cs 664, sessions 17-18 1. 2 limitations of systems reviewed so far goal was fixed: analyze human...

68
CS 664, Sessions 17-18 1

Post on 19-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 1

Page 2: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 2

Limitations of systems reviewed so far

• Goal was fixed: analyze human activity; comment soccer game

• Vision was fixed and feedforward/bottom-up: no top-down control

• These systems cannot deal with unexpected/new questions about the scene.

Page 3: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 3

Towards the minimal subscene

• Need some intelligence to prune incoming visual input and interpret it given the context/task

• Idem for the language input• Need memory and a knowledge base for known objects,

actions, words, and their relationships

• In the following slides:• Introduce propositional logic and first-order logic as classical

AI tools for developing intelligent agents• Review knowledge engineering within the context of FOL• Walk through an example of operation of a hypothetical

“minimal subscene agent” programmed in FOL

Page 4: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 4

Syntax of propositional logic

Page 5: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 5

Semantics of Propositional logic

Page 6: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 6

Inference rules for propositional logic

Page 7: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 7

Limitations of Propositional Logic

• Propositional logic is limited because its only ontological commitment is to facts.

• This makes it difficult to represent dynamic worlds because each specific situation must be spelt out explicitly (no means of generalization).

Page 8: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 8

First-order logic (FOL)

• Ontological commitments:• Objects: wheel, door, body, engine, seat, car, passenger,

driver• Relations: Inside(car, passenger), Beside(driver, passenger)• Functions: ColorOf(car)• Properties: Color(car), IsOpen(door), IsOn(engine)

• Functions are relations with single value for each object

Page 9: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 9

FOL: Syntax of basic elements

• Constant symbols: 1, 5, A, B, USC, JPL, Alex, Manos, …

• Predicate symbols: >, Friend, Student, Colleague, …

• Function symbols: +, sqrt, SchoolOf, TeacherOf, ClassOf, …

• Variables: x, y, z, next, first, last, …

• Connectives: , , ,

• Quantifiers: ,

• Equality: =

Page 10: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 10

FOL: Atomic sentences

AtomicSentence Predicate(Term, …) | Term = Term

Term Function(Term, …) | Constant | Variable

• Examples: SchoolOf(Manos)Colleague(TeacherOf(Alex),

TeacherOf(Manos)) >((+ x y), x)

Page 11: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 11

FOL: Complex sentences

Sentence AtomicSentence | Sentence Connective Sentence| Quantifier Variable, … Sentence| Sentence| (Sentence)

• Examples: S1 S2, S1 S2, (S1 S2) S3, S1 S2, S1 S3

Colleague(Paolo, Maja) Colleague(Maja, Paolo) Student(Alex, Paolo) Teacher(Paolo, Alex)

Page 12: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 12

Semantics of atomic sentences

• Sentences in FOL are interpreted with respect to a model• Model contains objects and relations among them• Terms: refer to objects (e.g., Door, Alex, StudentOf(Paolo))

• Constant symbols: refer to objects• Predicate symbols: refer to relations• Function symbols: refer to functional Relations

• An atomic sentence predicate(term1, …, termn) is true iff the relation referred to by predicate holds between the objects referred to by term1, …, termn

Page 13: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 13

Quantifiers

• Expressing sentences of collection of objects without enumeration

• E.g., All Trojans are clever

Someone in the class is sleeping

• Universal quantification (for all):

• Existential quantification (three exists):

Page 14: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 14

Universal quantification (for all):

<variables> <sentence>• “Every one in the 664 class is smart”:

x In(664, x) Smart(x) P corresponds to the conjunction of instantiations

of PIn(664, Manos) Smart(Manos) In(664, Dan) Smart(Dan) …In(664, Mike) Smart(Mike)

is a natural connective to use with • Common mistake: to use in conjunction with

e.g: x In(664, x) Smart(x)means “every one is in 664 and everyone is smart”

Page 15: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 15

Existential quantification (there exists):

<variables> <sentence>• “Someone in the 664 class is smart”:

x In(664, x) Smart(x) P corresponds to the disjunction of instantiations of

PIn(664, Manos) Smart(Manos) In(664, Dan) Smart(Dan) …In(664, Mike) Smart(Mike) is a natural connective to use with

• Common mistake: to use in conjunction with e.g: x In(664, x) Smart(x)is true if there is anyone that is not in 664!(remember, false true is valid).

