curso de nivelaciÓn de matemÁtica

52
FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNCa INGRESO MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ 1 UNIVERSIDAD NACIONAL DE CATAMARCA FACULTAD DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO: MATEMÁTICA Y ESTADÍSTICA CURSO DE NIVELACIÓN DE MATEMÁTICA CARRERAS: INFORMÁTICA INGRESANTES 2016 DOCENTE RESPONSABLE: GALINDEZ, MARCELA EQUIPO DOCENTE: BIZZOTTO, ANDRÉS CICLO ACADÉMICO: 2016

Upload: buidat

Post on 08-Feb-2017

238 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

1

UNIVERSIDAD NACIONAL DE CATAMARCA FACULTAD DE CIENCIAS EXACTAS Y

NATURALES

DEPARTAMENTO: MATEMÁTICA Y ESTADÍSTICA

CURSO DE NIVELACIÓN DE MATEMÁTICA

CARRERAS: INFORMÁTICA

INGRESANTES 2016 DOCENTE RESPONSABLE: GALINDEZ, MARCELA

EQUIPO DOCENTE: BIZZOTTO, ANDRÉS

CICLO ACADÉMICO: 2016

Page 2: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

2

¡Bienvenido a la Facultad de Ciencias Exactas y Naturales!

Desde nuestro lugar, queremos ayudarte en tu inserción a nuestras aulas. Para ello

confeccionamos este documento que pretende brindarte algunos elementos, estrategias y

actividades, que puedan orientar tu estudio personal y te sirvan para reflexionar y actuar

durante la organización de tus actividades como estudiante UNIVERSITARIO.

¿Qué supone estudiar matemática?

En general, los alumnos que ingresan a la Universidad estudian de manera independiente en

muy escasos momentos, en general antes de una evaluación. Sus actividades se restringen al

trabajo que se realiza en clase produciendo una fuerte dependencia hacia el profesor, no están

acostumbrados a utilizar libros de matemática y las carpetas suelen estar llenas de respuestas a

ejercicios que ni siquiera están enunciados.

Pero, Estudiar, queridos estudiantes, significa mucho más que resolver ejercicios de la carpeta

o similares, aunque esta actividad está incluida en el estudio. Estudiar un concepto involucra,

entre otras cosas, relacionarlo con otros conceptos, identificar qué tipos de problemas se

pueden resolver y cuáles no con esta herramienta, saber cuáles son los errores más comunes

que se han cometido en la clase como parte de la producción y por qué.

Cada disciplina tiene una especificidad en su quehacer, tiene formas particulares de

producir, de comunicar y validar conocimientos, y en matemática esto se hace mucho más

evidente. Estas formas específicas que irás conociendo, siempre deben estar incluidas en

el momento del estudio; es decir, no puedes estudiar desconociendo, por ejemplo, las

maneras de establecer la verdad en matemática. Estas formas específicas de producir

conocimiento, de validarlo y de comunicarlo deben estar incluidas en el estudio y ello

supone la utilización de estrategias de aprendizaje que te permitan buscar soluciones, no

simplemente memorizar procedimientos; explorar patrones, no simplemente memorizar

fórmulas; formular conjeturas, no simplemente resolver ejercicios.

Recuerda: Estudiar matemática supone, además de resolver ejercicios, resolver problemas,

construir estrategias de validación, comunicar y confrontar con otros el trabajo producido y

reflexionar sobre el propio aprendizaje.

Bienvenidos!

Page 3: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

3

FUNDAMENTOS: Los alumnos que ingresan a la universidad deberían poseer ciertas competencias, indispensables

para asegurar su permanencia en ella y la consecución de sus aprendizajes. Sin embargo los

comienzos en la Universidad no son fáciles y los estudiantes necesitan un periodo de adaptación

hasta que consiguen integrarse plenamente. Si a esta situación además le añadimos que, en

particular, el aprendizaje de la matemática depende, en gran medida, de lo que anteriormente

haya aprendido, nos damos cuenta de que es necesario homogeneizar los diferentes

conocimientos matemáticos que poseen los alumnos antes de que empiece el curso oficial. En

esto consiste la finalidad de este curso de Ingreso de Matemática, puesto que está centrado en

aportar a los alumnos ingresantes a primer año de la tecnicatura en Informática algunos

complementos en formación matemática, mayor agilidad, destreza y entrenamiento en la

resolución de problemas. Se pretende además que los alumnos adquieran un hábito de estudio

adecuado a esta disciplina. El enfoque será teórico - práctico, centrado en la resolución de

problemas, en la justificación, verificación, generalización y en la participación activa del

alumno.

OBJETIVOS:

Adquirir hábitos de estudio propios del aprendizaje de la Matemática en el nivel universitario.

Adquirir agilidad en el manejo de las operaciones básicas y sus propiedades.

Traducir problemas básicos a lenguaje algebraico y resolverlos.

Utilizar los diferentes registros de representación. METODOLOGÍA:

La resolución de problemas es el aspecto central de la propuesta porque es el adecuado para

permitir que el alumno desarrolle actividad matemática de variado tipo y por aportar un cambio

actitudinal. También se insistirá en la explicación y en la práctica de producir argumentos para

validar un enunciado o una respuesta, para lo cual se requerirá la interacción entre pares, las

puestas en común y la precisión en el lenguaje, natural y simbólico.

CONTENIDOS MÍNIMOS: Operaciones básicas. Propiedades de las operaciones. Expresiones algebráicas. Ecuaciones e

inecuaciones. Funciones elementales: Recta, parábola, función módulo.

EVALUACIÓN:

Se tomara una evaluación de los contenidos propuestos, con el fin de analizar los resultados del

curso, y en total de acuerdo con la Resolución prevista para el Ingreso

CRONOGRAMA

Semana 1: Propiedades de las operaciones básicas.

Semana 2: Expresiones algebraicas. Ecuaciones, problemas de aplicación.

Semana 3: función lineal, cuadrática, módulo.

Semana 4: trigonometría, resolución de triángulos

Page 4: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

4

CONJUNTOS NUMÉRICOS: PROPIEDADES DELAS OPERACIONES

Conjuntos Numéricos.

Números Naturales: ℕ = {1, 2, 3, 4, … }

Números Enteros: ℤ = {…− 3,−2,−1, 0, 1, 2, 3, 4, … }

Números Racionales: ℚ = {𝑝

𝑞, 𝑝, 𝑞 𝜖 ℤ ⋀ 𝑞 ≠ 0} (es el conjunto de todos los números que se

pueden escribir como expresiones decimales finitas o infinitas periódicas).

Números Irracionales: , , 0,10100100 , 2,I e (es el conjunto de todos los

ϵnúmeros que no se pueden escribir como expresiones decimales infinitas no periódicas).

Relación de orden en ℝ: El conjunto de los números reales es un conjunto ordenado, ya que,

dados dos números reales distintos siempre se puede establecer cuál es el mayor. A la relación

de orden definida en ℝ se la indica con “<” (a < b se lee: “a es menor que b”, o también “b es

mayor que a”).

En el conjunto de los números reales vale la ley de tricotomia: dados dos números reales a y b

vale una y solo una de las siguientes expresiones: a b ó a b ó a b .

Los números y la recta numérica

1- a. En la siguiente recta numérica están ubicados los números 0; 1 y a:

¿Donde ubicamos los números 1; y 1a a a ?

0 1 a

Un poco de historia

La noción de número es tan antigua como el hombre mismo. Las tribus más

primitivas, tanto en el pasado como en la actualidad, disponen de símbolos para

distinguir entre uno, dos, tres,…

Es difícil analizar los caminos mentales que el hombre hubo de recorrer hasta

llegar a algún sistema de enumeración que le permitiera manejar, con el

pensamiento, la pluralidad. De hecho, sólo en unas pocas civilizaciones avanzadas

se llegó a la creación de sistemas de numeración verdaderamente manejable y

eficiente. Este hallazgo está profundamente unido al progreso matemático y

Page 5: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

5

b. En la siguiente recta están ubicados los números 0 y a.

¿Donde se ubica el número –a.?

Soluciones: Para encontrar la solución de estos y otros problemas se usan los distintos

números: enteros, racionales, irracionales.

En el primer problema hay que ubicar los números 1; y 1a a a en la siguiente recta,

conociendo la ubicación de 0,1 y :a

Como se conoce el lugar donde está el numero y del 0a , es posible determinar dónde está el

número a , pues la distancia entre 0 y a debe ser la misma que la distancia entre y 0.a

El número 1a está ubicado a una unidad hacia la derecha del número a . Medir la distancia

de una unidad es medir la distancia que hay entre 0 y 1 ó entre dos números enteros

consecutivos cualesquiera. Para ubicar el numero 1a hay que tomar la medida que hay entre

0 y 1, y marcar un segmento con esa medida comenzando en a hacia la derecha. De igual

forma se puede ubicar el numero 1a , a una unidad hacia la derecha de .a

En el ítem b del primer problema, hay que ubicar en la recta numérica el número .a

Analizando la gráfica podemos preguntarnos:

¿Por qué el número a está ubicado a la izquierda del cero? ¿Por qué no tiene el signo menos? A

esto podemos responder diciendo que a es una letra que representa a cualquier número y

puede estar ubicado en cualquier lugar. Como a está ubicado a la izquierda del cero es un

número negativo. Saber esto hace que no sea necesario ponerle el signo menos adelante. De

esta manera, el número a es el opuesto de a y se ubica a la misma distancia del 0 a la que se

encuentra a , pero en el sentido contrario.

0 1 a

0 a

0 1 a -a

0 1 a -a -a+1 a+1 0 a

Page 6: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

6

O sea, como el número a se encuentra a la izquierda del 0, es negativo, por lo que su opuesto,

a , es positivo. Para ver este concepto más claramente analizamos estos ejemplos:

Si 5, 5; si 6, 6a a a a

Los números racionales y la recta numérica

En la siguiente recta numérica se encuentran representados los números 0, a y b.

¿Dónde se ubican los números: ; ;2 2 2

a a b ab

?

Solución: Para ubicar el punto 2

a es necesario conocer el punto medio entre 0 y a, ya que

2

aes

la mitad de a. Para marcar el punto 2

a b, se puede ubicar primero a b , y luego dividir esa

distancia, entre 0 y a b , en 2 partes iguales. También podemos considerar que la expresión

2

a brepresenta el promedio entre a y b, o sea el punto medio. La expresión

2

ab , está

representada por el punto que esta ubicado a la derecha de b, a un a distancia de 2

a; o bien a

la derecha de 2

auna distancia de b.

