cu2se

4
NATURE MATERIALS | LETTER Subject terms: Materials for energy Electronic materials ARTICLE PREVIEW view full access options Copper ion liquid-like thermoelectrics Huili Liu, Xun Shi, Fangfang Xu, Linlin Zhang, Wenqing Zhang, Lidong Chen, Qiang Li, Ctirad Uher, Tristan Day & G. Jeffrey Snyder Nature Materials 11, 422–425 (2012) doi:10.1038/nmat3273 Received 10 October 2011 Accepted 08 February 2012 Published online 11 March 2012 Advanced thermoelectric technology offers a potential for converting waste industrial heat into useful electricity, and an emission-free method for solid state cooling 1, 2 . Worldwide efforts to find materials with thermoelectric figure of merit, zT values significantly above unity, are frequently focused on crystalline semiconductors with low thermal conductivity 2 . Here we report on Cu Se, which reaches a zT of 1.5 at 1,000 K, among the highest values for any bulk materials. Whereas the Se atoms in Cu Se form a rigid face-centred cubic lattice, providing a crystalline pathway for semiconducting electrons (or more precisely holes), the copper ions are highly disordered around the Se sublattice and are superionic with liquid-like mobility. This extraordinary ‘liquid-like’ behaviour of copper ions around a crystalline sublattice of Se in Cu Se results in an intrinsically very low lattice thermal conductivity which enables high zT in this otherwise simple semiconductor. This unusual combination of properties leads to an ideal thermoelectric material. The results indicate a new strategy and direction for high-efficiency thermoelectric materials by exploring systems where there exists a crystalline sublattice for electronic conduction surrounded by liquid-like ions. READ THE FULL ARTICLE Already a subscriber? Log in now or Register for online access. Additional access options: Use a document delivery service Login via Athens Purchase a site license Institutional access 2−x 2−x 2−x Subscribe to Nature Materials for full access: $199 Subscribe *printing and sharing restrictions apply ReadCube Access* Purchase article full text and PDF: $32 Buy now Print Copper ion liquid-like thermoelectrics : Nature Materials : Nature Publis... http://www.nature.com/nmat/journal/v11/n5/pdf/nmat3273.pdf?WT.ec_... 1 de 4 12/02/2014 04:35 p. m.

Upload: javier-berumen

Post on 26-Nov-2015

41 views

Category:

Documents


1 download

TRANSCRIPT

NATURE MATERIALS | LETTER

Subject terms: Materials for energy Electronic materials

ARTICLE PREVIEWview full access options

Copper ion liquid-like thermoelectricsHuili Liu, Xun Shi, Fangfang Xu, Linlin Zhang, Wenqing Zhang, Lidong Chen, Qiang Li, Ctirad Uher, Tristan Day & G.Jeffrey Snyder

Nature Materials 11, 422–425 (2012) doi:10.1038/nmat3273Received 10 October 2011 Accepted 08 February 2012 Published online 11 March 2012

Advanced thermoelectric technology offers a potential for converting waste industrial heat into useful electricity, and anemission-free method for solid state cooling1, 2. Worldwide efforts to find materials with thermoelectric figure of merit, zT

values significantly above unity, are frequently focused on crystalline semiconductors with low thermal conductivity 2. Here wereport on Cu Se, which reaches a zT of 1.5 at 1,000 K, among the highest values for any bulk materials. Whereas the Seatoms in Cu Se form a rigid face-centred cubic lattice, providing a crystalline pathway for semiconducting electrons (or moreprecisely holes), the copper ions are highly disordered around the Se sublattice and are superionic with liquid-like mobility.This extraordinary ‘liquid-like’ behaviour of copper ions around a crystalline sublattice of Se in Cu Se results in anintrinsically very low lattice thermal conductivity which enables high zT in this otherwise simple semiconductor. This unusualcombination of properties leads to an ideal thermoelectric material. The results indicate a new strategy and direction forhigh-efficiency thermoelectric materials by exploring systems where there exists a crystalline sublattice for electronicconduction surrounded by liquid-like ions.

READ THE FULL ARTICLE

Already a subscriber? Log in now or Register for online access.

