cta09 heli

16
Published in IET Control Theory and Applications Received on 23rd March 2008 Revised on 11th November 2008 doi: 10.1049/ie t-cta.200 8.0103 ISSN 1751-8644 Approximation-based control of uncertain helicopter dynamics S.S. Ge B. Ren K.P. T ee T.H. Lee * Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 * Institute for Infocomm Research, A STAR, Singapore 138632 E-mail: [email protected] Abstract: In this study, the altitude and yaw angle tracking is considered for a scale model helicopter, mounted on an experimental platform, in the presence of model uncertainties, which may be caused by unmodelled dynamics, or aerodynamical disturbances from the environment. To deal with the uncertainties, approximation-based techniques using neural network (NN) are proposed. In particular, two different types of NN, namely multilayer neural network and radial basis function neural network are adopted in control design and stability analysis. Based on Lyapunov synthesis, the proposed adaptive NN control ensures that both the altitude and the yaw angle track the given bounded reference signals to a small neighbourhood of zero, and guarantees semiglobal uniform ultimate boundedness of all the closed-loop signals at the same time. The effectiveness of the proposed control is illustrated through extensive simulations. Compared with the model-based control, approximation-based control yields better tracking performance in the presence of model uncertainties. 1 Introduction Hel ico pt ers are inher ent ly uns table wit hout cl ose d-l oop control, different from many classes of mechanical systems th at are natu ra ll y pass iv e or diss ip ativ e. Un re st ra ined helicopter motion is governed by underactuated conguration i.e. the number of control inputs is less than the number of degrees of freedom to be stabilised, which makes it difcult to appl y the conv enti onal robotics appr oach for cont rol ling Eule r– La gr an ge sy stems. In addi ti on , th e helico pt er  dynamics are highly nonlinear and strongly coupled, such that dis tu rba nc es alo ng a si ngl e deg ree of freed om can easily propagate to the other degrees of freedom and lead to loss of per for mance or even des tab il isati on. The ref or e ens uri ng st abi li ty in hel ic opt er i ght is a ch all enging pr obl em for nonlinear control design and developme nt. Increasing effort has been made towards control design that guar ant ees st ab il it y for hel ico pt er sy st ems . Man y techniques have been pr opos ed in the li teratu re for the motion control of helicopters, which range from feedback li nea risati on to model reference ada pt ive cont rol and dyn amic inver si on. Dynam ic sliding mode control was propos ed for helicopter vertical regulation in  [1]. Output tr ac ki ng wi th nonhy perbo li c and near nonhyperb ol ic internal dynamics in helicopter hover control was discussed in  [2]. In  [3], approximate input–output linearisation was emp loye d to obt ain a dyna mic all y lin eari sabl e heli cop ter sys tem wit hout zero -dyn amics, and out put tra cki ng was ach ieved. In  [4], a hi gh- ban dwi dt h  H 1  loop shap ing con trol was des igne d and tes ted for a rob oti c heli cop ter. Internal model-based control was applied to the nonlinear motion control of a helicopter in  [5]. In  [6], model-based control was applied to the altitude and yaw angle tracking of a Lagrangian helicopter model. Since helicopter control applic ations are charac terise d by unknown aerodynami cal disturbances, it is gene ral ly dif cu lt to model acc ura tel y.  The presence of modelling errors, in the form of parametric and fun cti onal unc ert aint ies , unmodel led dyna mic s and disturbances from the environment, is a common problem. In t hi s contex t, mo de l- ba s ed co nt ro l, su ch as th e af orementi oned schemes, te nds to be susc ep ti bl e to unc ert ai nt ies and di st urbances that caus e perform anc e deg radati on. How to handl e model uncer tainti es and disturbances is one of the important issues in the control of helico pt ers. Owin g to th e un iv er sal ap pr ox imatio n cap abi lit ies , lear nin g and adap tat ion , par all el dis tri but ed struct ur es of neura l net wor ks (NNs ), the feasibil it y of  IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941 – 956 941 doi: 10.1049/iet-cta.2008.0103  & The Institution of Engineering and Technology 2009 www.ietdl.org Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Upload: meropeatla

Post on 03-Jun-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 1/16

Page 2: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 2/16

applying NN to model unknown functions in dynamicsystems has been demonstrated in several studies   [7–12]

 As such, several flight control approaches using NN havebeen proposed. Among of them, approximate dynamicinversion with augmented NN was proposed to handleunmodelled dynamics in [13– 15], whereas neural dynamic

programming was shown to be effective for tracking andtrimming control of helicopters in   [16]. During theadaptive trajectory control of autonomous helicopter in [17]and   [18], the method of pseudocontrol hedging was usedto protect the adaptation process from actuator limits anddynamics. In   [19], MIMO output feedback adaptive NNcontrol was proposed for an autonomous scale modelhelicopter mounted in a 2-degree-of-freedom (2DOF)platform. In  [20], robust adaptive NN based on the mean

 value theorem and the implicit function theorem wasproposed to handle the nonaffine nonlinearities in thehelicopter dynamics without the construction of the

dynamic inversion.

In this paper, motivated by   [6], where the exact modeldynamics are known, we consider the altitude and yaw angletracking for a scale model helicopter mounted on anexperimental platform in the presence of model uncertainties,

 which may be caused by unmodelled dynamics, sensor errorsor aerodynamical disturbances from the environment.Compared with the model-based control used in   [6],approximation-based control using NN, proposed in thispaper, can accommodate the presence of model uncertainties,reduce the dependence on accurate model building, and thus,lead to the tracking performance improvement.

2 Problem formulation andpreliminaries

In the following study,   ~ () ¼   ^() (), let  k k denote the 2-norm,   k kF  denote the Frobenius norm and   j j1   denote1-norm, i.e. given   A  ¼ [a ij ] [ R mn,   k A k2

F   ¼ tr{ A  T A } ¼Pi , j  a 2i , j , and   j A j1  ¼

Pi , j  ja i , j j. The following definition

and technical lemma are required in the subsequent controldesign and stability analysis.

Definition 1   [11] :   The solution   X (t ) is semiglobally uniformly ultimately bounded (SGUUB) if, for any compact set  V0   and all  X (t 0) [ V0, there exists an  m . 0and T (m, X (t 0)) such that  k X (t )k m for all t   t 0 þ T .

Lemma 1:  For  a , b [ R þ, the following inequality holds

ab 

a þ b  a    (1)

2.1 Helicopter dynamics

In this paper, we consider a VARIO scale model helicopter [6] which is mounted on an experimental platform as shown inFig. 1, where the xyz  and  x 1 y 1z1 reference systems represent 

an inertial frame and a body fixed one, respectively. Inaddition,   _f  is the yaw rate and   _g   is the main rotor angular 

 velocity. The counterbalance weight compensates for the weight of the vertical column of the platform. Thehelicopter dynamics is described by Lagrangian formulationin the following  [6]

D (q )€q þ C (q ,   _q )_q þ F (_q ) þ G (q ) þ D(q ,   _q ) ¼ B (_q )t    (2)

 where   q ,   _q   and   €q   are referred as the vectors of generalisedcoordinates, generalised velocities and generalisedaccelerations, respectively. In particular,  q  ¼ [q 1, q 2, q 3] T ¼

[z, f , g ] T  with  z  as the attitude (z . 0 downwards),  f   asthe yaw angle and   g   as the main rotor azimuth angle;

_q  ¼ [_q 1,   _q 2,   _q 3] T ¼ [_z,   _f ,   _g ] T  with   _z as the vertical velocity,_f  as the yaw rate and   _g  as the main rotor angular velocity;

€q  ¼ [€q 1,   €q 2,   €q 3] T ¼ [€z,   €f ,   €g ] T  with   €z   as the vertical

acceleration   €f   as the yaw acceleration and   €g   as the main

rotor angular acceleration; D (q ) [ R 33 is the inertia matrix;C (q ,   _q )_q [ R 31 is the vector of Coriolis and centrifugalforces;   F (_q ) [ R 31 is the vector of friction forces;G (q ) [ R 31 is the vector of gravitational forces;D(q ,   _q ) [ R 31 is the vector of the model uncertainties,

 which may be caused by unmodelled dynamics, sensor errorsor aerodynamical disturbances from the environment;B (_q ) [ R 32 is the matrix of control coefficients; and thecontrol inputs   t ¼ [t 1, t 2] T [ R 21 are the main and tailrotor collectives (swash plate displacements), respectively. By exploiting the physical properties of the helicopter, e.g. how the control inputs are distributed to the helicopter dynamics,

or the coupling relationship between the states, better performance can be achieved. To this end, we assume partialknowledge of the structure of the dynamics   [6], although

Figure 1   Helicopter-platform [6]

942   IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941–956

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cta.2008.0103

www.ietdl.org

Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Page 3: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 3/16

Page 4: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 4/16

 The ideal weight vector  W  is defined as the value of  W  that minimises  j1(Z )j for all Z [ VZ  , R m, i.e.

W  ¼ argminW 

{ supZ [VZ 

j  f   (Z ) W  TS (Z )j}

In general, the ideal weights W  are unknown and need to beestimated in control design. Let   W  be the estimates of  W ,and the weight estimation errors   ~ W   ¼  W   W .