A tener en cuenta:

Lo números a y –a se denominan inversos aditivos u opuestos y verifican que:

0a a .

Los números naturales, ℕ, sus opuestos y el cero forman el conjunto de los números

enteros ℤ

0 a b

0 a b

0 a -a

Page 7: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

7

Los racionales, ℚ, son números x que se pueden expresarse como fracción p

q,

en la cual p es un número entero que se denomina numerador q es entero distinto

de cero que se denomina denominador.

Los números racionales pueden representarse como fracciones comunes o como

decimal.

Fracciones comunes:

Propias: son aquellas cuyo denominador es mayor que el numerador.

Impropias: son aquellas cuyo denominador es menor que el numerador

Números Mixtos: son expresiones que poseen una parte entera y otra fraccionaria.

Fracciones equivalentes

Dos fracciones son equivalentes si: a c

a d b cb d

La unión de los racionales (ℚ) y los Irracionales (𝕀) da como resultado el conjunto de los Números Reales ℝ

Operaciones Fundamentales en ℝ:

El manejo fluido de las operaciones en los distintos conjuntos numéricos y sus propiedades es

fundamental para el estudio de prácticamente todas las ramas de la matemática. Es por esto

que consideramos conveniente repasar estos conceptos.

Para todo número real las cuatro operaciones fundamentales son:

Adición o Suma: a b

Multiplicación: .a b

Sustracción o Resta: a b

División: : , con 0a

a b bb

Page 8: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

8

Propiedades

a) La suma y el producto cumplen la propiedad conmutativa:

∀𝑎, 𝑏 ϵ ℝ: a+b = b+a

∀𝑎, 𝑏 ϵ ℝ: a.b = b.a

b) La suma y el producto cumplen la propiedad asociativas:

∀𝑎, 𝑏 ϵ ℝ: (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) ∀𝑎, 𝑏 ϵ ℝ: (𝑎. 𝑏). 𝑐 = 𝑎. (𝑏. 𝑐)

c) La multiplicación es distributiva respecto de la suma:

∀𝑎, 𝑏 ϵ ℝ: (𝑎 + 𝑏). 𝑐 = 𝑎. 𝑐 + 𝑏. 𝑐 ∀𝑎, 𝑏 ϵ ℝ: 𝑎. (𝑏 + 𝑐) = 𝑎. 𝑏 + 𝑎. 𝑐

d) Existen elementos llamados neutros para la suma y el producto: ∃ 0 ϵ ℝ / ∀𝑎, 𝑏 ϵ ℝ: a+0 =0+a = a El 0 es el neutro para la suma

∃ 1 ϵ ℝ / ∀𝑎, 𝑏 ϵ ℝ: a .1 =1. a = a El 1 es el neutro para la multiplicación

e) Existencia del inverso aditivo (opuesto): ∀ 𝑎 ϵ ℝ, ∃(−𝑎)/ 𝑎 + (−𝑎) = (−𝑎) + 𝑎 = 0

(-a) es el opuesto de a y es único

f) Existencia del inverso multiplicativo (recíproco): ∀ 𝑎 ϵ ℝ,⋀𝑎 ≠ 0, ∃𝑎−1ϵ ℝ 𝑎. 𝑎−1 = 𝑎−1. 𝑎 = 1

se llama inverso o reciproco de a

g) propiedad uniforme:

∀𝑎, 𝑏, 𝑐 ϵ ℝ {𝑠𝑖 𝑎 = 𝑏 ⟹ 𝑎 + 𝑐 = 𝑏 + 𝑐𝑆𝑖 𝑎 = 𝑏 ⟹ 𝑎 . 𝑐 = 𝑏 . 𝑐

de la segunda se desprende que

Page 9: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

9

A tener en cuenta

La propiedad uniforme es muy importante para la resolución de ecuaciones

Por ejemplo:

2 10Si 2 10 o bien Si 4 5 4 ( 4) 5 ( 4)

2 2

5 1

xx x x

x x

Si cancelamos utilizando sumas y restas, el resultado es 0, el elemento neutro de la suma:

Ejemplo: 2x 3 2x 3; 3y y y x y 3 2y 3x

Si simplificamos utilizando productos y cocientes, el resultado el 1; el elemento neutro del producto. Por ejemplo:

4 . 𝑥

𝑥= 4.1 = 4 con x≠0 o

2( 1)x

2( 1)x 1

Si aplicamos la propiedad distributiva del producto respecto a la suma a la siguiente

expresión: 1 1 1. .a b c a b a c que es lo mismo que escribir: b c b c

a a a

. Por

lo que vale la propiedad de la división respecto a la suma a derecha.

Esta propiedad que acabamos de ver no vale en el siguiente caso:

a a a

b c b c

Es decir, no vale la propiedad distributiva de la división respecto a la

suma a izquierda

Potenciación de Números Reales

Potencia: Se define como potencia enésima de un número a, na , al producto de n factores

iguales a a. El número a ϵ ℝ es la base de la potencia, el número n ϵ ℕ es el exponente.

veces

...n

n

a a a a a

También se define

∀𝑎𝜖ℝ⋀𝑎 ≠ 0: 𝒂𝟎 = 𝟏 ⋀ 𝒂𝟏 = 𝒂 ⋀ 𝒂−𝒏 =𝟏

𝒂𝒏

Ejemplo:

Page 10: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

10

3 32

2 3

2

1

1

1

x a ax aby b y x y

b

Podemos observar que el signo menos del exponente produce en la expresión un cambio de

numerador por denominador, quedando luego del cambio con el exponente positivo.

Propiedades de la Potenciación:

A tener en cuenta

La potenciación no es distributiva respecto de la suma y de la resta.

Observa atentamente:

2 2 2

2

4 3 4 3

7 16 9

49 25

3 3 3

3

5 3 5 3

2 125 27

8 98

Sean a y b números reales no nulos; m y n números enteros.

1. Producto y Cociente de Potencias de Igual Base:

2. Potencia de Otra Potencia:

3. Distributiva de la Potencia respecto del Producto y del Cociente:

4. Potencia de exponente fraccionario:

𝑎𝑚𝑛 = 𝑎𝑚

𝑛

5. 𝑎0 = 1

Page 11: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

11

Radicación – Raíz n-ésima:

Dado un número n natural y un número a real, se define la raíz n-ésima de a, y se escribe

n a , al único número real b, tal que nb a .

∀ 𝑎 𝜖 ℝ, 𝑛 𝜖 ℕ, 𝑛 > 1:

𝑝𝑎𝑟𝑎 𝑛 𝑖𝑚𝑝𝑎𝑟: 𝑎𝑛

= 𝑏 ⇔ 𝑏𝑛 = 𝑎

𝑝𝑎𝑟𝑎 𝑛 𝑝𝑎𝑟: 𝑎𝑛

= 𝑏 ⇔ 𝑏𝑛 = 𝑎 𝑐𝑜𝑛 𝑎 ≥ 0

Ejemplos:

𝑎) 1253

= 5 𝑝𝑜𝑟𝑞𝑢𝑒 53 = 125

𝑏) −325

= −2 𝑝𝑜𝑟𝑞𝑢𝑒 (−2)5 = −32

𝑐) 814

= 3 𝑝𝑜𝑟𝑞𝑢𝑒 34 = 81

𝑑) −164

∉ ℝ porque no existe ningún número real que elevado a la cuarta potencia de por

resultado -16.

Esto ocurre con todos los cálculos de raíces de índice par de números negativos, es por eso que

estos casos no son considerados en la definición de radicación en ℝ

Propiedades de la Radicación:

A tener en cuenta

Ahora vamos a ver algunas reglas importantes para la operatoria con raíces:

Sean a un número real no nulo; m y n números naturales.

1. Simplificación: Se puede simplificar cuando la base de la potencia es no negativa,

por lo tanto: Si

2. Propiedad Distributiva:

La radicación es distributiva respecto de la multiplicación y división, siempre que existen las raíces de los factores que intervienen

𝑎. 𝑏 𝑛

= 𝑎𝑛. 𝑏𝑛

𝑎

𝑏

𝑛=

𝑎𝑛

𝑏𝑛 con b≠0

La radicación no es distributiva respecto de la adición y sustracción 3. Raíz de otra Raíz

𝑎 𝑚𝑛

= 𝑎𝑛.𝑚

4. Potencia de una Raíz

𝑎𝑛 𝑝= 𝑎𝑝

𝑛= 𝑎

𝑝𝑛

Page 12: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

12

Para simplificar exponentes e índices, se debe tener en cuenta que las

operaciones estén bien definidas. Por ejemplo:

a. 4

4 3 , no se puede simplificar, ya que 4 44 3 81 3 , si hubiéramos

simplificado el resultado que se obtiene es 44 3 3 y sabemos por la definición

dada que si el índice de la raíz es par, la raíz es positiva

b. 6

12 3 , no se puede simplificar, si lo hacemos quedaría 3 , que no está definida.

Se puede simplificar cuando la base de la potencia es no negativa, por lo tanto: Si

0, entonces n na a a

TRABAJO PRÁCTICO 1

1) Señala, entre los números siguientes, cuáles son naturales, cuáles enteros, cuáles racionales y cuáles irracionales:

2 1

; 5; 0,7; ; 3; 2; 3, 4; ; 3; 2 ; 0;3 7 2

e

2) Dados los siguientes números: 20

29;

12

17;

13

12;

12

11

a) ¿Son mayores o menores que 1? b) Ordénalos de menor a mayor

3) Indica en la recta numérica los opuestos a los números ubicados en ella

-b a 0 c

a) ¿Es a un número positivo? ¿Por qué?

b) ¿Es b un número positivo? ¿Por qué?

c) Da un ejemplo numérico de los valores que pueden adoptar a y b

d) ¿Dónde ubicarías el número a+1? ¿Qué consideras para ello?

