cs 3343: analysis of algorithms

226
07/03/22 1 CS 3343: Analysis of Algorithms Review for final

Upload: gannon-gaines

Post on 31-Dec-2015

25 views

Category:

Documents


0 download

DESCRIPTION

CS 3343: Analysis of Algorithms. Review for final. Final Exam. Closed book exam Coverage: the whole semester Cheat sheet: you are allowed one letter-size sheet, both sides Monday, May 5, 9:45 – 12:15pm Basic calculator (no graphing) allowed No cell phones!. Final Exam: Study Tips. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: CS 3343: Analysis of Algorithms

04/19/23 1

CS 3343: Analysis of Algorithms

Review for final

Page 2: CS 3343: Analysis of Algorithms

04/19/23 2

Final Exam

• Closed book exam

• Coverage: the whole semester

• Cheat sheet: you are allowed one letter-size sheet, both sides

• Monday, May 5, 9:45 – 12:15pm

• Basic calculator (no graphing) allowed

• No cell phones!

Page 3: CS 3343: Analysis of Algorithms

04/19/23 3

Final Exam: Study Tips

• Study tips:– Study each lecture– Study the homework and homework solutions– Study the midterm exams

• Re-make your previous cheat sheets

Page 4: CS 3343: Analysis of Algorithms

04/19/23 4

Topics covered (1)By reversed chronological order:• Graph algorithms

– Representations– MST (Prim’s, Kruskal’s)– Shortest path (Dijkstra’s)– Running time analysis with different implementations

• Greedy algorithm– Unit-profit restaurant location problem– Fractional knapsack problem– Prim’s and Kruskal’s are also examples of greedy algorithms

• Greedy algorithm– Unit-profit restaurant location problem– Fractional knapsack problem– Prim’s and Kruskal’s are also examples of greedy algorithms– How to show that certain greedy choices are optimal

Page 5: CS 3343: Analysis of Algorithms

04/19/23 5

Topics covered (2)

• Dynamic programming– LCS– Restaurant location problem– Shortest path problem on a grid– Other problems– How to define recurrence solution, and use dynamic

programming to solve it

• Binary heap and priority queue– Heapify, buildheap, insert, exatractMax, changeKey– Running time

Page 6: CS 3343: Analysis of Algorithms

04/19/23 6

Topics covered (3)

• Order statistics– Rand-Select– Worst-case Linear-time selection– Running time analysis

• Sorting algorithms– Insertion sort– Merge sort– Quick sort– Heap sort– Linear time sorting: counting sort, radix sort– Stability of sorting algorithms– Worst-case and expected running time analysis– Memory requirement of sorting algorithms

Page 7: CS 3343: Analysis of Algorithms

04/19/23 7

Topics covered (4)• Analysis

– Order of growth– Asymptotic notation, basic definition

• Limit method• L’ Hopital’s rule• Stirling’s formula

– Best case, worst case, average case• Analyzing non-recursive algorithms

– Arithmetic series– Geometric series

• Analyzing recursive algorithms– Defining recurrence– Solving recurrence

• Recursion tree (iteration) method• Substitution method• Master theorem

Page 8: CS 3343: Analysis of Algorithms

04/19/23 8

Review for finals

• In chronological order

• Only the more important concepts– Very likely to appear in your final

• Does not mean to be exclusive

Page 9: CS 3343: Analysis of Algorithms

04/19/23 9

Asymptotic notations

• O: Big-Oh

• Ω: Big-Omega

• Θ: Theta

• o: Small-oh

• ω: Small-omega

• Intuitively:

O is like o is like <

is like is like >

is like =

Page 10: CS 3343: Analysis of Algorithms

04/19/23 10

Big-Oh

• Math:– O(g(n)) = {f(n): positive constants c and n0

such that 0 ≤ f(n) ≤ cg(n) n>n0}

– Or: lim n→∞ g(n)/f(n) > 0 (if the limit exists.)