2.2.2 Function approximation using MNN:  In thispaper, we also consider nonlinearly parameterised MNN,

 which is used to approximated the continuous function  f   (Z ) : R m ! R  as follows

  f   (Z ) ¼ W  TS (V  TZ ) þ 1(Z )

 where the vector  Z  ¼ [z1, z2,  :::, zm, 1] T[ VZ  , R mþ1 are

the input variables to the NNs; S () [ R l  is a vector of knowncontinuous basis functions, with   l   denoting the number of neural nodes;   W   [ R l  and   V   [ R (mþ1)l  are adaptable

 weights; and   1(Z ) is the approximation error which isbounded over the compact set     VZ , i :e : j1(Z )j   1,8Z [ VZ  where   1 . 0 is an unknown constant. According to the universal approximation property   [21], MNN cansmoothly approximate any continuous function  f   (Z ) over a compact set  VZ  , R mþ1 to arbitrary any degree of accuracy as that 

  f   (Z ) ¼ W  TS (V  TZ ) þ 1(Z ),   8Z [ VZ  , R mþ1

 where W  and V  are the ideal constant weights, and 1(Z ) is

the approximation error for the special case where  W   ¼ W 

and  V   ¼ V . The ideal weights  W  and  V  are defined asthe values of   W   and   V   that minimise   j1(Z )j   for allZ [ VZ  , R mþ1, i.e.

(W , V )   :¼ arg min(W ,V )

{ supZ [VZ 

j  f   (Z ) W  TS (V  TZ )j}

 Assumption 7:   On the compact set   VZ , the ideal NN weights W , V  are bounded by 

kW k wm,   kV kF   v m

In general, the ideal weights  W  and  V  are unknown andneed to be estimated in control design. Let   W   and  V   bethe estimates of   W  and   V , respectively, and the weight estimation errors   ~ W   ¼  W   W  and   ~ V   ¼  V   V .

Lemma 2 [11] :  Using  f  mnn  ¼  W  TS ( V  TZ ) to approximatethe ideal function   f   (Z ), its approximation error can beexpressed as

^

 T

S ( ^

 T

Z ) W 

 T

S (V 

 T

Z )

¼   ~ W  T

(S   S 0V  TZ ) þ  W  TS 0 ~ V  T

Z þ d u 

 where  S  ¼ S ( V  TZ ),  S 0 ¼ diag {S 01,  S 02,   . . . ,  S 0l } with

S 0i   ¼ S 0(v  Ti  Z ) ¼d[s (za )]

dza 

jza ¼v  Ti  Z 

and the residual term d u  is bounded by 

jd u j kV kF kZ  W  TS 0kF   þ kW kkS 0V  TZ k þ jW j1

 Throughout this paper, we employ sigmoidal functions asbasis functions for the MNN, which are defined by 

s i (za ) ¼1

1 þ emza ,   i  ¼ 1, 2,   . . . , l    (8)

 where  m . 0 is a design constant.

3 Control design

Motivated by the previous work on model-based control of helicopters   [6], we will design adaptive neural control toaccommodate the presence of uncertainties in the dynamics(2), appearing in the functions   D (q ),   C (q ,   _q ),   F (_q ),   G (q ),D(q ,   _q ) and  B (_q ). After some simple manipulations on (2)and (3), we can obtain three subsystems:  q 1   subsystem (9),q 2   subsystem (10) and  q 3  subsystem (11) as follows

d 11 €q 1 þ  f  1(_q 3) þ g 1 þ D1(q ,   _q ) ¼ b 11(_q 3)t 1   (9)

d 22(q 3)d 33 d 

2

23d 33

€q 2 þ c 22(q 3,   _q 3)_q 2 þ c 23(q 3,   _q 2)_q 3

þ D2(q ,   _q ) þd 23

d 33

(b 31(_q 3)t 1 c 32(q 3,   _q 2)_q 2

  f  3(_q )  g 3 D3(q ,   _q )) ¼ b 22(_q 3)t 2   (10)

d 22(q 3)d 33 d 223

d 22(q 3)  €q 3 þ c 32(q 3,   _q 2)_q 2 þ  f  3(_q 3) þ g 3

þ D3(q ,   _q ) þd 23

d 22(q 3)(b 22(_q 3)t 2 c 22(q 3,   _q 3)_q 2

c 23(q 3,   _q 2)_q 3 D2(q ,   _q )) ¼ b 31(_q 3)t 1   (11)

In the following, we will analyse and design control for eachsubsystem. For clarity, define the tracking errors and thefiltered tracking errors as

e i  ¼ q i  q id ,   r i  ¼   _e i  þ li e i    (12)

 where   li    is a positive number,   i  ¼ 1, 2. Then, theboundedness of   r i  guarantees the boundedness of   e i   and   _e i [22–25]. To study the stability of   e i   and   _e i , we only needto study the properties of   r i . In addition, the following computable signals are defined

_q ir   ¼   _q id   li e i ,   €q ir   ¼   €q id   li _e i 

944   IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941–956

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cta.2008.0103

www.ietdl.org

Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Page 5: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 5/16

3.1 RBFNN-based control 

In this section, we will investigate the RBFNN-based controldesign by Lyapunov synthesis to achieve the control objective.Regarding the obtained three subsystems (9) –(11), our control design consists of three steps: first, we will design

control  t 1  based on the  q 1  subsystem (9) second, design  t 2based on the   q 2  subsystem (10) and  t 1; finally, analyse thestability of internal dynamics of  q 3  subsystem (11).

3.1.1 q1   subsystem:  Since   _q 1  ¼   _q 1r  þ r 1,   €q 1  ¼   €q 1r  þ _r 1,(9) becomes

d 11 _r 1  ¼ b 11(_q 3)t 1   f  S 1,1   (13)

 where

  f  S 1,1  ¼ d 11 €q 1r  þ  f  1(_q 3) þ g 1 þ D1(q ,   _q ) (14)

is an unknown continuous function, which is approximatedby RBFNN to arbitrary any accuracy as

  f  S 1,1  ¼ W  T1   S 1(Z 1) þ 11(Z 1) (15)

 where the input vector    Z 1  ¼ [q 1,   _q 1,   q 2,   _q 2,   q 3,   _q 3,_q 1d ,   €q 1d ]

 T[ VZ 1 , R 8;   11(Z 1) is the approximation error 

satisfying   j11(Z 1)j   11, where   11   is a positive constant;W 1   are ideal constant weights satisfying   kW 1 k w1m,

 where  w1m   is a positive constant; and  S 1(Z 1) are the basis

functions. By using   ^

W 1   to approximate   W 

1 , the error between the actual and the ideal RBFNN can beexpressed as

W 1 TS 1(Z 1) W  T

1   S 1(Z 1) ¼   ~ W 1 T

S 1(Z 1) (16)

 where   ~ W 1  ¼  W 1 W 1 .

Consider the following Lyapunov function candidate

V 1  ¼1

2d 11r 21  þ

1

2~ W 1

 TG

11

  ~ W 1   (17)

 The time derivative of (17) along (13) and (15) is given by 

_V 1  ¼ d 11r 1 _r 1 þ   ~ W 1 TG

11

_~ W 1

¼ r 1[b 11(_q 3)t 1 W  T1   S 1(Z 1) 11(Z 1)] þ   ~ W 1

 TG

11

_~ W 1

(18)

 As   W 1   is a constant vector, we know that    _~ W 1  ¼  _W 1.

 Therefore (18) becomes

_V 1  ¼ r 1[b 11(_q 3)t 1 W  T1   S 1(Z 1) 11(Z 1)] þ   ~ W 1 TG1

1 _W 1

(19)

Consider the following RBFNN based control law andRBFNN weight adaptation law 

t 1  ¼ k1r 1 r 1(  W 1

 TS 1(Z 1))2

b 11(jr 1  W 1 TS 1(Z 1)j þ d 1)

(20)

_W 1  ¼ G1[S 1(Z 1)r 1 þ s 1  W 1] (21)

 where  k1 . 0,  d 1 . 0,  G1  ¼ G T1   . 0, and  s 1 . 0.

Remark 4:  The above  s -modification adaptation law (21)can be replaced by   e -modification adaptation law like

_W 1  ¼ G1[S 1(Z 1)r 1 þ s 1jr 1j  W 1] easily. The control designbased on   s -modification adaptation law in this paper canbe extended to the case based on  e -modification adaptationlaw without any difficulty.