4) Resuelve las siguientes operaciones y justifica escribiendo la/s propiedad/es

aplicada/s

Page 13: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

13

5) Responde a las siguientes preguntas, justificando las respuestas.

a) ¿Es conveniente simplificar el 2 del numerador con el 2 del denominador en el

ejercicio ll? Porqué? ¿Y el 7 del numerador con el 7 del denominador en el

ejercicio n?

b) ¿Es posible distribuir el exponente ½ respecto al producto del ejercicio s?, ¿y el

3? ¿y el exponente – ½ respecto a la suma del ejercicio t?, ¿y el 3?Justifica cada

respuesta

c) ¿Será posible resolver el ejercicio s de una manera diferente a como la hicieron? d) Observen los resultados desde el ejercicio ll hasta el q ¿Qué pueden concluir acerca de

las simplificaciones? e) Observen los resultados desde el ejercicio v hasta el x ¿Qué pueden concluir?

6) Clasifique cada igualdad como verdadera o falsa. Si no es correcta, modifique el

miembro derecho para obtener una igualdad verdadera.

a) 34 ∙ 32 = 38

b) 104

54= 24

c) 34 + 34 = 38

d) 1

2−3= −23

e) (22)3 = 28

f) (2

3)4

=24

3

g) (𝑎2𝑏)3 = 𝑎2𝑏3

h) (2 + 𝜋)−2 =1

4+

1

𝜋2

¡¡Atención!!:

Para justificar primero

expresa, por escrito, con

tus palabras la

propiedad en R que

aplicas, luego hazlo

formalmente, utiliza

lenguaje algebraico.

Elabora un glosario que

te ayude a seguir

trabajando.

(Si es necesario,

consulta el enunciado de

las propiedades de las

operaciones en R)

a)

22

3

b) 035 c) 2(3.5) d)

2( 4 )

e) 3( 1) f) 2

1

9 g) 23

4 h) 3 2( 3 )

i) 25 j)

25

9

k) 31

27

l) 8

73

ll)2

26 m)

5

35 n)

7

3.7 ñ)

3

5.32

o) 25

6

5

4 p)

4

9.

11

2 q)

2

15

8

5

r) 32.2

s) 1

23. 4 25 t) 1

23. 4 32

u)

v) w) x) y) z)

Page 14: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

14

i) 25 ∙ 22 = 47

j) (−27)0 = 1

k) (𝑎 + 𝑏)0 = 𝑎 + 1

l) 2−5

23= 2−2

m) 93

93= 1

n) (20)3 = 23

o) 𝑎2 + 𝑎2 = 2𝑎2

p) 16 + 25 = 16 + 25

q) (𝑎 + 𝑏)13⁄ = 𝑎

13⁄ + 𝑏

13⁄

r) 83∙ 8 = 64

6

s) 2 (𝑥 + 1) = 4𝑥 + 4

t) (𝑥 − 1)2 = 𝑥 − 1

u) 𝑥9 = 𝑥3

v) 𝑎−12⁄ + 𝑏−

12⁄ =

1

𝑎+𝑏

Page 15: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

15

7) Calcule el valor numérico aplicando propiedades. Verifique con la calculadora:

a) −105

b) [(1

2)3

]2

c) 20 + 21 + 22

d) (1

2)4(−2)4

e) (−3)2(−2)3

f) 32

30

g) (2

3)0

+ (2

3)1

h) (−2)5

(−2)3

i) (−3

4)3

j) 3−3

4−3

k) 23∙34∙45

22∙33∙44

l) (2

3)−2

+ (2

3)−1

m) 83

162

n) [(−7)2(−3)2]−1

o) 210

43

p) 81−12⁄

q) 64−23⁄

r) (−125)23⁄

s) 93∙ −33

t) −33

−243

u) 9

27−13⁄

v) (−125)(−1000)3

w) 625

x) 144 + 25

y) 144 + 25

z) (−125

8)13⁄

− (1

64)13⁄

8) Resuelve los siguientes problemas

a) Tres recipientes contienen agua, el primero 47

50 litros, el segundo

55

62 litros y el

tercero 30

33 litros. ¿Qué recipiente tiene menos agua y cuál más?

b) En el colegio, 3

1 de los alumnos estudia inglés y un 33% francés. ¿Cuál es la lengua más

elegida?

c) Una aleación está compuesta por 24/29 de cobre, 4/29 de estaño y 1/29 de zinc. ¿cuántos kilogramos de cada metal habrá en 348 kg de aleación?

d) Luís invita a sus amigos una tarta. Pedro come 1/5, Ana 1/6 y Tomás 1/3. Luís come el

resto. ¿cuánto come?

e) Dado un cordón Juan toma la mitad. De lo que queda Pedro toma la mitad; de lo que

queda María toma la mitad; de lo que queda Carmen toma 2/5. Al final quedan 30 cm. ¿cuál era la longitud del cordón?

9) Analice la siguiente demostración y explique cuál fue el error cometido.

4 = 16 = (−4) ∙ (−4) = −4 ∙ −4 = −4 2= −4

Page 16: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

16

10) Calcule el perímetros de las siguientes figuras:

a) b) 20 cm

5 cm 32 cm

2 5 cm

c) 40 cm

d) cm10

7 cm 5 cm

11) Hallar el valor exacto del área de las siguientes figuras. Todas las medidas estan

dadas en centímetro.

1+ 27

a)

𝟔 3

b) c)

3 2 12

2 3 4 22

12) Completar con, o según corresponda:

Page 17: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

17

N Z Q I R

1

2/3

3 5

-3

8

4,4

3,5

3,89

EXPRESIONES ALGEBRAICAS

Si a, b y c son números reales, son expresiones algebraicas algunas de las siguientes:

Lenguaje Coloquial Lenguaje algebraico

El doble de a 2a

El triple de la suma de a y c 3(a+c)

El producto de a por el cuadrado de b ab2

El cubo de a, disminuido en 3 a3-3

El cubo de: a disminuido en 3 (a-3)3

Se suele pensar que el álgebra comienza cuando se empieza a utilizar letras para

representar números, pero, en realidad comienza cuando los matemáticos se interesan por

las operaciones que se pueden hacer con cualquier número.

Ese cualquier número se representa con una letra y se da, así el paso de la aritmética, que

se interesa por los números concretos, al álgebra.

Definición: Las expresiones algebraicas son combinaciones de números expresados por

letras y cifras, relacionados entre sí por una o más operaciones

Page 18: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

18

Clasificación: Las expresiones algebraicas se clasifican en enteras, racionales e irracionales.

Las expresiones algebraicas enteras son aquellas en las cuales las letras y

números se relacionan a través de las operaciones de suma, producto y potencia.

Por ejemplo: 3 3 4x x .

Las expresiones algebraicas racionales son aquellas en las que por lo menos

una de las letras figura como divisor de la expresión. Por ejemplo: 3

2 1x .

Las expresiones algebraicas irracionales son aquellas en la que por lo menos una

de las letras se figura como radicando. Por ejemplo: 1

52

x .

Polinomios: Son expresiones algebraicas enteras.

Polinomios en una indeterminada, x, es la expresión de la forma

𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎2𝑥2 + 𝑎1𝑥

1 + 𝑎0

donde 𝑎𝑛 ,𝑎𝑛−1 ,…𝑎2 ,𝑎1 ,𝑎0 son números reales, llamados coeficientes, x es la

indeterminada Los exponentes de x son números enteros no negativos y el grado del polinomio

es el mayor exponente de la variable cuyo coeficiente es diferente de cero.

n es un número natural que indica el grado de un polinomio (𝑛𝜖ℕ0 𝑞𝑢𝑒 es el

conjunto de los números naturales que incluye al cero ó el conjunto de los

números enteros no negativos). El grado del polinomio P x , se indica con

grP x n .

na es el coeficiente principal y 𝑎0 es el término independiente o término de

grado 0 En el caso particular de que todos los coeficientes sean ceros, el polinomio se

denomina polinomio nulo, se lo indica con y carece de grado.

Según la cantidad de términos que tenga el polinomio, se llama:

Monomio un solo término Binomio dos términos Trinomio tres términos

Page 19: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

19

… … Polinomio de grado n. n términos

Ejemplos:

a)Sea 3 411 2

2P x x x

Es un trinomio de cuarto grado 4n , la variable es x, entonces grP(x) = 4.

Los coeficientes son: 0 1 2 3 4

11, 0, , 2

2a a a a a , donde el coeficiente

principal es 4 2a

3

32

Q y y es un binomio de grado 1 en la variable y, 0 1

3, 3

2a a

5R x Monomio de grado cero, 0 5a

1

52

S x x No es un polinomio pues x esta con exponente 1/ 2 .

3

2 1T x

x

No es un polinomio porque x está en el denominador (es una expresión

algebraica racional).

A tener en cuenta

Los monomios son homogéneos cuando tienen el mismo grado

Los monomios son semejantes cuando tienen la misma parte literal

El grado de un polinomio con respecto a una de sus indeterminadas está dado

por el mayor exponente con que figure esa indeterminada

Un polinomio está ordenado según las potencias decrecientes (o crecientes) de

una indeterminada cuando el exponente de la misma en cada término es menor o

igual (mayor o igual) que en el anterior

Operaciones con Expresiones Algebraicas

Suma y Diferencia de Polinomios

La suma y diferencia de polinomios se trabaja haciendo una simple supresión de paréntesis y

agrupando términos semejantes como muestran los siguientes ejemplos:

Page 20: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

20

1) Sumar los polinomios 𝑃(𝑥) 𝑦 𝑄(𝑥). 𝑃(𝑥) = 2 − 7𝑥2 − 5𝑥3 𝑦 𝑄(𝑥) = 4𝑥2 + 5𝑥3 − 3𝑥4

𝑃(𝑥) + 𝑄(𝑥) = (2 − 7𝑥2 − 5𝑥3) + (4𝑥2 + 5𝑥3 − 3𝑥4 ) = 2 − 7𝑥2 − 5𝑥3 + 4𝑥2 + 5𝑥3 − 3𝑥4

= 2 − 3𝑥2 − 3𝑥4

2) Restar los polinomios 𝑃(𝑥) 𝑦 𝑄(𝑥). . 𝑃(𝑥) − 𝑄(𝑥) = (2 − 7𝑥2 − 5𝑥3) − (4𝑥2 + 5𝑥3 − 3𝑥4 ) = 2 − 7𝑥2 − 5𝑥3 − 4𝑥2 − 5𝑥3 + 3𝑥4

= 2 − 11𝑥2 −−10𝑥3 + 3𝑥4

En el ejemplo de la resta o diferencia, al hacer la supresión de paréntesis lo que se ha hecho es

sumar al polinomio ( )P x el opuesto del polinomio ( )Q x .