Additional access options:Use a document delivery service Login via Athens Purchase a site license Institutional access

2−x

2−x

2−x

Subscribe toNature Materialsfor full access:

$199

Subscribe*printing and sharing

restrictions apply

ReadCubeAccess*

Purchase articlefull text and PDF:

$32

Buy now

Print

Copper ion liquid-like thermoelectrics : Nature Materials : Nature Publis... http://www.nature.com/nmat/journal/v11/n5/pdf/nmat3273.pdf?WT.ec_...

1 de 4 12/02/2014 04:35 p. m.

ReferencesBell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321,1457–1461 (2008).

1.

Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Mater. 7, 105–114 (2008).2.

Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 407–440 (CRC, 1995).3.

Sales, B. C., Mandrus, D. & Williams, R. K. Filled skutterudite antimonides: A new class of thermoelectric materials.Science 272, 1325–1328 (1996).

4.

Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nature Mater. 7, 811–815 (2008).5.

Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320,634–638 (2008).

6.

Hsu, K. F. et al. Cubic AgPb SbTe : Bulk thermoelectric materials with high figure of merit. Science 303, 818–821(2004).

7.

Heremans, J. P. et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states.Science 321, 554–557 (2008).

8.

Pei, Y. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).9.

Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin film thermoelectric devices with highroom-temperature figures of merit. Nature 413, 597–602 (2001).

10.

Vineis, C. J., Shakouri, A., Majumdar, A. & Kanatzidis, M. G. Nanostructured thermoelectrics: Big efficiency gains fromsmall features. Adv. Mater. 22, 3970–3980 (2010).

11.

Rhyee, J. et al. Peierls distortion as a route to high thermoelectric performance in In Se crystals. Nature 459,965–968 (2009).

12.

Pilgrim, W. C. & Morkel, C. State dependent particle dynamics in liquid alkali metals. J. Phys. Condens. Matter 18,R585–R633 (2006).

13.

Frenkel, J. in Kinetic Theory of Liquids (eds Fowler, R. H., Kapitza, P. & Mott, N. F.) 188–249 (Oxford Univ. Press, 1947).14.

Trachenko, K. Heat capacity of liquids: An approach from the solid phase. Phys. Rev. B 78, 104021 (2008).15.

Chrissafis, K., Paraskevopoulos, K. M. & Manolikas, C. Studying Cu Se phase transformation through DSCexamination. J. Therm. Anal. Cal. 84, 195–199 (2006).

16.

Skomorokhov, A. N., Trots, D. M., Knappb, M., Bickulova, N. N. & Fuess, H. Structural behaviour of β-Cu Se (δ=0,0.15, 0.25) in dependence on temperature studied by synchrotron powder diffraction. J. Alloys Compounds 421, 64–71(2006).

17.

Heyding, R. D. & Murry, R. M. The crystal structures of Cu Se, Cu Se , α- and γCuSe, CuSe , and CuSe II. Can. J.

Chem. 54, 841–848 (1976).18.

Oliveria, M., McMullan, R. K. & Wuensch, B. J. Single crystal neutron diffraction analysis of the cation distribution in thehigh-temperature phases α−Cu S, α−Cu Se, and α−Ag Se. Solid State Ion. 28-30, 1332–1337 (1988).

19.

Borchert, W. Gitterumwandlungen im System Cu Se. Z. Kristallogr. 106, 5–24 (1945).20.

Stevels, A. L. N. & Jellinek, F. Phase transformations in copper chalcogenides: I. The copper–selenium system. Recl.

Trav. Chim. 90, 273–283 (1971).21.

m 2+m

4 3−δ

2−x

2−δ

1.8 3 2 2 2

2−x 2−x 2

2−x

Copper ion liquid-like thermoelectrics : Nature Materials : Nature Publis... http://www.nature.com/nmat/journal/v11/n5/pdf/nmat3273.pdf?WT.ec_...

2 de 4 12/02/2014 04:35 p. m.

Sorokin, G. P., Papshev, Yu. M. & Oush, P. T. Photoconductivity of Cu S, Cu Se, and Cu Te. Sov. Phys. Solid State 7,1810–1811 (1966).