Substituting (20) and (21) into (19), we have

_V 1  ¼ k1b 11(_q 3)r 21  b 11(_q 3)

b 11

r 21 (  W 1 TS 1(Z 1))2

jr 1  W 1 T

S 1(Z 1)j þ d 1

r 1W  T1

S 1(Z 1) r 111(Z 1) r 1   ~ W 1 T

S 1(Z 1) s 1  ~ W 1

 TW 1

(22)

 According to Assumption 3 and (16), we can rewrite (22) as

_V 1   k1b 11r 21  r 21 (  W 1

 TS 1(Z 1))2

jr 1  W 1 T

S 1(Z 1)j þ d 1

r 1  W 1 TS 1(Z 1) r 111(Z 1) s 1

  ~ W 1 TW 1

k1b 11r 21  r 21 (  W 1

 TS 1(Z 1))2

jr 1  W 1 T

S 1(Z 1)j þ d 1

þ jr 1  W 1 TS 1(Z 1)j þ jr 1k11(Z 1)j s 1

  ~ W 1 T

W 1   (23)

Noting that 

r 21 (  W 1

 TS 1(Z 1))2

jr 1  W 1 T

S 1(Z 1)j þd 1

þ jr 1  W 1 TS 1(Z 1)j ¼

jr 1  W 1 TS 1(Z 1)jd 1

jr 1  W 1 T

S 1(Z 1)j þd 1

(24)

 According to Lemma 1, we can obtain from (24) that 

r 21 (  W 1

 TS 1(Z 1))2

jr 1  W 1 T

S 1(Z 1)j þ d 1

þ jr 1  W 1 TS 1(Z 1)j d 1   (25)

By completion of squares and using Young’s inequality, thefollowing inequalities hold

s 1  ~ W 

 T

1 W 1  

s 12

  k   ~ W 1k2

þs 12

  kW 1k2 (26)

jr 1k11(Z 1)j r 212c 1

þc 11

21(Z 1)

r 212c 1

þc 1 12

1

2  (27)

IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941 – 956 945

doi: 10.1049/iet-cta.2008.0103   & The Institution of Engineering and Technology 2009

www.ietdl.org

Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Page 6: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 6/16

 where   c 1   is a positive constant. Substituting the aboveinequalities (25)–(27) into (23) leads to

_V 1   k1b 11 1

2c 1

r 21  

s 12

  k   ~ W 1k2

þ d 1 þc 12

  121 þ

s 12

 w21m

12

d 112k1b 11 (1=c 1)

d 11

r 21   12

s 1

lmax(G11   )

  ~ W 1 TG

11

  ~ W 1 þ d 1 þc 12

  121 þ

s 12

  w21m

min  2k1b 11 (1=c 1)

d 11

,  s 1

lmax(G11   )

( )

1

2d 11r 21  þ

1

2~ W 1

 TG

11

  ~ W 1

þ d 1 þ

c 12

  121 þ

s 12

  w21m

l10V 1 þ m10   (28)

 where l10 ¼ min (2k1b 11 1=c 1)=d 11, s 1=lmax(G11   )

, m10 ¼

d 1 þc 12   1

21 þ

s 12  w2

1m.

3.1.2 q2   subsystem:   Similar to Section 3.1.1, since_q 2  ¼   _q 2r  þ r 2,   €q 2  ¼   €q 2r  þ _r 2, (10) becomes

d 22(q 3)d 33 d 223

d 33

_r 2 þ c 22(q 3,   _q 3)r 2  ¼ b 22(_q 3)t 2   f  S 2,1   (29)

 where

  f  S 2,1  ¼d 22(q 3)d 33 d 223

d 33

€q 2r  þ c 22(q 3,   _q 3)_q 2r  þ c 23(q 3,   _q 2)_q 3

þ D2(q ,   _q ) þd 23

d 33

(b 31(_q 3)t 1 c 32(q 3,   _q 2)_q 2

  f  3(_q 3)  g 3 D3(q ,   _q ))

is an unknown function, which is approximated by RBFNNto arbitrary any accuracy as

  f  S 2,1  ¼ W  T

2   S 2(Z 2) þ 12(Z 2) (30)

 where the input vector    Z 2  ¼ [t 1,   q 1,   _q 1,   q 2,   _q 2,   q 3,

_q 3,   q 2d ,   _q 2d ,   €q 2d ] T[ VZ 2

, R 10,   12(Z 2) is theapproximation error satisfying   j12(Z 2)j   12, where   12  is anunknown positive constant; W 

2  are unknown ideal constant  weights satisfying   kW 2 k w2m, where w2m   is an unknownpositive constant; and   S 2(Z 2) are the basis functions. By using   W 2   to approximate  W 2  , the error between the actualand the ideal RBFNN can be expressed as

W  T

2 S 

2(Z 

2) W  T

2  S 

2(Z 

2) ¼   ~ W 

 T

2S 

2(Z 

2) (31)

 where   ~ W 2  ¼  W 2 W 2 .

 To analyse the closed-loop stability for the  q 2  subsystem,let 

V 2  ¼1

2

d 22(q 3)d 33 d 223

d 33

r 22  þ1

2~ W 

 T

2 G12

  ~ W 2   (32)

Lemma 3:   The function   V 2   (32) is positive definite anddecrescent, in the sense that there exist two time-invariant positive definite functions V 2(r 2,   ~ W 2) and   V 2(r 2,   ~ W 2), suchthat 

V 2(r 2,   ~ W 2) V 2     V 2(r 2,   ~ W 2)

Proof:  Noting that the particular choice of   V 2   in (32), a function of   r 2,   ~ W 2   and  d 22(q 3), is to establish the stability for   r 2   and   ~ W 2   only; therefore, we regard   d 22(q 3) a s a  function of time. From Assumptions 1 and 4, we know that 

0 , jd 22jd 33j d 223j

jd 33j, j d 22(q 3)d 33 d 

223

d 33

j d 22jd 33j þ d 

223

jd 33j

(33)

 Therefore there also exist time-invariant positive definitefunctions  V 2(r 2,   ~ W 2) and   V 2(r 2,   ~ W 2), such that  V 2(r 2,   ~ W 2) V 2     V 2(r 2,   ~ W 2), which implies that   V 2   is also positivedefinite and decrescent, according to   [25]. This completesthe proof.   A

 The time derivative of (32) is given as

_V 2  ¼ 12 _d 22(q 3)r 22  þ d 22(q 3)d 33 d 

2

23d 33

r 2 _r 2 þ   ~ W  T2 G12 _~ W 2

(34)

 According to Assumption 2, (34) becomes

_V 2  ¼ r 2d 22(q 3)d 33 d 223

d 33

_r 2 þ c 22(q 3,   _q 3)r 2

" #þ   ~ W 

 T

2 G12

_~ W 2

(35)

 As W 2  is a constant vector, it is easy to obtain that 

_~ W 2  ¼   _W 2   (36)

Substituting (29), (30) and (36) into (35), we have

_V 2  ¼ r 2   b 22(_q 3)t 2 W T 2   S 2(Z 2) 12(Z 2)

þ   ~ W 

 T

2 G12

_W 2

(37)

Consider the following RBFNN-based control law andRBFNN weight adaption law 

t 2  ¼ k2r 2 þr 2(  W 2

 TS 2(Z 2))2

b 22(jr 2  ^

W 2 T

S 2(Z 2)j þ d 2)

(38)

_W 2  ¼ G2[S 2(Z 2)r 2 þ s 2

 W 2] (39)

946   IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941–956

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cta.2008.0103

www.ietdl.org

Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Page 7: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 7/16

 where k2 . 0, d 2 . 0,G2  ¼ G T2   . 0ands 2 . 0. Substituting 

(38) and (39) into (37), we have

_V 2 ¼ k2b 22(_q 3)r 21 þb 22(_q 3)

b 22

r 22 (  W 2 TS 2(Z 2))2

jr 2  W 2 T

S 2(Z 2)jþd 2

r 2W  T2   S 2(Z 2)

r 212(Z 2)r 2   ~ W 2 TS 2(Z 2)s 2

  ~ W 2 TW 2   (40)

 According to Assumption 3 and (31), we can rewrite (40) as

_V 2 k2b 22r 22 r 22 (  W 2

 TS 2(Z 2))2

jr 2  W 2 T

S 2(Z 2)j þd 2

r 2  W 2 TS 2(Z 2)r 212(Z 2) s 2

  ~ W 2 T

W 2

k2b 22r 22 r 22 (  W 2

 TS 2(Z 2))2

jr 2  W 2 T

S 2(Z 2)j þd 2

þjr 2  W 2 TS 2(Z 2)j þjr 2k12(Z 2)j s 2

  ~ W 2 T

W 2   (41)

Similar to (25), we have

r 22 (  W 2

 TS 2(Z 2))2

jr 2  W 2 T

S 2(Z 2)jþ d 2

þjr 2  W 2 TS 2(Z 2)j d 2   (42)

By completion of squares and using Young’s inequality, thefollowing inequalities hold

s 2  ~ W 

 T

2 W 2

s 2

2

 k   ~ W 2k2

þs 2

2

 kW 2k2 (43)

jr 2k12(Z 2)j r 222c 2

þc 21

22(Z 2)

r 222c 2

þc 2 1

22

2  (44)

 where   c 2   is a positive constant. Substituting the aboveinequalities (42)–(44) into (41) leads to

_V 2   k2b 22 1

2c 2

r 22

s 22

 k   ~ W 2k2

þd 2 þc 22

 122 þ

s 22

 w22m

l20V 2 þm20   (45)

 where   l20 ¼ min{(2k2b 22 1=c 2)jd 33j=( d 22jd 33jþ d 223),s 2=

lmax(G12   )}, m20 ¼d 2 þ

c 22 1

22 þ

s 22 w2

2m.

3.1.3 q3   subsystem:  Finally, using the designed controllaws (20) and (38), the  q 3-subsystem (1) can be rewritten as

_h ¼ c (j , h , u ) (46)

 where  h ¼ [q 3,   _q 3] T,  j ¼ [q 1, q 2,   _q 1,   _q 2] T, u  ¼ [t 1, t 2] T.

