First Order System Model

0.0776

• The first order system model is much better thanthe static model with high frequency signal inputswith a sudden voltage change.

Page 32: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Experimental SetupCurved Water Jet Guided Micro-Manufacturing

Pump

Steel Table

Piezo Stage

Air Bearing Stage

Focus Lens

XY Manual StageZ Manual Stage

Water Inlet

Laser

Beam Splitter

Base FrameHigh Pressure Water

CCDCamera

High Pressure Water Jet

Page 33: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Experimental SetupCurved Water Jet Guided Micro-Manufacturing

Collimator

Focus Lens

Polarized Beam Splitter

CCD Camera

Lens

Beam Splitter Water in

Laser in

Water JetCoupled with Laser

Page 34: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Experimental SetupCurved Water Jet Guided Micro-Manufacturing

Page 35: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Experimental SetupCurved Water Jet Guided Micro-Manufacturing

Page 36: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

ApplicationsMicro Incremental Sheet Metal Forming (ISMF)Two Point Incremental Forming (TPIF) 

Single Point Incremental Forming (SPIF) 

Conventional Forming SPIF

Page 37: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

ApplicationsMicro Incremental Sheet Metal Forming (ISMF)

Toolpath

The sum of the local deformations adds up to result in a final formed part

Page 38: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

ApplicationsMicro Incremental Sheet Metal Forming (ISMF)

Conventional Micro Double Sided Incremental Forming Process

Page 39: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Water Jet Incremental Sheet Metal FormingApplications

Laser

Part for battery manufacturing

Page 40: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

SmartManufacturingSeries.com

Thank You!

Page 41: Curved Water Jet Guided Laser Micro- Manufacturingadditivemanufacturingseries.com/wp-content/uploads/2017/10/Shi-Yi.pdf · Water Jet Technology [1] Kong, M. C., and D. A. Axinte

Future WorkMultiphysics (COMSOL) Simulation

Electrostatic

• Laminar Two-Phase Problem

• COMSOL Laminar + Level SetModules

• Time-Dependent (0-2 ms)

• Needle Gauge 30, 0.006’’ InnerDiameter

Two-Phase Flow CFD

Water

Velocity Inlet10 m/s