Producto de Polinomios

Para efectuar los productos de los polinomios debemos tener en cuenta la propiedad

distributiva del producto respecto de la suma y las propiedades de la potenciación. Veamos

algunos ejemplos para los distintos casos que se nos pueden presentar.

1) Multiplicar 𝑃(𝑥) = 3𝑥2 𝑦 𝑄(𝑥) = 2𝑥 − 1

(𝑃. 𝑄)(𝑥) = 3𝑥2. (2𝑥 − 1)

= 3𝑥2. 2𝑥 − 3𝑥. 1 (A)

= 6𝑥3 − 3𝑥

Se puede observar que el polinomio obtenido en (A) tiene un factor común 3𝑥2 en ambos

términos. De manera recíproca dado el polinomio: 3𝑥2. 2𝑥 − 3𝑥. 1 Se puede obtener el

producto: 3𝑥2. (2𝑥 − 1)

Esto es:

3𝑥2. 2𝑥 − 3𝑥. 1 = 3𝑥2. (2𝑥 − 1)

A este procedimiento se los llama extraer factor común en un polinomio

2) Multiplicar 𝑃(𝑥) =1

2𝑥2 + 3𝑥 𝑦 𝑄(𝑥) = 2𝑥 − 1

(𝑃. 𝑄)(𝑥) = (1

2𝑥2 + 3𝑥) . (2𝑥 − 1)

Page 21: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

21

= 1

2𝑥2. (2𝑥 − 1) + 3𝑥. (2𝑥 − 1)

= 1

2𝑥2. 2𝑥 −

1

2𝑥2. 1 + 3𝑥. 2𝑥 − 3𝑥. 1

= 𝑥3 −1

2𝑥2 + 6𝑥2 − 3𝑥

2 2

2 2

3) y

P x x a Q x x a

P Q x x a x a x x x a a x a a

x ax ax a

x a

Ejemplo: 𝑃(𝑥) = 2𝑥2 + 3𝑥 𝑦 𝑄(𝑥) = 2𝑥2 − 3𝑥

(𝑃. 𝑄)(𝑥) = (2𝑥2 + 3𝑥). (2𝑥2 − 3𝑥)

= (2𝑥2). (2𝑥2) + (2𝑥2). (−3𝑥) + (2𝑥2). (2𝑥2) + (3𝑥)(−3𝑥)

= (2𝑥2)2 − (3𝑥)2

= 4𝑥4 − 9𝑥2

El producto de la suma de dos números por su diferencia se convierte en la diferencia de los

cuadrados de los mismos.

2

2 2

2 2

4)

2

P x Q x x a

P Q x x a x a x a x x x a a x a a

x ax ax a

x ax a

Ejemplo: 𝑃(𝑥) = 𝑄(𝑥) = 2𝑥2 + 3𝑥

(𝑃. 𝑄)(𝑥) = (2𝑥2 + 3𝑥). (2𝑥2 + 3𝑥) = (2𝑥2 + 3𝑥)2

= (2𝑥2). (2𝑥2) + (2𝑥2). (3𝑥) + (2𝑥2). (3𝑥) + (3𝑥)(3𝑥)

= (2𝑥2)2 + 2. (2𝑥2). (3𝑥) + (3𝑥)2

= 4𝑥4 + 12𝑥3 + 9𝑥2

El desarrollo del cuadrado de un binomio recibe el nombre de trinomio cuadrado

perfecto.

Page 22: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

22

3

2 2 2 2 2 2

3 2 2 2 2 3

5)

2 2

2 2

P x Q x R x x a

P Q R x x a x a x a x a x a x x x a a x a a

x a x ax ax a x x x ax x a a x a ax a a

x ax a x ax a x a

3 2 2 3 3 3x ax a x a

Ejemplo: 𝑃(𝑥) = 𝑄(𝑥) = 𝑅(𝑥) = 2𝑥 − 3

(𝑃. 𝑄. 𝑅)(𝑥) = (2𝑥 − 3)3

= (2𝑥 − 3)(2𝑥 − 3)(2𝑥 − 3)

= (2𝑥 − 3). (4𝑥2 + 2.2𝑥. (−3) + 9)

= 2𝑥. (4𝑥2 − 12𝑥 + 9) − 3. (4𝑥2 − 12𝑥 + 9)

= 8𝑥3 − 24𝑥2 + 18𝑥 − 12𝑥2 + 36𝑥 − 27

= 8𝑥3 − 36𝑥2 + 54𝑥 − 27

También:

(𝑃. 𝑄. 𝑅)(𝑥) = (2𝑥 − 3)3

= (2𝑥)3 + 3. (2𝑥)2. (−3) + 3.2𝑥. (−3)2 + (−3)3

= 8𝑥3 − 36𝑥2 + 54𝑥 − 27

El desarrollo del cubo de un binomio recibe el nombre de cuatrinomio cubo perfecto.

Page 23: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

23

IDENTIDADES Y ECUACIONES

Igualdades

Las igualdades matemáticas son las expresiones caracterizadas por el signo " = ".

Las podemos clasificar en Identidades y Ecuaciones.

Una Identidad es una igualdad absoluta, o válida sin condicionamientos, para cualquier valor de las

indeterminadas.

Por ejemplo:

Una Ecuación es una igualdad condicionada, es decir que se satisface sólo para determinados valores

de las indeterminadas y en algunas ocasiones no tiene solución

Por ejemplo:

7 + 𝑥 = 10 𝑠ó𝑙𝑜 𝑠𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑒 𝑝𝑎𝑟𝑎 𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑥 = 3

2𝑥 − 1 = 𝑥 − 2 𝑠ó𝑙𝑜 𝑠𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑒 𝑝𝑎𝑟𝑎 𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑥 = −1

𝑥2 = 9 𝑠𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑒 𝑝𝑎𝑟𝑎 𝑒𝑙 𝑣𝑎𝑙𝑜𝑟 𝑥 = 3 𝑦 𝑥 = −3

𝑥 + 5 = 𝑥 − 2 𝑛𝑜 𝑒𝑥𝑖𝑠𝑡𝑒 𝑣𝑎𝑙𝑜𝑟 𝑞𝑢𝑒 𝑙𝑎 𝑣𝑒𝑟𝑖𝑓𝑖𝑞𝑢𝑒, 𝑛𝑜 𝑡𝑖𝑒𝑛𝑒 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛

La condición o condiciones que debe cumplir una ecuación para ser efectivamente una igualdad están

representadas por una letra o varias que reciben el nombre de incógnitas de la ecuación.

Page 24: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

24

Clasificación de las Ecuaciones

Las ecuaciones algebraicas se clasifican:

a) Por su grado;

b) Por el número de sus incógnitas.

2

3 2 0 es una ecuación de primer grado con una incógnita.

2 5 8 es una ecuación de primer grado con dos incógnitas

2 1 0 es de segundo grado con una incógnita.

x

x y

x x

Actividad para relacionar contenidos

¿Te animas a elaborar un cuadro que relacione los distintos tipos de ecuaciones de manera análoga a la que elaboramos con la clasificación de expresiones algebraicas? Inténtalo

Sigue completando tu glosario

Ecuaciones de Primer Grado con una Incógnita

Actividad Prioritaria: Antes de comenzar a resolver ecuaciones, analiza los ejemplos dados

anteriormente, lo que ya conoces de clasificación de expresiones algebraicas y elabora un

concepto de ecuación de primer grado con una incógnita y escríbelo. Luego, compara lo que

tú escribiste con la definición formal dada a continuación.

Resolución de una ecuación lineal

En toda ecuación se distinguen dos miembros en la igualdad

Una ecuación de primer grado o lineal con una incógnita es, por lo tanto, de la forma:

……………………………………………………………...

¡¡Atención!!Para

determinar el valor de

la o las incógnitas de

una ecuación, la

matemática ofrece

métodos de resolución

para cada clase de

ecuación, sin embargo,

SIEMPRE se debe tener

en cuenta las

propiedades de las

operaciones

Page 25: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

25

Ejemplo 1:

2 7 1 12 2 primer miembro Segundo miembrode la igualdad de la igualdad

x x x

En cada uno de los miembros de una ecuación puede o no haber términos semejantes; si

los hay, se debe operar con ellos

3𝑥 + 6 = 14 − 𝑥

Los términos en cada uno de los miembros no son semejantes, por lo que no se puede

operar entre ellos. Entonces, debemos agrupar términos semejantes en cada uno de los

miembros, para ello aplicamos propiedad uniforme: sumamos a ambos miembros x y

6 y obtenemos:

3𝑥 + 6 + 𝑥 + (−6) = 14 − 𝑥 + 𝑥 + (−6)

3𝑥 + 𝑥 = 14 − 6

4𝑥 = 8

Ahora, para despejar definitivamente x, volvemos a aplicar la misma propiedad y dividimos

a ambos miembros por 4. Por último, resolvemos.

4𝑥: 4 = 8: 4 o bien: 4𝑥

4=8

4

𝑥 = 2 𝑥 = 2

Verificación: a fin de comprobar la validez de la solución se sustituye x por 2 en la

ecuación y se computa el valor de cada miembro. Si los valores así obtenidos son iguales,

la solución es correcta. Para el ejemplo anterior la verificación es:

Primer miembro: 2 2 7 2 1 12

Segundo miembro: 12 2 2 12

Luego 2x es la solución de la ecuación dada.

Aplicar esta propiedad equivale

decir que pasa sumando al

otro miembro y que pasa

restando (Pasaje de términos)

Equivale a decir que el 4 que está

multiplicando pasa al otro miembro

dividiendo (Pasaje de factores)

Page 26: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

26

Ejemplo 2: Calcular el o los valores de x en la siguiente ecuación

2 3 8

4

2 34 8 4 Multiplicamos por 4 ambos miembros de la igualdad.

4

2 3 32

2 3 2 32 2 Sumamos -2 a ambos miembros de la igualdad.

3 30

x

x

x

x

x

3 30 Dividiendo por -3 ambos miembros de la igualdad.

3 3

10

x

x

Verificación

2 3 108

4

328 8 8 Por lo tanto 10 es la solución de la ecuación.

4x

Actividad: Resuelve de otra manera aplicando Pasaje de términos y de factores

Ejemplo 3: Resuelve el siguiente problema: “El doble de la edad que Guillermo tendrá dentro

de 6 años es igual al triple de la edad que tenía hace 5. ¿Qué edad tiene Guillermo

actualmente?”

Encuentra la solución probando con diferentes edades. ¿Cuánto tiempo demoraste?