 Then, the zero-dynamics can be addressed as [26]

_h ¼ c (0, h , u 

(0, h )) (47)

 where  u  ¼ [t 1, t 2] T.

 Assumption 8  [26] :  System (9) (10) (11) is hyperbolically minimum-phase, i.e. zero-dynamics (47) is exponentially stable. In addition, assume that the control input   u   isdesigned as a function of the states (j ,  h ) and the referencesignal satisfying Assumption 5, and the function   f   (j , h , u )is Lipschitz in   j , i.e. there exist constants   Lj   and   L  f    for 

  f   (j , h , u ) such that 

k  f   (j , h , u )   f   (0,  h , u h )k Lj kj k þ L  f     (48)

 where  u h  ¼ u (0, h ).

Under Assumption 8, by the Converse Theorem of Lyapunov  [27], there exists a Lyapunov function V 0(h ) whichsatisfies

g a kh k2

V 0(h ) g b kh k2 (49)

@V 0@h 

 f   (0,  h , u h ) la kh k2 (50)

k@V 0@h 

  k lb kh k   (51)

 where g a , g b , la  and  lb  are positive constants.

Lemma 4  [26] :  For the internal dynamics   _h ¼  f   (j , h , u )of the system, if Assumption 8 is satisfied, and the states  j are bounded by a positive constant    kj kmax, i.e.kj k kj kmax, then there exist positive constants   Lh   andT 0, such that 

kh (t )k Lh ,   8t  > T 0   (52)

Proof: According to Assumption 8, there exists a Lyapunov function   V 0(h ). Differentiating   V 0(h ) along (9), (10), and(11) yields

_V 0(h ) ¼@V 0@h 

 f   (j , h , u )

¼@V 0@h 

 f   (0,  h , u h ) þ@V 0@h 

 [  f   (j , h , u )   f   (0,  h , u h )]

(53)

Noting (48)–(51), (53) can be written as

_V 0(h ) la kh k2

þ lb kh k(Lj kj k þ L  f   )

la kh k2

þ lb kh k(Lj kj kmax þ L  f   )

 Therefore   _V 0(h ) 0, whenever 

kh k lb 

la 

(Lj kj kmax þ L  f   )

By letting   Lh  ¼ lb =r la (Lj kj kmax þ L  f    ), we conclude that there exists a positive constant  T 0, such that (52) holds.   A

IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941 – 956 947

doi: 10.1049/iet-cta.2008.0103   & The Institution of Engineering and Technology 2009

www.ietdl.org

Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Page 8: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 8/16

 The following theorem shows the stability and controlperformance of the closed-loop system.

Theorem 1:  Consider the closed-loop system consisting of the subsystems (9)–(11), the control laws (20), (38) and

adaptation laws (21), (39). Under Assumptions 1–8, theoverall closed-loop neural control system is SGUUB in thesense that all of the signals in the closed-loop system arebounded, and the tracking errors and neural weightsconverge to the following regions

je 1j je 1(0)j þ1

l1

 ffiffiffiffiffiffiffiffi2m1

d 11

s   ,   k  W 1k

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2m1

lmin(G11   )

s   þ w1m

je 2j je 2(0)j þ1

l2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2jd 33jm2

jd 22jd 33j d 223j

s   ,

k  W 2k

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2m2

lmin(G12   )

s   þ w2m

(54)

 with

mi  ¼mi 0

li 0

þ V i (0),  mi 0 ¼ d i  þ1

2 1

2i   þ

s i 2

 w2im,   i ¼ 1, 2

l10 ¼ min{(2k1b 11 1=c 1)=d 11, s 1=lmax(G11   )}

l20 ¼ min{(2k2 1=c 2)jd 33j=( d 22jd 33j þ d 223), s 2=lmax(G12   )}

 where   e i (0) and   V i (0) are initial values of   e i (t ) and   V i (t ),respectively.

Proof: Based on the previous analysis, the proof also proceedsby studying each subsystem in order. First, the closed-loopstability analysis of  q 1 subsystem (9) with control t 1 (20) andadaptation law (21) is made by using Lyapunov synthesis.Second, similar closed-loop stability will be achieved on  q 2subsystem (10) with   t 2   (38) and adaptation law (39).Finally, the stability analysis of internal dynamics of   q 3subsystem (11) is made based on the stability of the previoustwo subsystems.

q 1-subsystem:   Solving the inequality (109), we have0 V 1(t ) m1   with   m1  ¼ (m10=l10) þ V 1(0). Then, fromthe definition of  V 1(t ) (17), we can obtain

jr 1j

 ffiffiffiffiffiffiffiffi2m1

d 11

s   ,   k   ~ W 1k

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2m1

lmin(G11   )

s   (55)

Since   _e 1  ¼ l1e 1 þ r 1, solving this equation results in

e 1  ¼ el1t e 1(0) þ

ð t 

0el1(t t )r 1 dt    (56)

 According to (55) and (56), we have

je 1j je 1(0)j þ1

l1

 ffiffiffiffiffiffiffiffi2m1

d 11

s   (57)

Noting   q 1  ¼ e 1 þ q 1d ,  W 1  ¼   ~ W 1 þ W 1 ,   kW 1 k w1m   and Assumption 5, we obtain

jq 1j je 1j þ jq 1d j je 1(0)j þ1

l1

 ffiffiffiffiffiffiffiffi2m1

d 11

s   þ jq 1d j [ L

1

k  W 1k k   ~ W 1k þ kW 1 k

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2m1

lmin(G11   )

s   þ w1m [ L

1

Since the control   t 1   is a function of   r 1   and  W 1, its

boundedness is also guaranteed.

q 2-subsystem: Similar to the analysis of  q 1 subsystem, we have

jr 2j

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2jd 33jm2

d 22jd 33j d 223

  ,   k   ~ W 2k

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2m2

lmin(G12   )

s   (58)

Furthermore, we obtain

je 2j je 2(0)j þ1

l2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2jd 33jm2

jd 22jd 33j d 223j

s jq 2j je 2j þ jq 2d j je 2(0)j

þ1

l2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2jd 33jm2

jd 22jd 33j d 223j

s   þ jq 2d j [ L

1

k  W 2k k   ~ W 2k þ kW 2 k

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2m2

lmin(G12   )

s   þ w2m [ L

1  (59)

and thus the boundedness of control  t 2.

q 3-subsystem: From the previous stability analysis about the q 1subsystem and the q 2 subsystem, we know that  q 1,   q 2,   _q 1,   _q 2are bounded. Accordingly,   j   are bounded. According toLemma 5, we know that the internal dynamics is stable,i.e.  h (q 3  and   _q 3) are bounded. All the signals in the closed-loop system are bounded. This completes the proof.   A

3.2 MNN-based control 

Nonlinearly parameterised approximators, such as MNN, canbe linearised by Taylor series expansions,with the higher order terms being taken as part of the modelling error. Due to the

nonlinear parameterisation, the control design and stability analysis involving MNN are more complex than that basedon the linearly parameterised network RBFNN.

948   IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941–956

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cta.2008.0103

www.ietdl.org

Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Page 9: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 9/16

3.2.1 q1   subsystem:   Similar to the RBFNN case inSection 3.1.1, (9) is written as

d 11 _r 1  ¼ b 11(_q 3)t 1   f  S 1,1   (60)

 where the unknown continuous function

  f  S 1,1  ¼ d 11 €q 1r  þ  f  1(_q 3) þ g 1 þ D1(q ,   _q ) (61)

is approximated by MNN to arbitrary any accuracy as

  f  S 1,1  ¼ W  T1   S 1(V  T

1   Z 1) þ 11(Z 1) (62)

 where the input vector   Z 1  ¼ [q 1,   _q 1,   q 2,   _q 2,   q 3,   _q 3,   _q 1d ,€q 1d , 1] T [ VZ 1

, R 9;   11(Z 1) is the approximation error satisfying   j11(Z 1)j   11, where   11   is a positive constant;W 1   and  V 1   are unknown ideal constant weights satisfying 

kW 

1 k w1m,   kV 

1 kF   v 1m, which are positive constants.By using   W  T1  S 1(  V  T1  Z 1) to approximate  W  T

1   S 1(V  T1   Z 1), the

error between the actual and the ideal MNN can beexpressed as

W  T1  S (  V  T1  Z 1) W  T1   S (V  T

1   Z 1)

¼   ~ W  T1 (S 1  S 01  V  T1  Z 1) þ  W  T1  S 01   ~ V 

 T1 Z 1 þ d u 1   (63)

 where  S 1  ¼ S ( V  T1  Z 1),  S 01  ¼ diag {s 01,   s 02,   . . . ,   s 0l } with

^s 

0

i  ¼ s 0

(^v 

 T

i  Z ) ¼

d[s (za )]

dza  jza ¼v  Ti  Z 

the residual term  d u 1  is bounded by 

jd u 1j kV 1 kF kZ 1  W  T1  S 01kF   þ kW 1 kkS 01  V  T1  Z 1k þ jW 1 j1

(64)

and the weight estimation errors   ~ W 1  ¼  W 1 W 1 ,   ~ V 1  ¼

V 1 V 1 .