Page 16: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 16

Properties of quantifiers

Page 17: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 17

Example sentences

• Brothers are siblings

.

• Sibling is transitive

.

• One’s mother is one’s sibling’s mother

.

• A first cousin is a child of a parent’s sibling

.

Page 18: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 18

Example sentences

• Brothers are siblings

x, y Brother(x, y) Sibling(x, y)

• Sibling is transitive

x, y, z Sibling(x,y) Sibling(y,z) Sibling(x,z)

• One’s mother is one’s sibling’s mother

m, c Mother(m, c) Sibling(c, d) Mother(m, d)

• A first cousin is a child of a parent’s sibling

c, d FirstCousin(c, d) p, ps Parent(p, d) Sibling(p, ps) Parent(ps, c)

Page 19: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 19

Equality

Page 20: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 20

Logical agents

1. TELL KB what was perceivedUses a KRL to insert new sentences, representations of facts, into KB

2. ASK KB what to do.Uses logical reasoning to examine actions and select best.

Generic knowledge-based agent:

Page 21: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 21

Most important result about FOL

• There exists a sound sound and complete inference rules

• That is, if a fact is entailed by the knowledge base, we can show that is the case.

• … and we can do that in an automatic manner, using methods as:

• Generalized modus ponens (when KB is in Horn form)• Resolution (with KB in more general conjunctive normal form

(CNF), i.e., sentences in the KB are expressed as conjunctions of disjunctions – and it is easy to transform any logical sentence to CNF)

Page 22: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 22

Knowledge Representation

• Knowledge engineering: principles and pitfalls• Ontologies• Examples

Page 23: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 23

Knowledge Engineer

• Populates KB with facts and relations

• Must study and understand domain to pick important objects and relationships

• Main steps:Decide what to talk aboutDecide on vocabulary of predicates, functions &

constantsEncode general knowledge about domainEncode description of specific problem instancePose queries to inference procedure and get

answers

Page 24: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 24

Knowledge engineering vs. programming

Knowledge Engineering Programming

1. Choosing a logic Choosing programming language

2. Building knowledge base Writing program3. Implementing proof theory Choosing/writing compiler4. Inferring new facts Running program

Why knowledge engineering rather than programming?Less work: just specify objects and relationships known to be true,

but leave it to the inference engine to figure out how to solve a problem using the known facts.

Page 25: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 25

Properties of good knowledge bases

• Expressive• Concise• Unambiguous• Context-insensitive• Effective• Clear• Correct• …

Trade-offs: e.g., sacrifice some correctness if it enhances brevity.

Page 26: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 26

Ontology

• Collection of concepts and inter-relationships

• Widely used in the database community to “translate” queries and concepts from one database to another, so that multiple databases can be used conjointly (database federation)

Page 27: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 27

Ontology ExampleK

han

& M

cLeod

, 2

00

0

Page 28: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 28

Towards a general ontology

• Develop good representations for:

- categories- measures- composite objects- time, space and change- events and processes- physical objects- substances- mental objects and beliefs- …

Page 29: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 29

Representing Categories

• We interact with individual objects, but… much of reasoning takes place at the level of categories.

• Representing categories in FOL: - use unary predicates

e.g., Tomato(x)

- reification: turn a predicate or function into an objecte.g., use constant symbol Tomatoes to refer to set of all

tomatoes“x is a tomato” expressed as “xTomatoes”

• Strong property of reification: can make assertions about reified category itself rather than its members

e.g., Population(Humans) = 5e9

Page 30: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 30

Categories: inheritance

• Allow to organize and simplify knowledge base

e.g., if all members of category Food are edibleand Fruits is a subclass of Foodand Apples is a subclass of Fruitsthen we know (through inheritance) that apples are

edible.

• Taxonomy: hierarchy of subclasses

• Because categories are sets, we handle them as such.e.g., two categories are disjoint if they have no member in common

a disjoint exhaustive decomposition is called a partitionetc…

Page 31: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 31

Example: Taxonomy of hand/arm movements

Hand/arm movement

Gestures Unintentional Movements

Manipulative Communicative

Acts Symbols

Mimetic Deictic ReferentialModalizing

Quek,1994, 1995.