Este es un ejemplo que cuesta encontrar ese valor, pues no cuentas, de antemano, con algunos valores posibles que puede tomar esta edad. Es este uno de los casos en que el planteo de ecuaciones ayuda a resolverlo.

Solución:

2(𝑒 + 6) = 3(𝑒 − 5)

2𝑒 + 12 = 3𝑒 − 15

2𝑒 + 12 − 12 − 3𝑒 = 3𝑒 − 15 − 12 − 3𝑒

−1𝑒 = −27

𝑒 = 27

Respuesta: La edad de Guillermo es 27 años

Respuesta: La edad que actualmente tiene Guillermo es 27 años

Actividad de profundización

¡¡Atención!!

Justifica cada paso

realizado con el nombre

de la propiedad aplicada

¡¡REALIZA LA

VERIFICACIÓN!!

Page 27: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

27

Si una ecuación de primer grado o lineal con una incógnita es de la forma:

0ax b , siendo a y b constantes con 0a .

¿Cómo podrías formalmente expresar la solución de la ecuación de primer grado con una

incógnita?

𝑥 =……

…….

Inecuaciones Lineales con una incógnita

Una inecuación o desigualdad lineal es lo mismo que una ecuación lineal pero

cambiando el signo de igualdad por signo(s) de desigualdad.

Los signos de desigualdad son ”mayor que”; “menor que”; “mayor o igual que” y “menor o igual”. Para resolver una desigualdad lineal se utilizan los mismos procedimientos que se usan para resolver una ecuación lineal. Ejemplos:

1) Resolver 3 8x .

Sumando la misma cantidad a ambos lados:

3 8

3 8 8 8

11 que es lo mismo que poner 11

x

x

x x

Una regla importante en las desigualdades es que cuando se divide o multiplica por un número negativo, el sentido de desigualdad cambia.

2) Resolver: 5 12 8 3x x

5 12 8 3

5 8 12 3

3 15

3 3

5

x x

x x

x

x

La interpretación gráfica de la solución de una inecuación es un intervalo del conjunto de los números reales. Por ejemplo:

La solución del primer ejercicio es 11x , representado por el intervalo ;11 , lo

que gráficamente seria:

Page 28: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

28

La solución del segundo ejemplo será: 5;

Ecuaciones con valor absoluto

Recuerda que:

a. Si 4x , entonces 2x .

b. Si 2 4x , entonces 2x , es decir que 2 ó 2x x .

Veamos los siguientes ejemplos:

Resuelve la ecuación: 2 2

2 3 7 6 4x

2 2

2

1 5

1 25 1 25

1 5

1 5 ó 1 5

4 ó 6

x

x x

x

x x

x x

Si realizamos la verificación se podrá observar que los dos valores de x obtenidos

satisfacen la ecuación.

Inecuaciones con Valor Absoluto

Si |𝑥| < 𝑎 ⟹ −𝑎 < 𝑥 < 𝑎 𝑒𝑠 𝑑𝑒𝑐𝑖𝑟 𝑥 > −𝑎 𝑦 𝑥 < 𝑎 Si |𝑥| > 𝑎 ⟹ 𝑥 < −𝑎 𝑜 𝑥 > 𝑎

Ejemplos

1) |𝑥 + 2| < 5 Solución: 𝑥 + 2 > −5 𝑦 𝑥 + 2 < 5

0 11

0 5

Page 29: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

29

𝑥 > −5 − 2 𝑦 𝑥 < 5 − 2

𝑥 > −7 𝑦 𝑥 < 3

Gráficamente:

Los valores de x que satisfacen la inecuación son los que se encuentran en la zona de

doble rayado. Entones la solución de la inecuación es ( – 7 , 3 ). El uso de paréntesis

indica que los extremos del intervalo no son solución.

2) |2𝑥 − 3| ≥ 9 Solución: 2𝑥 − 3 ≤ −9 𝑦 2𝑥 − 3 ≥ 9

2𝑥 ≤ −9 + 3 𝑦 2 𝑥 ≥ 9 + 3

𝑥 ≤−6

2 𝑦 𝑥 ≥

12

2

𝑥 ≤ −3 𝑦 𝑥 ≥ 6 Graficamente:

Los valores de x que satisfacen la inecuación son los que se encuentran en la zona

rayada. Entonces la solución de la inecuación es (– , – 3 ] U [ 6 , + ). El uso de

corchetes indica que los extremos del intervalo son solución.

Ecuación cuadrática o de segundo grado

Es la ecuación de la forma:

2 0ax bx c , donde , ,a b c son constantes y 0a .

, ,a b c son los coeficientes de los términos cuadrático, lineal e independiente

respectivamente.

La Fórmula de Baskara: permite determinar el valor de las raíces de la ecuación 2 0ax bx c .

𝑥 =−𝑏± 𝑏2−4𝑎𝑐

2𝑎

Page 30: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

30

Análisis del discriminante:

Si 2 4 0b ac , la ecuación tiene dos soluciones reales.

2 2

1 2

4 4;

2 2

b b ac b b acx x

a a

Si 2 4 0b ac , la ecuación tiene dos soluciones reales iguales.

1 22

bx x

a

Si 2 4 0b ac , la ecuación tiene no tiene soluciones reales.

Ejemplo: Encontrar las raíces, si es posible, de la ecuación 24 5 6 0x x . Donde

4, 5, 6a b c :

2

1,2

1,2 1 2

1 2

1 2

5 5 4 4 6

2 4

5 25 96 5 11 5 11;

8 8 8

6 16 ;

8 8

3 ; 2

4

x

x x x

x x

x x

Ecuaciones reducibles a ecuaciones de primero y segundo grado

Ecuaciones Racionales

Son aquellas en las cuales la variable se encuentra en uno o más denominadores. En

estas ecuaciones deberá tenerse en cuenta que las soluciones no anulen los

denominadores de las expresiones, para que estén definidas las ecuaciones dadas.

Si tenemos la expresión 4 3 2 6

2 3

x x

x x

, x debe ser diferente de 2 y de 3 para que estén

definidos ambos miembros de la ecuación. Debemos obtener ecuaciones equivalentes a

las dadas, que puedan resolverse con las herramientas que disponemos.

Por ejemplo una forma de resolver es:

Page 31: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

31

Como se trata de una proporción, el producto de los extremos es igual al producto de los medios, por lo tanto:

4 3 3 2 6 2 donde 2, 3x x x x x x .

Al aplicar la propiedad de las proporciones, aplicamos también el procedimiento utilizado

al resolver ecuaciones fraccionarias algebraicas, es decir, multiplicar ambos miembros

de la igualdad por 3 2x x . Como esta expresión contiene a la variable, es posible

introducir raíces extrañas, por los que se hace necesario verificar las raíces que se

obtengan.

Desarrollando los productos expresados en ambos miembros, obtenemos:

2 24 12 3 9 2 4 6 12x x x x x x , operando nos queda:

22 5 3 0x x . Las raíces son 1 2

1, 3

2x x .

Como x debe ser diferente de 3, la única raíz que verifica la ecuación de partida es

1

1

2x .

Hay que tener en cuenta que toda verificación se debe hacer en la ecuación de partida,

para que la misma sea válida.

2) Teniendo la siguiente ecuación 6 1

5 5

x

x x

, la solución buscada debe ser diferente

de -5, ya que este número anula los denominadores.

Multiplicando ambos miembros por 5x , queda:

6 1 6 1 5x x x , Como ya dijimos 5x , entonces -5 no es raíz

de la ecuación dada, por lo que decimos que la ecuación no tiene solución.

Ecuaciones irracionales

Son aquellas en las cuales la incógnita aparece bajo el signo radical.

Ejemplo:

1 7x x

Page 32: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

32

El término que tiene la raíz debe quedar solo en un miembro, si hubiese dos raíces, es

conveniente dejar una en cada miembro de la ecuación.

1 7x x , se eleva al cuadrado ambos miembros de la ecuación:

2

1 7x x , desarrollando:

2 2 1 7x x x , sumando 7x a ambos miembros de la ecuación:

2 6 0x x , las raíces de la ecuación son 1 23, 2x x

Verificación: Si 3x , reemplazando en la ecuación de partida vemos que la verifica, por

lo tanto 3 es raíz de la ecuación.

Si 2x , reemplazando en la ecuación de partida, vemos que no la verifica

2 1 7 2

2 1 3

2 4

Por lo tanto -2 no es raíz de la ecuación.

TRABAJO PRÁCTICO 2

1) Reduce las siguientes expresiones algebraicas. Escribe a continuación el nombre de la/s propiedad/es aplicada/s

EXPRESIÓN

ALGEBRAICA

Completa: “Es toda

combinación…………

………………………………

…………………………….

a) 52 .mm b) 113.kk c) 3

6

x

x d)

9

2

y

y

e) x

xx 33 32 f) 2 6( )y g) xx 5.6 h) 3.( 2 )x x x

i) 3

225

x

xx j)

46 .aa k) t

t 23

l) 3( 2 )z

z

m) 3( 3 )y y

y

n)

x

x

2 ñ)

s5

0 o)

2( 2) 4y

y

p) 2( )x

x

q)

2 3

4

( 2 )

4

x

x r)

1

)1( 5

s

s s)

2

10 x

t) u) v) w)

Page 33: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

33

2) Responde a las siguientes preguntas, justificando las respuestas a) ¿Qué valor o valores no puede tomar la x en el ejercicio c? ¿y en ejercicio w? b) ¿Qué valor o valores no puede tomar la x del ejercicio v? c) ¿En qué ecuación x no puede tomar el valor 1? ¿Por qué?

3) Simplifique y exprese cada respuesta solo con exponentes positivos. Indique qué valores puede tomar cada letra. Luego, verifique reemplazando las letras por números:

𝑎)(𝑥−3)2

𝑏) 𝑥9

𝑥3

c) (2𝑎)3(3𝑎)2

d) (−2𝑎2𝑏0)4

e) 𝑥2𝑦

4

(𝑥𝑦)2

f) (𝑥−2𝑦)6

(𝑥−2𝑦)2

g) 𝑥−2𝑦2

3

(𝑥3𝑦−2)2

h) 2𝑥3𝑦−2

2

8𝑥−3𝑦2

i) (𝑎+𝑏)−2

(𝑎+𝑏)−8

j) 𝑥−2 + 𝑦−2

k) (𝑎−4𝑏−8)34⁄

l) 𝑎2∙𝑏−

12⁄ ∙𝑐

13⁄

𝑎−3∙𝑏0∙𝑐−13⁄

m) (64𝑎6

𝑏−9)23⁄

n) 1

2(𝑥2 + 4𝑥)−

12⁄ (2𝑥 + 8)

4) Clasifica las siguientes expresiones con Verdadero y Falso y justifica tu respuesta

3 3) ) 2 5 5 2 5

2 2

)2 3 4 20 )2 3 4 14

1 1) 7 5 2 ) 3 2 5

5 5

7 5 7 5)2 3 5 2 3 2 5 )

2 2 2

5 3 5 2 2 2) )

2 3 2 7 5 7 5

a a a b b b

c d

e a a a f b b

g h

i j

5) ¿Para qué valores de a son ciertas las siguientes igualdades?