Consider the following Lyapunov function candidate

V 1(r 1,   ~ W 1,   ~ V 1) ¼1

2d 11r 21  þ

1

2~ W 1

 TG

1W 1

  ~ W 1 þ1

2tr{   ~ V 1

 TG

1V 1

  ~ V 1}

(65)

 The time derivative of (65) along (60) and (62) is given by 

_V 1  ¼ r 1   b 11(_q 3)t 1 W  T1   S 1(V  T

1   Z 1) 11(Z 1)h i

þ   ~ W 1 TG

1W 1

_~ W 1 þ tr{   ~ V 1 TG

1V 1

_~ V 1} (66)

 As W 1 , V 1  are constant vectors, it is easy to obtain that 

_~ W 1  ¼  _W 1,   _~ V 1  ¼

  _V 1   (67)

Substituting (67) into (66), we have

_V 1  ¼ r 1   b 11(_q 3)t 1 W  T1   S 1(V  T

1   Z 1) 11(Z 1)h i

þ   ~ W 1 TG

1W 1

_W 1 þ tr{   ~ V 1

 TG

1V 1

_V 1} (68)

Consider the following MNN-based control law and MNN weight adaption laws

t 1  ¼ k1r 1 r 1(  W  T1  S (  V  T1  Z 1))2

b 11(jr 1  W  T1  S (  V  T1  Z 1)j þ d 1)

k1r 1b 11

(kZ 1  W  T1  S 01k2F   þ kS 01  V  T1  Z 1k

2) (69)

_W 1  ¼ GW 1[(S 1  S 01  V  T1  Z 1)r 1 þ s W 1

 W 1] (70)

_V 1  ¼ GV 1[Z 1  W  T1  S 01r 1 þ s V 1

 V 1] (71)

 where   k1 . 0,   d 1 . 0,   GW 1  ¼ G TW 1 . 0,   GV 1  ¼ G

 TV 1 . 0,

s W 1 . 0,  s V 1 . 0.

Substituting (69)–(71) in (68), we have

_V 1 ¼ k1b 11(_q 3)r 21 b 11(_q 3)

b 11

r 21  W  T1  S (  V  T1  Z 1) 2

jr 1  W  T1  S ( V  T1  Z 1)j þ d 1

b 11(_q 3)

b 11

k1r 21   kZ 1  W  T1  S 01k2F  þ kS 01  V  T1  Z 1k

2

r 1W  T1   S 1(V  T1   Z 1) r 111(Z 1) r 1   ~ W  T

1 (S 1  S 01  V  T1  Z 1)

s W 1  ~ W 

 T

1 W 1 tr{   ~ V 1

 TZ 1  W  T1  S 01r 1} s V 1tr{   ~ V 1

 TV 1}

(72)

Noting Assumption 3 and the fact that tr{   ~ V 1 T

Z 1  W  T1  S 01r 1} ¼

r 1  W  T1  S 01   ~ V 1 T

Z 1, (72) becomes

_V 1 k1b 11r 21 r 21  W  T1  S ( V  T1  Z 1) 2

jr 1  W  T1  S ( V  T1  Z 1)j þ d 1

k1r 21   kZ 1  W  T1  S 01k2F  þ kS 01  V  T1  Z 1k2

þ jr 1jj11(Z 1)j

r 1W  T1   S 1(V  T

1   Z 1) r 1   ~ W  T

1 (S 1  S 01  V  T1  Z 1)

r 1  W  T1  S 01   ~ V 1 T

Z 1 s W 1  ~ W 

 T

1 W 1 s V 1tr{   ~ V 1

 TV 1} (73)

From (63) and (64), we know 

r 1W  T1   S 1(V  T

1   Z 1) r 1   ~ W  T

1 (S 1 S 01  V  T1  Z 1) r 1  W  T1  S 01   ~ V 1 T

Z 1

¼ r 1  W  T1  S (  V  T1  Z 1) r 1d u 1

jr 1  ^W 

 T

1  S ( ^V 

 T

1  Z 1)j þ jr 1jkV 

1 kF kZ 1  ^W 

 T

1  ^S 

0

1kF 

þ jr 1jkW 1 kkS 01  V  T1  Z 1k þ jr 1jjW 1 j1   (74)

IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941 – 956 949

doi: 10.1049/iet-cta.2008.0103   & The Institution of Engineering and Technology 2009

www.ietdl.org

Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Page 10: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 10/16

Substituting (74) into (73) leads to

_V 1 k1b 11r 21 r 21  W  T1  S (  V  T1  Z 1) 2

jr 1  W  T1  S (  V  T1  Z 1)j þd 1 þ jr 1  W  T1  S (  V  T1  Z 1)j

k1r 21   kZ 1  W  T1  S 01k2F  þ kS 01  V  T1  Z 1k

2

þ jr 1jj11(Z 1)j

þ jr 1jkV 1 kF kZ 1  W  T1  S 01kF  þ jr 1jkW 1 kkS 01  V  T1  Z 1k

þ jr 1jjW 1 j1 s W 1  ~ W 

 T

1 W 1 s V 1tr{   ~ V 1

 TV 1} (75)

 According to Lemma 1,

r 21  W  T1  S ( V  T1  Z 1) 2

jr 1  W  T1  S (  V  T1  Z 1)j þd 1þ jr 1  W  T1  S ( V  T1  Z 1)j

¼jr 1  W  T1  S ( V  T1  Z 1)jd 1

jr 1  W  T1  S (  V  T1  Z 1)j þd 1 d 1   (76)

By completion of squares and using Young’s inequality, thefollowing inequalities hold

jr 1jj11(Z 1)j r 21

2c 11

þc 11 1

21

2  (77)

jr 1jkV 1 kF kZ 1  W  T1  S 01kF   k1r 21 kZ 1  W  T1  S 01k2F  þ

1

4k1

kV 1 k2F 

(78)

jr 1jkW 1 kkS 01  V  T1  Z 1k k1r 21 kS 01  V  T1  Z 1k2

þ1

4k1

kW 1 k2 (79)

jr 1jjW 1 j1 r 21

2c 12

þc 12jW 1 j

21

2  (80)

s W 1  ~ W 

 T

1 W 1

s W 1

2  k   ~ W 1k

2þs W 1

2  kW 1k

2 (81)

s V 1tr{   ~ V 1 T

V 1} s V 1

2  k ~ V 1k

2F  þ

s V 1

2  kV 1 k

2F    (82)

Substituting (76)–(82) into (85), we have

_V 1   k1b 11 1

2c 11

1

2c 12

r 21

s W 1

2  k   ~ W 1k

2

s V 1

2  k ~ V 1k

2F  þd 1 þ

s W 1

2  þ

1

4k1

kW 1 k

2

þs V 1

2  þ

1

4k1

kV 1 k

2F  þ

c 11

2  1

21 þ

c 12jW 1 j21

2

l10V 1 þm10   (83)

 where   l10¼

min{(2k1b 11

1=c 11

1=c 12)=d 11,   s W 1=lmax(G1

W 1),s V 1=lmax(G1V 1)},m10 ¼ d 1 þ(s W 1=2 þ 1=4k1)kW 1 k

(s V 1=2 þ 1=4k1)kV 1 k2F  þ (c 11=2)1

21 þ (c 12jW 1 j

21=2).

3.2.2 q2   subsystem:   Similar to Section 3.1.2, (10)becomes

d 22(q 3)d 33 d 223

d 33

_r 2 þ c 22(q 3,   _q 3)r 2  ¼ b 22(_q 3)t 2   f  S 2,1   (84)

 where the unknown function

  f  S 2,1  ¼d 22(q 3)d 33 d 223

d 33

€q 2r  þ c 22(q 3,   _q 3)_q 2r 

þ c 23(q 3,   _q 2)_q 3 þ D2(q ,   _q ) þd 23

d 33

(b 31(_q 3)t 1

c 32(q 3,   _q 2)_q 2   f  3(_q 3)  g 3 D3(q ,   _q ))

is approximated by MNN to arbitrary any accuracy as

  f  S 

2,1 ¼ W  T2   S 2(V  T

2   Z 2) þ 12(Z 2)

 where the input vector    Z 2  ¼ [t 1,  q 1,   _q 1,   q 2,   _q 2,   q 3,   _q 3,q 2d ,   _q 2d ,   €q 2d , 1] T [ VZ 2

, R 11, 12(Z 2) is the approximationerror satisfying  j12(Z 2)j   12, where   12  is a positive constant;W 2   and   V 2   are ideal constant weights satisfying   kW 2 k

w2m,   kV 2 kF   v 2m, which are positive constants. By using 

W  T2  S 2( V  T2  Z 2) to approximate   W  T2   S 2(V  T

2   Z 2), the error between the actual and the ideal MNN can be expressed as

W  T2  S (  V  T2  Z 2) W  T2   S (V  T

2   Z 2)

¼   ~ W  T

2 (S 2  S 02  V  T2  Z 2) þ  W  T2  S 02  ~ V  T

2 Z 2 þ d u 2   (85)

 where  S 2 ¼ S (  V  T2  Z 2),  S 02  ¼ diag {s 01,  s 02,   . . . ,  s 0l } with

s 0i  ¼ s 0(v  Ti  Z 2) ¼d [s (za )]

dza 

jza ¼v  Ti  Z 2

the residual term d u 2 is bounded by 

jd u 2j kV 2 kF kZ 2  W  T2  S 02kF  þ kW 2 kkS 02  V  T2  Z 2k þ jW 2 j1

(86)

and the weight estimation errors   ~ W 2  ¼  W 2 W 2 ,   ~ V 2  ¼

V 2 V 2 .