Page 32: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 32

Measures

• Can be represented using units functionse.g., Length(L1) = Inches(1.5) = Centimeters(3.81)

• Measures can be used to describe objectse.g., Mass(Tomato12) = Kilograms(0.16)

• Caution: be careful to distinguish between measures and objectse.g., b, bDollarBills CashValue(b) = $(1.00)

Page 33: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 33

Composite Objects

• One object can be part of another.

• PartOf relation is transitive and reflexive:e.g., PartOf(Bucharest, Romania)

PartOf(Romania, EasternEurope)PartOf(EasternEurope, Europe)

Then we can infer Part Of(Bucharest, Europe)

• Composite object: any object that has parts

Page 34: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 34

Composite Objects (cont.)

• Categories of composite objects often characterized by their structure, i.e., what the parts are and how they relate.

e.g., a Biped(a) ll, lr, b Leg(ll) Leg(lr) Body(b) PartOf(ll, a) PartOf(lr, a) PartOf(b, a) Attached(ll, b) Attached(lr, b) ll lr x Leg(x) PartOf(x, a) (x = ll x = lr)

• Such description can be used to describe any objects, including events. We then talk about schemas and scripts.

Page 35: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 35

Events

• Chunks of spatio-temporal universe

e.g., consider the event WorldWarII it has parts or sub-events: SubEvent(BattleOfBritain, WorldWarII) it can be a sub-event: SubEvent(WorldWarII, TwentiethCentury)

• Intervals: events that include as sub-events all events occurring in a given time period (thus they are temporal sections of the entire spatial universe).

• Cf. situation calculus: fact true in particular situationevent calculus: event occurs during particular interval

Page 36: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 36

Events (cont.)

• Places: spatial sections of the spatio-temporal universe that extend through time

• Use In(x) to denote subevent relation between places; e.g. In(NewYork, USA)

• Location function: maps an object to the smallest place that contains it:

x,l Location(x) = l At(x, l) ll At(x, ll) In(l, ll)

Page 37: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 37

Times, Intervals and Actions

• Time intervals can be partitioned between moments (=zero duration) and extended intervals:

• Absolute times can then be derived from defining a time scale (e.g., seconds since midnight GMT on Jan 1, 1900) and associating points on that scale with events.

• The functions Start and End then pick the earliest and latest moments in an interval. The function Duration gives the difference between end and start times.

i Interval(i) Duration(i) = (Time(End(i) – Time(Start(i)))Time(Start(AD1900)) = Seconds(0)Time(Start(AD1991)) = Seconds(2871694800)Time(End(AD1991)) = Seconds(2903230800)Duration(AD1991) = Seconds(31536000)

Page 38: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 38

Times, Intervals and Actions (cont.)

• Then we can define predicates on intervals such as:

i, j Meet(i, j) Time(End(i)) = Time(Start(j))i, j Before(i, j) Time(End(i)) < Time(Start(j))i, j After(j, i) Before(i ,j)i, j During(i, j) Time(Start(j)) Time(Start(i))

Time(End(j)) Time(End(i))i, j Overlap(i, j) k During(k, i) During(k, j)

Page 39: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 39

Objects Revisited

• It is legitimate to describe many objects as events

• We can then use temporal and spatial sub-events to capture changing properties of the objects

e.g., Poland event19thCenturyPoland temporal sub-eventCentralPoland spatial sub-event

We call fluents objects that can change across situations.

Page 40: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 40

Substances and Objects

• Some objects cannot be divided into distinct parts – e.g., butter: one butter? no, some butter!

butter substance (and similarly for temporal substances)(simple rule for deciding what is a substance: if you cut it in

half, you should get the same).

How can we represent substances?

- Start with a categorye.g., x,y x Butter PartOf(y, x) y Butter

- Then we can state propertiese.g., x Butter(x) MeltingPoint(x, Centigrade(30))

Page 41: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 41

Towards autonomous vision-based robots

• Goal: develop vision/language-enabled AI system

• Test: ask a question to system about a video clip that it is watching

e.g., “Who is doing what to whom?”

• Test: implement system on mobile robot and give it some instructions

e.g., “Go to the library”

Page 42: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 42

Example

• Question: “who is doing what to whom?”