5 5 2 5 2 5) )

2 2 2 2

aa b

a a a

2 2

63 3 23

422

) )

) )

) )

c a a d a a

e a a f a a

g a a h a a

6) Resolver las siguientes ecuaciones y realiza la verificación en caso que lo creas

necesario.

Page 34: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

34

a) 1225 x

b) 1497 x

c) 64

12

x

d) 5

21

3

53 x

e) 1227

30

x2

6

x

f) 1132

x

g) 9)2.(5 x

h) 186. x

i) 64 x

j) 2510.3 x

k) 15

2 3

x

l) 8

273 x

m) 41

12

x

n) 932

5

x

o) 12

4

x

p) 918

3

x

q) 21

23

x

r) 236 yy

s) 3

2

(2 )18

x

x

t) 2

2213

yy

u) 5324

1 y

y

v) (5x 8) ( 2) ( 4)(5 7)x x x

w) 54

4

2

6 22

xx

x) 045x 24 x

7) Expresar mediante inecuaciones e intervalos cada una de las siguientes frases, en los cuales x R:

a) Los valores que no superan a 6. b) Los valores que están entre –5y 9. c) Un número x que están a la derecha de 0. d) Un número x que están a la izquierda de 2..

8) Expresar en lenguaje coloquial cada uno de los intervalos siguientes:

5, , , , ,2/1 , 0,7 , 2,4/5

9) Encuentren en cada él o los valores de x, que verifican las siguientes expresiones:

) 3 1 ) 2 3

) 2 1 0 ) 4 1

a x b x

c x d x

10) Señalen en una recta , en cada caso, todos los posibles lugares que podría ocupar el número x sabiendo que verifica la condición:

) 2 3 ) 2 1

) 3 3 ) 4 3

a x b x

c x d x

Page 35: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

35

11) Indiquen el grado de cada uno de los polinomios siguientes:

a) P(x)= 3 x + 6x 17 25 x b) Q(x) = xx 252

1 2

c),R(x) = xxx 836 23 d) M(z) = 383 24 zzz

12) Siendo P(x) = xxx 43 26 , Q(x) = 252 32 xx y R(x) =3 – x

Calculen: a) P(-2) b) P(0)

c) Q(-1) d) R

3

2

e) P(x) +Q(x) f) 5R(x) –Q(x)

g) P(x) • Q(x) h) Q(x) –P(x)

i) P(x) • R(x) j) P(x) : R(x)

k) Q(x) : R(x)

13) Decida si las siguientes ecuaciones tienen solución real o no. En caso de tener, halle el/los valor/es que satisfacen las ecuaciones:

a) 𝑥2 − 8𝑥 + 16 = 0

b) 4𝑥2 + 𝑥 = 3

c) 2𝑥2 − 𝑥 + 1 = 0

d) 𝑥2 + 3𝑥 − 1 = 0

e) −𝑥2 + 2𝑥 + 15 = 0

f) 2𝑥 + 3 = −4𝑥2

14) Exprese como productos las siguientes expresiones

a) 4𝑥2 − 9

b) 25𝑥2 − 144𝑦2

c) 𝑎2 − 121𝑏2

d) 24𝑥5 + 18𝑥4 − 30𝑥2

e) 4𝑥2 − 4𝑥 + 1

f) 𝑥2 + 3𝑥 +9

4

15) Representa en símbolos: a. Tres números consecutivos b. Un número impar

c. Dos números pares consecutivos

d. El opuesto de un número e. El inverso de un número

distinto de cero f. Todo número mayor que 5 g. x está comprendido entre 1 y

2 h. 2 es un número real i. x está comprendido entre 4 y

6 o es igual a 4 o es igual a 6 j. el cuadrado de un número

disminuido en 2 k. el cuadrado de: un número

dividido 2 l. la mitad del triple de n m. el cubo de: a aumentado en

8

Page 36: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

36

16) El lenguaje algebraico de las ecuaciones se suele complementar de manera muy efectiva con dibujos auxiliares en los que se piensan y se plantean los símbolos apropiados para una formulación correcta. Use ese procedimiento para dar una fórmula que exprese que:

a) El área de un rombo se obtiene tomando la mitad del producto de sus diagonales.

b) El área de un triángulo es igual a la mitad del producto de la medida de su base por la medida de su altura.

c) El perímetro del rectángulo es el duplo de la suma de los dos lados diferentes.

17) Resuelve los siguientes problemas

a) Dentro de 12 años Lucas tendrá 27 ¿Qué edad tiene ahora? b) Hace 7 años Juan tenia 16 ¿Cuál es su edad? c) Si María tuviera el doble del dinero que tiene ahorrado podría comprarse un

automóvil de $35000 y le quedarían $7000 ¿Cuánto dinero tiene ahorrado? d) Un hombre comenzó una dieta y en seis meses redujo su peso a la mitad,

continuó con la dieta y bajo 14 kg llegando a los 71 kg ¿Cuánto pesaba antes de comenzar la dieta?

e) Si a 8 se le resta la raíz cúbica de un número y al resultado de la resta se lo multiplica por 6 se obtiene 64 ¿Cuál es ese número?

f) Dentro de 2 años tendré el triple de la edad que tenia hace 10 ¿Qué edad tengo ahora?

g) El doble de la edad que Guillermo tendrá dentro de 6 años es igual al triple de la edad que tenía hace 5 ¿Qué edad tiene Guillermo?

h) Un triángulo isósceles mide 155m de perímetro. Si su base mide las 2/5 partes del perímetro. ¿Cuánto mide cada lado?

i) La base de un triángulo isósceles mide 32 cm y uno de los lados iguales es 5/8 de la base. Calcular la altura del triángulo.

j) Un cateto de un triángulo rectángulo mide 6 cm. La hipotenusa y el otro cateto tienen por medida dos números consecutivos. Calcular el perímetro y el área del triángulo.

k) En un triángulo rectángulo las longitudes de sus catetos son 1x y 2x , y

longitud de la hipotenusa es 2 1x . ¿Cuánto miden los lados del triángulo?

¿Cuál es su perímetro y cuál es su área?

18) Considera la siguiente afirmación: “Si al cuadrado de un número le restamos el producto del siguiente por el anterior, el resultado da siempre 1”. ¿Es cierto? ¿Cómo lo explicas? ¿Se cumple para todos los números o sólo para algunos? ¿Por qué? ¿Puedes considerar como número el 2/7?

19) Dada la ecuación: 264

32

x

x

a) Trata de anticipar: sin resolverla, escribe qué se lee a través de su expresión simbólica. ¿tendrá solución? ¿por qué? b) Ahora, resuélvela por el procedimiento que consideres conveniente y

luego verifica si tu anticipación fue acertada completamente o en algunos aspectos.

19) Escribe en los siguientes trinomios el término que hace falta que el trinomio sea

cuadrado perfecto. Luego, factorea.

Page 37: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

37

a) ….. + 2 x + 1 b) 4 x2 – 12 x + …… c) 36 x2 - …… + 4 b2

20) Resuelve la ecuación (x – 3). (x – 4 ) = 0 (Ten en cuenta de que para que un producto

de varios factores sea 0, es suficiente que uno de ellos sea 0). ¿Qué tipo de ecuación

es?

a) Efectúa el producto (x – 3 ). (x – 4 ). ¿Has obtenido x2 – 7x + 12?. Resuelve esta última ecuación igualando previamente a 0.

b) Observa los coeficientes -7 y 12. ¿Encuentras alguna relación entre ellos?. c) Prueba lo observado escribiendo una ecuación que tenga como raíces 2 y 3.

TRABAJO PRÁCTICO N°3

ECUACIONES DE LA RECTA En los siguientes ejercicios y problemas se aplican ecuaciones de rectas con las siguientes formas posibles: x=a recta vertical y=b recta horizontal y=mx+b recta con pendiente m y ordenada al origen b

1) En un sistema de ejes x y, grafique las rectas:

a) 52 xy b) 5y c) x= 0,55 d)

Realice preguntas sobre las ecuaciones o sobre los gráficos. Responda las preguntas que hizo. 2) Escriba dos ejemplos de cada ecuación dada: x=a recta vertical y=b recta horizontal y=mx+b recta con pendiente m y ordenada al origen b Haga una tabla de valores y el gráfico correspondiente para cada una. 3) Las tablas siguientes corresponden a rectas. Se le pide graficar la recta en un sistema de ejes xy y completar los valores que corresponden en la tabla.

a) b)

X y

-2 4

2 0

-3

-1

Luego de realizado el gráfico, indique las coordenadas de los puntos donde la recta corta a los ejes x e y. Cuál de las siguientes ecuaciones corresponde a la recta dada. Explique en cada caso porqué si o porque no.

x y

3 8

5 10

x y

-2 6

2 3

-1

8

Page 38: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

38

Ecuaciones propuestas para la recta de la tabla a):

2 xy ; 2 xy ; 24 xy ; 2 xy

Ecuaciones propuestas para la recta de la tabla b): y = – ¾ x + 9/2 ; y = ¾ x + 9/2 ; y = – ¾ x + 3 ; y = ¾ x + 3 Explique porqué ninguna de las rectas dadas puede tener la forma x = a ó y = b Las rectas están relacionadas con las magnitudes directamente proporcionales, consideremos los dos ejercicios siguientes. 4) Si el kilogramo de pan vale $ 7,5 ¿Cuánto vale 2 kg? ¿Cuánto vale medio kg? ¿Cuanto vale 5 kg? a) Conteste las preguntas anteriores usando regla de tres simple. b) Encuentre la ecuación de la recta que relaciona el peso con el precio. c) Realice el grafico. 5) Si la bajada de bandera del taxi vale $6.5 y el Kilómetro de recorrido $ 1,9 a) Responda: ¿Cuanto cuesta un viaje de 4 km? ¿Cuánto cuesta un viaje de 2 km? ¿Cuánto cuesta un viaje de 7 km? b) Encuentre la ecuación que relaciona los kilómetros con el costo del viaje. c) Realice el grafico. Dos magnitudes son directamente proporcionales cuando una es igual a la otra multiplicada por un número. Teniendo esto en cuenta ¿cual de los dos ejercicios anteriores corresponde a una relación directamente proporcional? ¿Por qué punto del plano coordenado debe pasar siempre una recta que represente una relación directamente proporcional?