22.

Hampl, E. F.Jr & Grove, C. Thermoelectric composition, US patent 3,853,632 (1974).23.

Ohtani, T. et al. Physical properties and phase transitions of βCu Se (0.20≤x≤0.25). J. Alloys Compounds 279,136–141 (1998).

24.

Chatov, V. A., Iorga, T. P. & Inglizyan, P. N. Ionic conduction and diffusion of copper in copper selenide. Fiz. Tekh.

Poluprovodn. 14, 807–809 (1980).25.

Boyce, J. B. & Huberman, B. A. Superionic conductors: Transitions, structures, dynamics. Phys. Rep. 51, 189–265(1979).

26.

Takahashi, T., Yamamoto, O., Matsuyama, F. & Noda, Y. Ionic conductivity and coulometric titration of copper selenide.J. Solid State Chem. 16, 35–39 (1976).

27.

Kashida, S. & Akai, J. X-ray diffraction and electron microscopy studies of the room-temperature structure of Cu Se. J.Phys. C 21, 5329–5336 (1988).

28.

Slack, G. A. The thermal conductivity of nonmetallic crystals. Solid State Phys. 34, 1–71 (1979).29.

Capps, J., Drymiotis, F., Lindsey, S. & Tritt, T. M. Significant enhancement of the dimensionless thermoelectric figure ofmerit of the binary Ag Te. Phil. Mag. Lett. 90, 677–681 (2010).

30.

Gascoin, F. & Maignan, A. Order–disorder transition in AgCrSe : A new route to efficient thermoelectrics. Chem. Mater.

23, 2510–2513 (2011).31.

Chalfin, E., Lu, H. & Dieckmann, R. Cation tracer diffusion in the thermoelectric materials Cu Mo Se and ‘β-Zn Sb ’.Solid State Ion. 178, 447–456 (2007).

32.

Snyder, G. J., Christensen, M., Nishibori, E., Caillat, T. & Iversen, B. B. Disordered zinc in Zn Sb with phonon-glassand electron-crystal thermoelectric properties. Nature Mater. 3, 458–463 (2004).

33.

Download references

Author informationAffiliationsCAS Key Laboratory of Energy-conversion Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences,Shanghai 200050, ChinaHuili Liu, Xun Shi & Lidong Chen

Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaHuili Liu

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics,Chinese Academy of Sciences, Shanghai 200050, ChinaXun Shi, Fangfang Xu, Linlin Zhang & Wenqing Zhang

Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York11973, USAQiang Li

2 2 2

2−x

2

2

2

3 6 8 4 3

4 3

Copper ion liquid-like thermoelectrics : Nature Materials : Nature Publis... http://www.nature.com/nmat/journal/v11/n5/pdf/nmat3273.pdf?WT.ec_...

3 de 4 12/02/2014 04:35 p. m.

Nature Materials ISSN 1476-1122 EISSN 1476-4660

© 2012 Macmillan Publishers Limited. All Rights Reserved.

partner of AGORA, HINARI, OARE, INASP, ORCID, CrossRef and COUNTER

Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USACtirad Uher

Department of Materials Science, California Institute of Technology, Pasadena, California 91125, USATristan Day & G. Jeffrey Snyder

ContributionsH.L. and X.S. prepared the samples and measured the thermoelectric properties. F.X., W.Z., L.C., Q.L., G.J.S. and C.U.provided discussion on the experimental data. F.X. and L.Z. performed TEM measurements and analysis. T.D. and G.J.S.performed room-temperature speed of sound measurements. H.L., X.S., L.C., Q.L., C.U. and G.J.S. wrote and edited themanuscript.

Competing financial interestsThe authors declare no competing financial interests.

Corresponding authors

Correspondence to: Xun Shi or Lidong Chen

Supplementary information

PDF files

Supplementary Information (324 KB)Supplementary Information

1.

Copper ion liquid-like thermoelectrics : Nature Materials : Nature Publis... http://www.nature.com/nmat/journal/v11/n5/pdf/nmat3273.pdf?WT.ec_...

4 de 4 12/02/2014 04:35 p. m.