• Answer: “Eric passes, turns around and passes again”

Page 43: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 43

Motivation:Humans

1) Free examination

2) estimate material circumstances of family

3) give ages of the people

4) surmise what family hasbeen doing before arrivalof “unexpected visitor”

5) remember clothes worn bythe people

6) remember position of peopleand objects

7) estimate how long the “unexpectedvisitor” has been away from family

Yarbus, 1967

Page 44: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 44

“Beobot”

Page 45: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 45

VisualAttention

seehttp://iLab.usc.edu

Page 46: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 46

ObjectRecognition

Riesenhuber & Poggio,Nat Neurosci, 1999

(MIT)

Page 47: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 47

Action Recognition

Oztop & Arbib, 2001

Page 48: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 48

Attention + Recognition

Page 49: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 49

Minimal subscene

Extract “minimal subscene” (i.e., small number of objects and

actions) that is relevant to present behavior.

Achieve representation for it that is robust and stable against

noise, world motion, and egomotion.

Page 50: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 50

Generalarchitecture

Page 51: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 51

Example of operation

• Question: “What is John catching?”• Video clip: John catching a ball

1) Initially: empty task map and task list

2) Question mapped onto a sentence frameallows agent to fill some entries in the task list:

- concepts specifically mentioned in the question- related concepts inferred from KB (ontology)

e.g., task list contains:“John [AS INSTANCE OF] human(face, arm, hand,

leg, foot, torso)” (all derived from “John”) “catching, grasping, holding” (derived from

“catching”)“object(small, holdable)” (derived from “what”).

Page 52: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 52

More formally: how do we do it?

- Use ontology to describe categories, objects and relationships:Either with unary predicates, e.g., Human(John),Or with reified categories, e.g., John Humans,And with rules that express relationships or properties,

e.g., x Human(x) SinglePiece(x) Mobile(x) Deformable(x)

- Use ontology to expand concepts to related concepts:E.g., parsing question yields “LookFor(catching)”

Assume a category HandActions and a taxonomy defined bycatching HandActions, grasping HandActions, etc.

We can expand “LookFor(catching)” to looking for other actions in the category where catching belongs through a simple expansion rule:a,b,c a c b c LookFor(a) LookFor(b)

Page 53: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 53

More formally: how do we do it?

- Use composite objects to describe structure and parts:

h Human(h) f, la, ra, lh, rh, ll, rl, lf, rf, tFace(f) Arm(la) Arm(ra) Hand(lh) Hand(rh)

Leg(ll) Leg(rl) Foot(lf) Foot(rf) Torso(t) PartOf(f, h) PartOf(la, h) PartOf(ra, h) PartOf(lh, h)

PartOf(rh, h) PartOf(ll, h) PartOf(rl, h) PartOf(lf, h)

PartOf(rf, h) PartOf(t, h) Attached(f, t) Attached(la, b) Attached(ra, b) Attached(ll,

b) Attached(rl, t) Attached(lh, la) Attached(rh, ra)

Attached(lf, ll) Attached(rf, rl) Attached(rh, ra) la ra lh rh ll rl lf rf x Leg(x) PartOf(x, a) (x = ll x = rl) [etc…]

Page 54: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 54

Page 55: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 55

Example of operation

3) Task list creates top-down biasing signals onto vision, by associating concepts in task list to low-level image features in “what memory”

e.g., “human” => look for strong vertically-oriented features“catching” => look for some type of motion

In more complex scenarios, not only low-level visual features, but also feature interactions, spatial location, and spatial scale and resolution may thus be biased top-down.

Page 56: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 56

More formally: how do we do it?

- Use measures to quantify low-level visual features and weights:e.g., describing the color of a face:f Face(f)

Red(f) = Fweight(0.8) Green(f) = Fweight(0.5) Blue(f) = Fweight(0.5)

[or use predicates similar to those seen for intervals to express ranges of feature weights]

e.g., recognizing face by measuring how well it matches a template:f RMSdistance(f, FaceTemplate) < Score(0.1) Face(f)

e.g., biasing the visual system to look for face color:f Face(f) LookFor(f) RedWeight = Red(f) GreenWeight = Green(f)

BlueWeight = Blue(f)[may eliminate Face(f) if Red(), Green() and Blue() defined for all objects

we might look for]

Page 57: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 57

Example of operation

4) Suppose that the visual system first attends to a bright-red chair in the scene.