FUNCIONES

El concepto de Relación-Función es uno de los más importantes en Matemáticas. La noción actual

de función comienza a gestarse en el siglo XIV cuando los filósofos escolásticos medievales

comenzaron a preocuparse por medir y representar gráficamente las variaciones de ciertas

magnitudes como la velocidad de un cuerpo en movimiento o la diferencia de temperatura en los

distintos puntos de un objeto metálico. El personaje más influyente en este proceso inicial fue

probablemente Nicole Oresme (1323-1382), en Paris

Page 39: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

39

La noción de correspondencia desempeña un papel fundamental en el concepto de

Relación – Función. En la vida cotidiana frecuentemente se ha tenido experiencias con

correspondencias o Relaciones.

o En un almacén, a cada artículo le corresponde un precio. o A cada número le corresponde una segunda potencia

Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto, llamado Codominio o Imagen, de manera que a cada elemento del Dominio le corresponde uno o más elemento del Codominio.

Una Función es un tipo especial de relación a la que se añade la restricción de que a cada valor del Dominio le corresponde uno y sólo un valor del Codominio.

Tanto las relaciones como las funciones pueden ser representadas de varias formas: utilizando Diagramas de Venn, fórmulas, y la forma más frecuente de representación gráfica es en un sistema de ejes cartesianos Todas las funciones son relaciones, pero no todas las relaciones son funciones

La letra x representa a todos los valores del conjunto A que tienen su correspondiente imagen en B. Se denomina a x variable independiente y al conjunto Dominio de la función Como a cada valor de x le corresponde un único valor de y, por eso se dice que y depende de x o que es una función de x, es decir, y es la variable dependiente

FUNCIÓN LINEAL

La representación gráfica de esta función es una recta

La ordenada al origen es la ordenada del punto donde la gráfica de la función

corta al eje y. El punto (0;b) pertenece a la recta

La pendiente representa cuánto varía y por cada unidad que aumenta x. La

pendiente es un número asociado a la inclinación de la recta Si conocemos las coordenadas de dos puntos de una recta podemos determinar

el valor de su pendiente mediante la fórmula:

Una función de en (f:A→B), es una relación que le hace corresponder a cada elemento

uno y sólo un elemento , llamado imagen de por , que se escribe

. ( igual a de )

Una función lineal, definida en ℝ, es aquella que a cada número real x le hace corresponder

otro número real que responde a la expresión: y = mx+b, o bien f(x)=mx+b, con mϵℝ y bϵℝ .

A " " se lo llama ordenada al origen y " " se la denomina pendiente

Page 40: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

40

Para graficar: Si conocemos la pendiente de la recta y la ordenada al origen, podemos graficar la recta.

Ejemplo: Graficar la recta: 13

2 xy

Solución: Se debe ubicar primero la ordenada al origen, o sea 1, que corresponde al

punto 0,1 . Siempre la ordenada al origen se la ubica en el en el eje y . A partir de ese

punto se aplica el concepto de pendiente: desplazar hacia arriba dos lugares en sentido positivo del eje y , por que el valor de m es positivo, (de ser negativo se debe desplazar

hacia abajo) y se desplaza tres hacia la derecha (sentido positivo del eje de las x ). Por

esos dos puntos se traza la recta.

FUNCIÓN CUADRÁTICA

a ϵ ℝ es el coeficiente cuadrático b ϵ ℝ es el coeficiente lineal

c ϵ ℝ es el término independiente La representación gráfica es una parábola, cuyos elementos se detallan:

𝑆𝑖𝑒𝑛𝑑𝑜 𝑃(𝑥1, 𝑦1); 𝑄(𝑥2, 𝑦2)

𝑙𝑎 𝑝𝑒𝑛𝑑𝑖𝑒𝑛𝑡𝑒 𝑒𝑠

𝑚=𝑦2−𝑦1𝑥2−𝑥1

Una función lineal, definida en ℝ, es aquella que a cada número real x le hace corresponder otro

número real que responde a la expresión 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑐𝑜𝑛 𝑎 ≠ 0

Page 41: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

41

A tener en cuenta Los ceros o raíces son los puntos donde la parábola corta al eje x. Las coordenadas

se obtienen haciendo y = 0 , es decir 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 . La solución de esta ecuación se obtiene mediante la aplicación de la fórmula de Baskara arrojando como soluciones 𝑥1; 𝑥2

La abscisa del vértice se puede obtener de dos maneras:

𝑥𝑣 =−𝑏

2𝑎 o bien 𝑥𝑣 =

𝑥1+𝑥2

2

Ademas 𝑦𝑣 = 𝑓(𝑥𝑣) de este modo el vertice tiene coordenadas 𝑉(𝑥𝑣 , 𝑦𝑣)

La ecuación del eje de simetría es 𝑥𝑣 =−𝑏

2𝑎

Para graficar Se debe determinar por lo menos tres puntos: las dos raíces y el vértice.

Ejemplo: Graficar 2( ) 5 6f x x x

Solución: La ordenada al origen es 6 , por lo tanto se sabe que el punto 0, 6

pertenece a la función.

Para hallar el vértice de la parábola: 5

2 2v

bx

a

El valor vy puede encontrase reemplazando el valor vx obtenido en la función original.

25 5 5 25 25 25 50 24 49

5. 6 62 2 2 4 2 4 4

f

El vértice están en 5 49

,2 4

Ahora las raíces:

2

1,2

2 1

1,2

2

4

2

5 71

5 5 4 1 6 5 49 2

5 72 1 26

2

b b acx

a

x

x

x

Los ceros o raíces de la función están en 6,0 y 1,0 .Con estos tres puntos se

puede trazar la parábola:

Vértice

Raíces o

ceros

Eje de simetría

Page 42: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

42

Función Valor Absoluto

Recordemos que el Valor Absoluto o Módulo de un número real cualquiera x , que se

simboliza x , es la distancia entre x y cero en la recta numérica. Como es una medida

de distancia, el valor absoluto nunca puede ser negativo, esto quiere decir que 0x .

Si se considera la función valor absoluto, para todos los números reales, su fórmula es

si 0

si 0

x xf x x

x x

El dominio es el conjunto de los números reales

A tener en cuenta:

La función de la forma f x x c con c una constante se desplaza del origen

hacia la izquierda o derecha dependiendo el valor de c .

Si 0c , la función x queda desplazada c unidades hacia la izquierda.

Si 0c , la función x queda desplazada c unidades hacia la derecha.

y

-6 -5 -4 -3 -2 -1 0 1 x

y

3

2

Page 43: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

43

2f x x 1f x x

La función de la forma f x x b con b una constante se desplaza del origen

hacia abajo o hacia arriba dependiendo el valor de b .

Si 0b , la función x queda desplazada b unidades hacia la abajo.

Si 0b , la función x queda desplazada b unidades hacia la arriba.

1f x x 1f x x

TRABAJO PRÁCTICO 3

1) El siguiente gráfico representa la evolución del precio de la carne de cordero durante 13 meses.

y

3

2

y

3

2

y

3

2

y

3

2

Page 44: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

44

a) Analiza si es función. Justifica b) ¿Qué valor tenía la carne de cordero durante el mes de abril? c) ¿En qué mes obtuvo el precio más alto? d) Describe lo que ocurrió con la carne de cordero durante este lapso de tiempo.

2) Dos amigos hicieron una excursión en bicicleta a un bosque que está a 44 km de su pueblo, para llegar al cual hay que seguir un itinerario con subidas y bajadas. Están allí un rato y regresan.

Mirando la gráfica contesta:

a) ¿Qué significa cada cuadrito en el eje horizontal de la gráfica? ¿y en el eje vertical?

b) ¿A qué hora salieron?

c) ¿Cuántos km hay desde el comienzo de la primera cuesta hasta la cima? ¿Cuánto

tiempo tardaron en subirla?

d) ¿Cuántos km hay en bajada? ¿Qué tiempo se tardaron?

e) ¿Cuánto tiempo se demoraron en el bosque?

f) ¿Cuánto tardaron en ir del pueblo al bosque? ¿Y del bosque al pueblo? ¿A qué

crees que puede deberse la diferencia?

g) Esta relación tiempo – espacio ¿es función?, justifica tu respuesta

3) Grafique: a) 52 xy b) 5y c) x= 0,55

4) Dadas las ecuaciones a) 𝑎) 𝑦 = −3𝑥 + 5 𝑏) 𝑦 = 4 𝑐) 𝑥 = −2 Responde:

a) Qué valor corresponde a la variable dependiente ( y ), cuando la variable

independiente ( x ) toma el valor (-1) en cada una de las ecuaciones. Muestre su

respuesta en el gráfico. b) Qué valor corresponde a la variable independiente ( x ), cuando la variable

dependiente ( y ) toma el valor 3 en cada una de las ecuaciones.

Page 45: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

45

c) Obtiene las coordenadas de los puntos donde cada recta corta a los ejes coordenados

d) Explique cómo encontró los valores pedidos.

5) Las rectas están relacionadas con las magnitudes directamente proporcionales, consideremos los dos ejercicios siguientes. a) Si el kilogramo de pan vale $ 2,4. ¿Cuánto vale 2 kg? ¿Cuánto vale medio kg?

¿Cuánto vale 5 kg? Encuentre la ecuación de la recta que relaciona el peso con el precio y Realice

el grafico.

b) Si la bajada de bandera del taxi vale $ 2 y el Kilómetro de recorrido $ 0,9 ¿Cuánto cuesta un viaje de 4 km?¿Cuánto cuesta un viaje de 2 km? ¿Cuánto cuesta un viaje de 7 km? Encuentre la ecuación que relaciona los kilómetros con el costo del viaje y Realice el grafico.