 To analyse the closed-loop stability for the  q 2-subsystem,consider the following Lyapunov function candidate

V 2(r 2,   ~ W 2,   ~ V 2) ¼1

2

d 22(q 3)d 33 d 223

d 33

r 22

þ1

2~ W 

 T

2 G1W 2

  ~ W 2 þ1

2tr{ ~ V 

 T

2 G1V 2

 ~ V 2} (87)

Lemma 5:   The function   V 2   (87) is positive definite anddecrescent, in the sense that there exist two time-invariant positive definite functions   V 2(r 2,   ~ W 2,   ~ V 2) and   V 2(r 2,

~ W 2,   ~ V 

2), such that 

V 2(r 2,   ~ W 2,   ~ V 2) V 2     V 2(r 2,   ~ W 2,   ~ V 2)

950   IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941–956

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cta.2008.0103

www.ietdl.org

Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Page 11: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 11/16

Proof:  The proof can be referred to that of Lemma 3 andomitted here for conciseness.   A

 The time derivative of (87) is given as

_V 2  ¼

1

2_d 22(q 3)r 

22  þ

d 22(q 3)d 33 d 223

d 33r 2 _r 2

þ   ~ W  T2 G

12

_~ W 2 þ tr{ ~ V  T2 G

1V 2

_~ V 2} (88)

 According to Assumption 2, (88) becomes

_V 2  ¼ r 2d 22(q 3)d 33 d 223

d 33

_r 2 þ c 22(q 3,   _q 3)r 2

" #

þ   ~ W  T

2G12

_~ W 2 þ tr{ ~ V  T

2 G1V 2

_~ V 2} (89)

 As W 2 , V 2  are constant vectors, it is easy to obtain that 

_~ W 2  ¼  _W 2,   _~ V 2  ¼

  _V 2   (90)

Substituting (84), (85) and (90) into (94), we have

_V 2  ¼ r 2   b 22(_q 3)t 2 W  T2   S 2(V  T

2   Z 2) 12(Z 2)h i

þ   ~ W  T

2 G1W 2

_W 2 þ tr{ ~ V 

 T

2 G1V 2

_V 2} (91)

Consider the following MNN-based control law and MNN weight adaption laws

t 2  ¼ k2r 2 þr 2  W  T2  S (  V  T2  Z 2) 2

b 22   jr 2  W  T2  S (  V  T2  Z 2)j þ d 2

þk2r 2b 22

(kZ 2  W  T2  S 02k2F   þ kS 02  V  T2  Z 2k

2) (92)

_W 2  ¼ GW 2[(S 2  S 02  V  T2  Z 2)r 2 þ s W 2

 W 2] (93)

_V 2  ¼ GV 2[Z 2  W  T2  S 02r 2 þ s V 2

 V 2] (94)

 where   k2 . 0,   d 2 . 0,   GW 2  ¼ G TW 2 . 0,   GV 2  ¼ G

 TV 2 . 0,

s W 2 . 0, s V 2 . 0.

Substituting (92)–(94) into (91), we have

_V 2 ¼ k2b 22(_q 3)r 22 þb 22(_q 3)

b 22

r 22  W  T2  S ( V  T2  Z 2) 2

jr 2  W  T2  S ( V  T2  Z 2)j þ d 2

þb 22(_q 3)

b 22

k2r 22   kZ 2  W  T2  S 02k2F  þ kS 02  V  T2  Z 2k

2

r 2W  T2   S 2(V  T

2   Z 2) r 212(Z 2) r 2   ~ W  T

2 (S 2 S 02  V  T2  Z 2)

s W 2   ~ W  T2  W 2 tr{   ~ V 2 TZ 2  W  T2  S 02r 2} s V 2tr{   ~ V 2 TV 2}

(95)

Noting Assumption 3 and the fact that tr {   ~ V 2 T

Z 2  W  T2  S 02r 2} ¼

r 2  W  T2  S 02   ~ V 2 T

Z 2, (95) becomes

_V 2 k2b 22r 21 r 22  W  T2  S (  V  T2  Z 2) 2

jr 2  ^

W  T2  S (

 ^

V  T2  Z 2)j þ d 2

k2r 22   kZ 2  W  T2  S 02k

2F  þ kS 02  V  T2  Z 2k

2

þ jr 2jj12(Z 2)j

r 2W  T2   S 2(V  T

2   Z 2) r 2   ~ W  T

2 (S 2 S 02  V  T2  Z 2)

r 2  W  T2  S 02   ~ V 2 T

Z 2 s W 2  ~ W 

 T

2 W 2 s V 2tr{   ~ V 2

 TV 2} (96)

From (85) and (86), we know 

r 2W  T2   S 2(V  T

2   Z 2) r 2   ~ W  T

2 (S 2 S 02  V  T2  Z 2) r 2  W  T2  S 02   ~ V 2 T

Z 2

¼ r 2  W  T2  S ( V  T2  Z 2) r 2d u 2

jr 2  W  T2  S (  V  T2  Z 2)j þ jr 2jkV 2 kF kZ 2  W  T2  S 02kF 

þ jr 2jkW 2 kkS 02  V  T2  Z 2k þ jr 2jjW 2 j1   (97)

Substituting (97) to (96) leads to

_V 2 k2b 22r 22 r 22  W  T2  S (  V  T2  Z 2) 2

jr 2  W  T2  S (  V  T2  Z 2)j þd 2

þ jr 2  W  T2  S (  V  T2  Z 2)j

k2r 22   kZ 2

  ^W 

 T2

  ^S 

0

2k2F  þ k

^S 

0

2  ^V 

 T2  Z 2k

2 þ jr 2jj12(Z 2)j þ jr 2jkV 2 kF kZ 2  W  T2  S 02kF 

þ jr 2jkW 2 kkS 02  V  T2  Z 2k þ jr 2jjW 2 j1

s W 2  ~ W 

 T

2 W 2 s V 2tr{   ~ V 2

 TV 2} (98)

 According to Lemma 1

r 22  W  T2  S ( V  T2  Z 2) 2

jr 2  ^W 

 T2  S (

 ^V 

 T2  Z 2)j þd 2

þ jr 2  W  T2  S ( V  T2  Z 2)j

¼jr 2  W  T2  S (  V  T2  Z 2)jd 2

jr 2  W  T2  S ( V  T2  Z 2)j þd 2 d 2   (99)

By completion of squares and using Young’s inequality, thefollowing inequalities hold

jr 2jj12(Z 2)j r 22

2c 21

þc 21 1

22

2  (100)

jr 2jkV 2 kF 

kZ 2  W  T2  S 02kF 

  k2r 22 kZ 2  W  T2  S 02k2

þ1

4k2

kV 2 k2

(101)

IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941 – 956 951

doi: 10.1049/iet-cta.2008.0103   & The Institution of Engineering and Technology 2009

www.ietdl.org

Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Page 12: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 12/16

jr 2jkW 2 kkS 02  V  T2  Z 2k k2r 22 kS 02  V  T2  Z 2k2

þ1

4k2

kW 2 k2

(102)

jr 2jjW 2 j1 r 22

2c 22

þc 22jW 2 j

21

2

  (103)

s W 2  ~ W 

 T

2 W 2

s W 2

2  k   ~ W 2k

2þs W 2

2  kW 1k

2 (104)

s V 2tr{   ~ V 2 T

V 2} s V 2

2  k ~ V 2k

2F  þ

s V 2

2  kV 2 k

2F    (105)

Substituting (99)–(105) into (98), we have

_V 2   k2b 22 1

2c 21

1

2c 22

r 22

s W 2

2  k   ~ W 2k

2

s V 2

2

  k ~ V 2k2F  þd 2 þ

s W 2

2

  þ1

4k2 kW 2 k

2

þs V 2

2  þ

1

4k2

kV 2 k

2F  þ

c 21

2  1

22 þ

c 22jW 2 j21

2

l20V 2 þm20   (106)

 where   l20 ¼ min{(2k2b 22 1=c 21 1=c 22)jd 33j=( d 22jd 33jþ

d 223),   s W 2=lmax(G1W 2),s V 2=lmax(G1

V 2)},   m20  ¼ d 2 þ (s W 2=

2 þ 1=4k2)kW 2 k2

þ(s V 2=2 þ 1=4k21)kV 2 k2F þ(c 21=2)1

22 þ c 22

jW 2 j21=2.

3.2.3 q3   subsystem:   Finally, for the system (9)– (11)under control laws (69), (92), we can obtain the similar internal dynamics to Section 3.1.3.

 The main result in this section is summarised in thefollowing Theorem.