Going through current task list, agent determines that this object is most probably irrelevant (not really “holdable”)

Discard it from further consideration as acomponent of the minimal subscene.

Task map and task list remain unaltered.

Page 58: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 58

More formally: how do we do it?

- What is the task list, given our formalism?it’s a question to the KB: ASK(KB, x LookFor(x))

- Is the currently attended and recognized object, o, of interest?ASK(KB, LookFor(o))

- How could we express that if the currently attended & recognized object is being looked for, we should add it to the minimal subscene?

x Attended(x) Recognized(x) LookFor(x) x MinimalSubscene x MinimalSubscene

with:x t RMSdistance(x, t) < Score(0.1) Recognized(x)

and similar for Attended() [Note: should be temporally tagged; see next]

Page 59: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 59

Example of operation

5) Suppose next attended and identified object is John’s rapidly tapping foot.

This would match the “foot” concept in the task list.

Because of relationship between foot and human (in KB), agent can now prime visual system to look for a human that overlap with foot found:- feature bias derived from what memory for human- spatial bias for location and scale

Task map marks this spatial region as part of the current minimal subscene.

Page 60: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 60

Example of operation

6) Assume human is next detected and recognized

System should then look for its facehow? from KB we should be able to infer that resolving

“? [AS INSTANCE OF] human”

can be done by looking at the face of the human.

Once John has been localized and identified, entry “John [AS INSTANCE OF] human(face, arm, hand, leg, foot, torso)”

simplifies into simpler entry “John [AT] (x, y, scale)”

Thus, further visual biasing will not attempt to further localize John.

Page 61: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 61

More formally: how do we do it?

- How do we introduce the idea of successive attentional shifts and progressive scene understanding to our formalism?Using situation calculus!

• Effect axioms (describing change):x,s Attended(x, s) Recognized(x, s) LookFor(x, s)

LookFor(x, Result(AddToMinimalSubscene, s))with AddToMiminalSubscene a shorthand for a complex sequence of

actions to be taken (remember how very long predicates should be avoided!)

• Successor-state axioms (better than the frame axioms for non-change):x,a,s x MinimalSubscene(Result(a, s))

(a = AddToMinimalSubscene) (x MinimalSubscene(s) a

DeleteFromminimalSubscene)

Page 62: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 62

Example of operation

7) Suppose system then attends to the bright green emergency exit sign in the room

This object would be immediately discarded because it is too far from the currently activated regions in the task map.

Thus, once non-empty, the task map acts as a filter that makes it more difficult (but not impossible) for new information to reach higher levels of processing, that is, in our model, matching what has been identified to entries in the task list and deciding what to do next.

Page 63: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 63

Example of operation

8) Assume that now the system attends to John’s arm motion

This action will pass through the task map (that contains John)

It will be related to the identified John (as the task map will not only specify spatial weighting but also local identity)

Using the knowledge base, what memory, and current task list the system would prime the expected location of John’s hand as well as some generic object features.

Page 64: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 64

Example of operation

9) If the system attends to the flying ball, it would be incorporated into the minimal subscene in a manner similar to that by which John was (i.e., update task list and task map).

10) Finally: activity recognition.

The various trajectories of the various objects that have been recognized as being relevant, as well as the elementary actions and motions of those objects, will feed into the activity recognition sub-system

=> will progressively build the higher-level, symbolic understanding of the minimal subscene.

e.g., will put together the trajectories of John’s body, hand, and of the ball into recognizing the complex multi-threaded event “human catching flying object.”

Page 65: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 65

Example of operation

11) Once this level of understanding is reached, the data needed for the system’s answer will be in the form of the task map, task list, and these recognized complex events, and these data will be used to fill in an appropriate sentence frame and apply the answer.

Page 66: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 66

Meanwhile…

• Beobots are coming to life!

Page 67: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 67

Meanwhile…

And they can see!

Page 68: CS 664, Sessions 17-18 1. 2 Limitations of systems reviewed so far Goal was fixed: analyze human activity; comment soccer game Vision was fixed and feedforward/bottom-up:

CS 664, Sessions 17-18 68

Example

• Question: “who is doing what to whom?”

• Answer: “Eric passes, turns around and passes again”