6) Grafique las siguientes rectas en un mismo sistema de ejes cartesianos. Luego, analice y obtenga conclusiones:

a) 𝑦 = 2 −1

2𝑥

b) 𝑦 = 4 − 2𝑥

c) 𝑦 =1

2𝑥 − 2

d) 𝑦 =2

3𝑥 − 2

e) 𝑦 = −3𝑥 + 6

f) 𝑦 = −3𝑥 − 9

g) 𝑦 = 2𝑥 − 4

h) 𝑦 = −2𝑥 − 5

i) 𝑦 = 2𝑥 − 1

7) Obtenga la ecuación de la recta que pase por el punto dado y tenga la pendiente

indicada: a) (3; 4), 𝑚 = 2

b) (1;−2), 𝑚 = 0 c) (−3; 5), 𝑚 = −2

d) (8; 0), 𝑚 = −2

3

e) (0; 0), 𝑚 = 5

8) Obtenga la ecuación de la recta que pasa por los dos puntos dados:

a) (−1; 2), (2;−1) b) (1; 1), (−1;−1) c) (3; 0), (0;−3)

9) Determinar las ecuaciones de las siguientes rectas, indique las pendientes y las ordenadas al origen

Page 46: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

46

10) Dos rectas paralelas a los ejes coordenados se intersecan en el punto (5;−7). ¿Cuáles son sus ecuaciones?

11) Las rectas 𝑙1 y 𝑙2 son perpendiculares entre sí y se interceptan en el punto (−2;−6).

𝑙1 tiene pendiente igual a −2

5. Con la pendiente de 𝑙2 determine la ordenada al origen

de esa recta. 12) Toda recta horizontal es perpendicular a cualquier recta vertical. ¿Por qué se

excluyeron esas del resultado que dice que las rectas son perpendiculares si y solo si sus pendientes son inversas y opuestas?

13) Indique la ecuación que corresponde a cada gráfica. y = x2 + 2 y = x2 – 3 y = 2 x2 + 2 y = – 2 x2 + 2

14) Encuentre los puntos donde la recta y = 4 corta a cada parábola. Señálelos en el gráfico. Encuentre los puntos donde la recta x – 2 = 0 corta a cada parábola. Señálelos en el gráfico

15) Dadas las siguientes funciones determina: i. Las coordenadas del vértice. ii. La ecuación del eje de

simetría.

iii. Las raíces. iv. La imagen.

Luego, grafica.

a) 𝑦 = 𝑥2 − 6𝑥 + 14

b) 𝑦 = −𝑥2 − 6𝑥 − 14

c) 𝑦 = 2𝑥2 + 4𝑥 − 1

d) 𝑦 =1

2𝑥2 − 4𝑥 + 9

e) 𝑦 =1

4𝑥2 + 𝑥 − 3

𝑓)𝑦 = −1

2𝑥2 − 2𝑥 − 5

Page 47: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

47

16) Encuentre la coordenada y de las funciones a) y b) del ejercicio anterior cuando la variable independiente toma el valor ¾. Encuentre la coordenada x de las funciones c) y d) del ejercicio anterior cuando la variable dependiente toma el valor 6.

17) Coloca valores a a y a b para que la parábola 22 bxaxy pase por el punto

(–2,1). Comprueba en un gráfico que tu conclusión es correcta

18) Dados los siguientes gráficos escriba la ecuación correspondiente

19) Los vértices de un triángulo están en 𝐴(−1;−1), 𝐵(1; 3), 𝐶(4; 2). a) Deduzca las ecuaciones de las rectas que forman a los lados del triángulo. b) Luego, deduzca las ecuaciones de las tres alturas del triángulo

20) Los vértices de un triángulo están en 𝐴(−1;−1), 𝐵(1; 3), 𝐶(4; 2). Deduzca las ecuaciones de las rectas que forman a los lados del triángulo. Luego, deduzca las ecuaciones de las tres alturas del triángulo.

21) Indica cual ecuación corresponde a qué gráfica. Explica porqué. Encuentra dos puntos de cada función

y = │x +3│ , y = │x -2│ , y = –│x – 5│ , y = –│x – 1│ e y = │x │.

Page 48: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

48

22) Dados los siguientes gráficos escriba la ecuación correspondiente

Page 49: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

49

TRIGONOMETRÍA

Razones Trigonométricas

Se llaman razones trigonométricas a aquellas que relacionan las longitudes de los lados

de un triángulo rectángulo con los ángulos agudos del mismo.

En el siguiente triangulo rectángulo se describen los lados de los mismo en relación al

ángulo .

Para cada uno de los ángulos agudos de un triángulo rectángulo, uno de los catetos es el

adyacente y otro es el opuesto.

hipotenusa

Cateto adyacente

Cateto opuesto

El seno de un ángulo es el cociente entre el cateto opuesto a un ángulo y la hipotenusa.

El Coseno de un ángulo es el cociente entre el cateto adyacente a un ángulo y la

hipotenusa:

La Tangente de un ángulo es el cociente entre el cateto opuesto y el cateto adyacente a

mismo ángulo:

También podemos definir sus recíprocas:

Page 50: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

50

A tener en cuenta:

Las razones trigonométricas dependen exclusivamente de la amplitud del ángulo agudo considerado, no de las longitudes de los lados. (Puesto que de cambiar éstas, obtendremos un triángulo rectángulo semejante y sus lados serán proporcionales al triángulo dado). Por ello, podemos hablar de funciones trigonométricas

Solo en triángulos rectángulos se pueden definir todas las funciones trigonométricas de sus ángulos agudos.

Solo en triángulos rectángulos vale el Teorema de Pitágoras En un triángulo rectángulo están bien definidas todas las funciones trigonométricas, ya

que son cocientes de longitudes, es decir, de números positivos. En el caso del seno y coseno al dividir un cateto en la hipotenusa, el numerador es

menor que el denominador siempre, por ello se debe obtener un numero estrictamente menor a 1 y mayor que 0.

En el caso de la tangente se puede dar que el numerador sea menor que el denominador o la situación contraria, por ello se puede obtener cualquier número positivo.

En los triángulos rectángulos no se pueden definir las funciones trigonométricas de 90º ya que no se puede hablar de cateto opuesto o adyacente porque ambos catetos forman el ángulo.

En el triángulos rectángulos no se pueden definir las funciones trigonométricas de 0º, dado que si ∡𝑎 = 0 entonces no hay triángulo.

Representación gráfica de las funciones trigonométricas

Función Seno: 𝒇(𝒙) = 𝒔𝒆𝒏 𝒙

𝐷𝑜𝑚𝑖𝑛𝑖𝑜

= ℝ 𝐶𝑜𝑑𝑜𝑚𝑖𝑛𝑖𝑜 = [−1,1]

Page 51: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

51

Función coseno: 𝒇(𝒙) = 𝒄𝒐𝒔 𝒙

𝐷𝑜𝑚𝑖𝑛𝑖𝑜 = ℝ 𝐶𝑜𝑑𝑜𝑚𝑖𝑛𝑖𝑜 = [−1,1]

A tener en cuenta:

Los valores de senx y del cos x se repiten en el mismo orden a medida que x

efectúa más de un giro. Cuando una función posee esta propiedad se dice que es periódica.

Las funciones ( )f x senx y ( ) cosf x x con periodo de 360° o 2

Definición: Si ( ) ( )f x f x p , para toda x, y p es el menor número positivo para el

cual dicha relación es válida, entonces ( )f x es una función periódica de período p

TRABAJO PRÁCTICO 4

1) Confeccione una tabla de valores para graficar la función f (x) = sen x 2) Confeccione una tabla de valores para graficar la función f (x) = cos x

3) Dado el triángulo CBA

calcular los datos que faltan:

a) mBCC 100;º60ˆ

b) cmBCB 7;º50ˆ

c) mACmAB 8;11

d) mABC 15;'40º30ˆ

Page 52: CURSO DE NIVELACIÓN DE MATEMÁTICA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES – UNCa INGRESO – MATEMÁTICA 2016 TECNICATURA EN INFORMÁTICA DOCENTE RESPONSABLE: MARCELA GALINDEZ

52

4) Plantea y resuelve los siguientes problemas:

a) Un edificio proyecta una sombra de 20 m de largo. Si el ángulo de visión desde la punta

de la sombra al punto más alto del edificio es de 69º, ¿Cuál es la altura del edificio? (el

ángulo de visión se mide respecto de la horizontal)

b) Desde un acantilado de 50 m de altura se ve un barco, si el ángulo de la visual es de

70º. ¿A qué distancia del acantilado se encuentra el barco?

c) Para conocer la altura de la torre hemos medido el ángulo que forma la visual al punto

más alto, obteniendo un resultado de 43º. Al acercarnos 15 m hacia la torre obtenemos

un nuevo ángulo de 57º, ¿cuánto mide la torre?

d) Para calcular la altura de un edificio un hombre que estaba ubicado a 150 m de él calcula

que el ángulo de elevación es de 20º; si la altura del hombre es 1,70 m, ¿cuál es la altura

aproximada del edificio?

e) La parte superior de una escalera de 20 m está recostada contra el borde del techo de

una casa. Si el ángulo de inclinación de la escalera desde la horizontal es de 51º, ¿cuál es

la altura de la casa?

f) El asta de una bandera está localizada al borde de un precipicio de 50 m, a la orilla de un

río de 40 m de ancho. Un observador al lado opuesto del río mide un ángulo de 3º entre su

línea de observación a la punta de la bandera, y su línea de observación a la cima del

precipicio. Encuentra la altura del asta de la bandera.

g) Dos lados de un triángulo isósceles miden 20 cm y cada uno de los ángulos iguales 25º.

Resuelve el triángulo.

h) Determina la altura de un árbol si desde el punto situado a 20 m de su base se observa

su copa con un ángulo de 65º 23’.

i) La sombra que proyecta Luis al atardecer de un día de verano mide 2,24 m. El ángulo

que forman los rayos solares con el suelo es 37º. ¿Cuánto mide Luis?

j) Un globo se encuentra a 150 m de altura. Desde un punto, la línea visual forma un ángulo

de 37º 4’. ¿A qué distancia en línea recta se encuentra el globo del observador?

5) Prepara, individualmente, un "machete" lo más detallado posible que incluya todas las

consideraciones a tener en cuenta referido a lo aprendido (no sólo las fórmulas sino todas las aclaraciones necesarias para evitar errores comunes o que ellos han cometido y las dificultades) .