Theorem 2:  Consider the closed-loop system consisting of the subsystems (9)–(11), the control laws (69), (92), andadaptation laws (70), (71), (93) and (94). Under 

 Assumptions 1– 8, the overall closed-loop neural controlsystem is SGUUB in the sense that all of the signals in the

closed-loop system are bounded, and the tracking errorsand weights converge to the following regions

je 1j je 1(0)j þ1

l1

 ffiffiffiffiffiffiffiffi2m1

d 11

s   ,   k  W 1k

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2m1

lmin(G11   )

s   þ w1m

kV 1kF  

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2m1

lmin(G11   )

s   þ v 1m

je 2j je 2(0)j þ1

l2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2jd 33jm2

jd 22jd 33j d 223j

k  W 2k

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2m2

lmin(G12   )

s   þ w2m,   kV 2k

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2m2

lmin(G12   )

s   þ v 2m

 with

mi  ¼mi 0

li 0

þ V i (0)

mi 0  ¼ d i  þs Wi 

2

  þ1

4ki  kW i   k

s Vi 

2

  þ1

4ki 1 kV i   k

2F 

þc i 12

  12i   þ

c i 2jW i   j21

2  ,   i  ¼ 1, 2

l10  ¼ min{(2k1b 11 1=c 11 1=c 12)=d 11

s W 1=lmax(G1W 1), s V 1=lmax(G1

V 1)}

l20  ¼ min{(2k2b 22 1=c 21 1=c 22)jd 33j=( d 22jd 33j þ d 223)

s W 2=lmax(G1W 2), s V 2=lmax(G1

V 2)}

 where   e i (0) and   V i (0) are initial values of   e i (t ) and   V i (t ),respectively.

Proof: The proof of Theorem 2 follows the same approach as Theorem 1, and is omitted here for conciseness.   A

4 Simulation study

 To illustrate the proposed adaptive neural control, we consider the VARIO helicopter mounted on a platform  [6], with thedynamic model as (2) and the following parameters  d 11  ¼ 7:5,d 22(q 3) ¼ 0:4305þ0:0003cos2(4:143q 3), d 23  ¼ 0:108, d 33  ¼

0:4993, c 22(q 3,   _q 3) ¼ 0:0006214 sin(8:286q 3)_q 3, c 23(q 3,_q 2) ¼

c 32(q 3,_q 2) ¼ 0:0006214 sin (8:286q 3)_q 2, f  1(_q 3) ¼ 0:6004_q 3,

  f  3(_q 3) ¼ 0:0001206_q 23, g 1 ¼ 77:259, g 3 ¼ 2:642, b 11(_q 3) ¼

3:411_q 23, b 22(_q 3) ¼ 0:1525 _q 23, b 31(_q 3) ¼ 12:01_q 3 þ 105, andall quantities are expressed in SI units. The control objective is totrack the uniformly bounded desired trajectories given in [6] asfollows

q 1d   ¼

0:2 0 t   50s 

0:3[e(t 50)2=350

1] 0:2 50 , t   130s 

0:1cos[(t  130)=10] 0:6 130 , t   20p þ 130

0:5   t   20p þ 130

8>>><>>>:

q 2d   ¼

0   t , 50s 

1 e(t 50)2=350 50 t , 120s 

e(t 120)2=350 120 t , 180

1 þ e(t 180)2=350 t   180

8>>><>>>:

4.1 Internal dynamics stability analysis

In this section, we analyse the stability of the internaldynamics. For conciseness, we consider the RBFNN-basedcontrol case only, which can be easily extended to MNN-based control case without any difficulties. For the

RBFNN based control case, we substitute (15), (20), (30)and (38) into the   q 3-subsystem (11). According to the

definition of the zero-dynamics   [26], we set   r 1,   r 2,   ~ W  T

1 ,

952   IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941–956

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cta.2008.0103

www.ietdl.org

Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Page 13: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 13/16

~ W  T

2 ,   11(Z 1) and   12(Z 2) to zero, and that the desiredtrajectories and initial data can be chosen in such a way that terms including   _q 22,   €q 1d ,   €q 2d   can be neglected   [6], wehave

€q 3  ¼ 1d 33

b 31(_q 3)b 11(_q 3)

(  f  1(_q 3) þ g 1)   f  3(_q 3)  g 3

  (107)

Noticing that the zero-dynamics in (107) is nonlinear, it isdifficult to conduct the stability analysis of the nonlinear zero-dynamics directly in this example. Instead, we show its local stability within an interested operating region after linearising the nonlinear zero-dynamics around anequilibrium operating point of interest. Although thestability of the linearised system cannot exactly guaranteethe stability of the nonlinear zero-dynamics, the localstability is at least ensured within the operating region of 

interest. To realise this, we need to solve for theequilibrium points first.

Substituting the term values given in the beginning of Section 4 into (107) and analysing the values of the mainrotor angular velocity from which the main rotor angular acceleration is zero, we have

4:1137 104_q 43 þ 1:8011_q 23 60968_q 3 7725900 ¼ 0

(108)

Its solutions are   _q 3   ¼ 124:63,   219:5+ 468:16i   and563.64 rad/s. Only the first value   _q 3   ¼ 124:63 has a  physical meaning for the system (see  Fig. 1 for the rotationsense of the main rotor). If we linearise equation (107)around the equilibrium point   _q 3  ¼ 124:63, we can obtainan eigenvalue 22.44. Therefore according to [27], all initial

 values of    _q 3   sufficiently near the equilibrium point _q 3   ¼ 124:63 can converge to 2124.63, indicating that thezero-dynamics of the helicopter system in (2) has a locally stable behaviour around the equilibrium point. Thelimitation of this analysis is that if the initial conditions arefar from the operating region of interest, the stability of the

zero-dynamics is not guaranteed.

 The simulation result in Fig. 2  also shows that the zero-dynamics using RBFNN-based control are locally stablearound the equilibrium point   _q 3   ¼ 124:63. From  Fig. 2,

 we can observe that the main rotor angular velocity   _q 3converges to the nominal value  2124.63 rad/s for different initial conditions ranging from   240 to  2150 rad/s, whichincludes the typical operating values more than sufficiently.

 These results are expected from the previous stability analysis, and also consistent with the results in   [6]. Inparticular, we also notice that the further the initial

condition starts from the nominal value2

124.63 rad/s, thelonger the settling time takes, and the more seriously thetransient oscillations become.

4.2 Performance comparison resultsbetween approximation-based control and model-based control 

In this subsection, we will compare the altitude and yaw angle tracking performance using RBFNN-based control,

MNN-based control and model-based control adoptedin   [6]. If all the parameters and functions in (2) areknown exactly, and the unmodelled uncertaintiesD() ¼ 0, the perfect tracking performance can beachieved using model-based control, which has beenshown in the work   [6]. However, in the practice, therealways exist some model uncertainties, which may becaused by unmodelled dynamics or aerodynamicaldisturbances from the environment. To this end, weassume   D()= 0, in particular,   D() ¼ [2:0, 0,0:0001206_q 23 þ 0:142] T.

 The control parameters for the RBFNN control laws (20)(38) and adaptation laws (21) (39) are chosen as follows:k1  ¼ 0:000085,   L1  ¼ 0:2,   k2  ¼ 0:0002,   L2  ¼ 1:0,G1  ¼ 0:001 I ,   G2  ¼ 0:0001 I ,   s 1  ¼ 0:001,   s 2  ¼ 0:001.NNs   W  T1  S 1(Z 1) contain 38 nodes (i.e.   l 1  ¼ 2187),

 with centres   ml (l   ¼ 1,   . . . , l 1) evenly spaced in[1:0, 1:0] [0:1, 0:1] [10:0,   10:0] [40000:0,0:0][1:0, 1:0] [150:0,40:0] [0:1, 0:1][0:01,0:01], and widths  h l   ¼ 1:0(l   ¼ 1,   . . .  , l 1). NNs  W  T2  S 2(Z 2)

contain 310 nodes (i.e.   l 2  ¼ 59049), with centres   ml (l   ¼

1,   . . . , l 2) evenly spaced in [0:005, 0:005] [1:0, 1:0]

[0:1, 0:1] [10:0, 10:0]   [ 40000:0, 0:0]     [1:0,

1:0]   [150:0, 40:0]     [10:0, 10:0]     [ 1:0, 1:0][0:01, 0:01], and widths   h l   ¼ 1:0(l   ¼ 1,   . . . , l 2). Theinitial conditions are   q 1(0) ¼ 0:1 m,   _q 1(0) ¼ 0:0 m/s,q 2(0) ¼ p  rad,   _q 2(0) ¼ 0:0 rad/s, q 3(0) ¼ p  rad,   _q 3(0) ¼

120:0 rad/s,   t 1  ¼   0:0 m,   t 2  ¼ 0:0 m,   W 1(0) ¼ 0:0,W 2(0) ¼ 0:0.

Figure 2   Local stability of the zero-dynamics around theequilibrium point q 

3

¼ 2124.63 using RBFNN-based 

control 

IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941 – 956 953

doi: 10.1049/iet-cta.2008.0103   & The Institution of Engineering and Technology 2009

www.ietdl.org

Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Page 14: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 14/16

For the MNN control laws (69) and (92) and adaptationlaws (70), (71), (93) and (94), the design parameters arechosen as  k1  ¼ 0:00016,  L1  ¼ 1:2,  k2  ¼ 0:0002,  L2  ¼ 1:0,GW 1  ¼ 0:0002 I ,   GV 1  ¼ 0:03 I ,   d W 1  ¼ 0:0,   s V 1  ¼ 0:0,GW 2  ¼ 0:0001 I ,   GV 2  ¼ 0:01 I ,   s W 2  ¼ 0:0,   s V 2  ¼ 0:0.NNs   W  T1  S 1(  V  T1   z1) contain five nodes and NNs

W  T2  S 2(  V  T2   z2) contains 15 nodes. The initial conditions areq 1(0) ¼ 0:1 m,   _q 1(0) ¼ 0 m/s,   q 2(0) ¼ p  rad,   _q 2(0) ¼

0:0 rad/s,   q 3(0) ¼ p  rad,   _q 3(0) ¼ 120:0 rad/s,   t 1  ¼

0:0 m,  t 2  ¼ 0:0 m,  W 1(0) ¼ 0:0,  V 1(0) ¼ 0:0,  W 2(0) ¼ 0:0,V 2(0) ¼ 0:0.

From   Figs. 3   and   4, we can observe that due to theexistence of model uncertainties, both the altitudetracking and yaw angle tracking using model-basedcontrol have some offsets to the desired trajectories for the whole period. It means that model-based controldepends on the accuracy of model heavily and cannot deal with the uncertainties well. For the tracking performance using the RBFNN-based control andMNN-based control, although there are also someoscillations at the beginning period, the tracking errorscan converge to a very small neighbourhood of desired

Figure 3   Altitude tracking performance in the presence of 

model uncertainties using three methods: RBFNN-based 

control, MNN-based control and model-based control,

respectively a   Zoom-outb   Zoom-in

Figure 5   Control inputs for altitude and yaw angle tracking

in the presence of model uncertainties using three methods:

RBFNN-based control, MNN-based control and model-

based control, respectively 

Figure 4   Yaw angle tracking performance in the presence

of model uncertainties using three methods: RBFNN-based 

control, MNN-based control and model-based control,

respectively a   Zoom-outb   Zoom-in

Figure 6   Norm of neural weights using RBFNN-based 

control and MNN-based control 

954   IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941–956

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cta.2008.0103

www.ietdl.org

Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Page 15: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 15/16

trajectories in a short time about 20 s. This is because themodel uncertainties can be learnt by RBFNN and MNNduring the beginning 20 s. After that period, theuncertainties can be compensated for, and thus, therobustness to uncertainties is improved and the goodtracking performance is achieved. In addition,   Figs. 5

and   6   indicate the boundedness of the control actionsand neural weights for all control methods.

5 Conclusion

In this paper, NN approximation-based control has beeninvestigated for the helicopter altitude and yaw angletracking in the presence of model uncertainties. Compared

 with the model-based control, which is sensitive to theaccuracy of the model representation, NN approximationbased control is tolerant of model uncertainties, and can be

 viewed as a key advantage over model-based control of helicopters, for which accurate modelling of helicopter dynamics is difficult, time-consuming and costly.Simulation results demonstrated that the helicopter is ableto track altitude and yaw angle reference signalssatisfactorily, with all other closed-loop signals bounded.

6 References

[1]   SIRA-RAMIREZ H., ZRIBI M., AHMAD S.: ‘Dynamical sliding mode

control approach for vertical flight regulation in helicopters’,

IEE Proc. Control Theory Appl., 1994, 141, pp. 19– 24

[2]   DEVASIA S.: ‘Output tracking with nonhyperbolic and near

nonhyperbolic internal dynamics: helicopter hover control’,

 J. Guidance Control Dyn., 1997, 20, (3), pp. 573–580

[3]   KOO T.J.,   SASTRY S.: ‘Output tracking control design of a

helicopter model based on approximate linearization’.

Proc. IEEE Conf. Decision and Control, Tampa, Florida, 1998

[4]   CIVITA M.L.,  PAPAGEORGIOU G.,   MESSNER W.,   KANADE T.: ‘Design

and flight testing of a high-bandwidth H-1   loop shapingcontroller for a robotic helicopter’. Proc. AIAA Guidance,

Navigation, and Control Conf. and Exhibit, August 2002

[5]   ISIDORI A.,  MARCONI L.,  SERRANI A.: ‘Robust nonlinear motion

control of a helicopter’,   IEEE Trans. Autom. Control , 2003,

48, (3), pp. 413–426

[6]   VILCHIS J.A.,   BROGLIATO B.,   DZUL A.,   LOZANO R.: ‘Nonlinear

modelling and control of helicopters’,   Automatica, 2003,

39, pp. 1583–1596

[7]   NARENDRA K.S.,  PARTHASARATHY K.: ‘Identification and controlof dynamic systems using neural networks’,   IEEE Trans.

Neural Netw., 1990,  1, (1), pp. 4–27

[8]   LEVIN A.U.,   NARENDRA K.S.: ‘Control of nonlinear dynamical

systems using neural networks – part ii: observability,

identification, and control’,   IEEE Trans. Neural Netw.,

1996,  7, (1), pp. 30–42

[9]   LEWIS F.L.,   JAGANNATHAN S.,  YESILIDREK A.: ‘Neural network

control of robot manipulators and nonlinear systems’(Taylor and Francis, Philadelphia, PA, 1999)

[10]   GE S.S., LEE T.H., HARRIS C.J.: ‘Adaptive neural networkcontrol

of robotic manipulators’ (World Scientific, London, 1998)

[11]   GE S.S.,   HANG C.C.,   LEE T.H.,   ZHANG T.: ‘Stable adaptive neural

network control’ (Kluwer Academic Publisher, Boston, 2002)

[12]   FARRELL J.A.,   POLYCARPOU M.M.: ‘Adaptive approximation

based control’ (Wiley, Hoboken, NJ, 2006)

[13]   KIM B.S.,   CALISE A.J.: ‘Nonlinear flight control using neuralnetworks’,  AIAA J. Guid, Control Dyn., 1997,  20, pp. 26–33

[14]   RYSDYK R.T.,   CALISE A.J.: ‘Nonlinear adaptive flight control

using neural networks’,   IEEE Control Syst. Mag., 1998,   18,

pp. 14–25

[15]   HOVAKIMYAN N.,   NARDI F.,   CALISE A.: ‘Adaptive output

feedback control of uncertain nonliear systems using

single-hidden-layer neural networks’,   IEEE Trans. Neural 

Netw., 2002,  13, (6), pp. 1420–1431

[16]   ENNS R.,  SI J.: ‘Helicopter trimming and tracking control

using direct neural dynamic proramming’,   IEEE Trans.

Neural Netw., 2003,  14, (4), pp. 929–939

[17]   KANNAN S.,   JOHNSON E.: ‘Adaptive trajectory-based

flight control for autonomous helicopters’. Proc. 21st

D ig ital Avionic s S ys te ms Conf. , O ctober 2 00 2,

p. 8.D.1.1–8.D.1.12

[18]   JOHNSON E.N.,  KANNAN S.K.: ‘Adaptive trajectory control for

autonomous helicopters’, AIAA J. Guid. Control. Dyn., 2005,

28, pp. 524–538

[19]   RAIMUNDEZ J.C.,   CAMANO J.L.,   BALTAR J .A.: ‘MIMO outputfeedback adaptive neural network control of an

autonomous scale model helicopter mounted in a 2DOF

platform’,  Proc. World Autom. Cong., 2004, 15, pp. 215–222

[20]   TEE K.P.,  GE S.S.,  TAY E.H.: ‘Adaptive neural network control

for helicopters in vertical flight’,  IEEE Trans. Control Systems

Technol., 2008,  16, (4), pp. 753–762

[21]   FUNAHASHI K.I.: ‘On the approximate realization of 

continuous mappings by neural networks’,   Neural Netw.,

1989,  2, pp. 183–192

[22]   N AR EN DR A K .S .,   A N NA SWA MY A .M .: ‘A new

adaptive law for robust adaptation without persistent

IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941 – 956 955

doi: 10.1049/iet-cta.2008.0103   & The Institution of Engineering and Technology 2009

www.ietdl.org

Authorized licensed use limited to: National University of Singapore. Downloaded on August 5, 2009 at 10:07 from IEEE Xplore. Restrictions apply.

Page 16: CTA09 Heli

8/12/2019 CTA09 Heli

http://slidepdf.com/reader/full/cta09-heli 16/16

excitation’,   IEEE Trans. Autom. Control , 1 98 7,   32 ,

pp. 134–145

[23]   NARENDRA K.S.,  ANNASWAMY A.M.: ‘Stable adaptive systems’

(Prentice Hall, Englewood Cliffs, NJ, 1989)

[24]   LEWIS F.L.,  YESILDIREK A.,   LIU K.: ‘Multilayer neural networkrobot controller with guaranteed tracking performance’,

IEEE Trans. Neural Netw., 1996,   7, (2), pp. 388–399

[25]   SLOTINE J.-J.E.,  LI W.: ‘Applied nonlinear control’ (Prentice-

Hall, Englewood Cliffs, NJ, 1991)

[26]   GE S.S.,   ZHANG J.: ‘Neural-network control of nonaffine

nonlinear system with zero dynamics by state and output

feedback’, IEEE Trans. Neural Netw., 2003, 14, (4),pp. 900– 918

[27]   KHALIL H.K.: ‘Nonlinear systems’ (Prentice Hall, NJ, 2002,

3rd edn.)

956   IET Control Theory Appl., 2009, Vol. 3, Iss. 7, pp. 941–956

& Th I tit ti f E i i d T h l 2009 d i 10 1049/i t t 2008 0103

www.ietdl.org