• Engineering:– g(n) grows at least as faster as f(n)– g(n) is an asymptotic upper bound of f(n)

• Intuitively it is like f(n) ≤ g(n)

Page 11: CS 3343: Analysis of Algorithms

04/19/23 11

Big-Oh

• Claim: f(n) = 3n2 + 10n + 5 O(n2)

• Proof:3n2 + 10n + 5 3n2 + 10n2 + 5n2 when n > 1

18 n2 when n > 1

Therefore,• Let c = 18 and n0 = 1

• We have f(n) c n2, n > n0

• By definition, f(n) O(n2)

Page 12: CS 3343: Analysis of Algorithms

04/19/23 12

Big-Omega

• Math:– Ω(g(n)) = {f(n): positive constants c and n0

such that 0 ≤ cg(n) ≤ f(n) n>n0}

– Or: lim n→∞ f(n)/g(n) > 0 (if the limit exists.)

• Engineering:– f(n) grows at least as faster as g(n)– g(n) is an asymptotic lower bound of f(n)

• Intuitively it is like g(n) ≤ f(n)

Page 13: CS 3343: Analysis of Algorithms

04/19/23 13

Big-Omega

• f(n) = n2 / 10 = Ω(n)

• Proof: f(n) = n2 / 10, g(n) = n– g(n) = n ≤ n2 / 10 = f(n) when n > 10

– Therefore, c = 1 and n0 = 10

Page 14: CS 3343: Analysis of Algorithms

04/19/23 14

Theta

• Math:– Θ(g(n)) = {f(n): positive constants c1, c2, and n0

such that c1 g(n) f(n) c2 g(n) n n0 n>n0}

– Or: lim n→∞ f(n)/g(n) = c > 0 and c < ∞

– Or: f(n) = O(g(n)) and f(n) = Ω(g(n))

• Engineering:– f(n) grows in the same order as g(n)– g(n) is an asymptotic tight bound of f(n)

• Intuitively it is like f(n) = g(n)

• Θ(1) means constant time.

Page 15: CS 3343: Analysis of Algorithms

04/19/23 15

Theta

• Claim: f(n) = 2n2 + n = Θ (n2)

• Proof:– We just need to find three constants c1, c2,

and n0 such that

– c1n2 ≤ 2n2+n ≤ c2n2 for all n > n0

– A simple solution is c1 = 2, c2 = 3, and n0 = 1

Page 16: CS 3343: Analysis of Algorithms

04/19/23 16

Using limits to compare orders of growth

0• lim f(n) / g(n) = c > 0

∞n→∞

f(n) o(g(n))

f(n) Θ (g(n))

f(n) ω (g(n))

f(n) O(g(n))

f(n) Ω(g(n))

Page 17: CS 3343: Analysis of Algorithms

04/19/23 17

• Compare 2n and 3n

• lim 2n / 3n = lim(2/3)n = 0

• Therefore, 2n o(3n), and 3n ω(2n)

n→∞ n→∞

Page 18: CS 3343: Analysis of Algorithms

04/19/23 18

L’ Hopital’s rule

lim f(n) / g(n) = lim f(n)’ / g(n)’n→∞ n→∞

If both lim f(n) and lim g(n) goes to ∞

Page 19: CS 3343: Analysis of Algorithms

04/19/23 19

• Compare n0.5 and log n

• lim n0.5 / log n = ?

• (n0.5)’ = 0.5 n-0.5

• (log n)’ = 1 / n• lim (n-0.5 / 1/n) = lim(n0.5) = • Therefore, log n o(n0.5)

n→∞

Page 20: CS 3343: Analysis of Algorithms

04/19/23 20

Stirling’s formula

nnn

ene

nnn

2/122!

!n nn en 2/1(constant)

Page 21: CS 3343: Analysis of Algorithms

04/19/23 21

• Compare 2n and n!

• Therefore, 2n = o(n!)

n

nnn

n

nnn e

nnc

e

nncn

2lim

2lim

2

!lim

Page 22: CS 3343: Analysis of Algorithms

04/19/23 22

More advanced dominance ranking

Page 23: CS 3343: Analysis of Algorithms

04/19/23 23

General plan for analyzing time efficiency of a non-recursive algorithm

• Decide parameter (input size)

• Identify most executed line (basic operation)

• worst-case = average-case?

• T(n) = i ti

• T(n) = Θ (f(n))

Page 24: CS 3343: Analysis of Algorithms

04/19/23 24

Statement cost time__InsertionSort(A, n) {

for j = 2 to n { c1 n

key = A[j] c2 (n-1)

i = j - 1; c3 (n-1)

while (i > 0) and (A[i] > key) { c4 S

A[i+1] = A[i] c5 (S-(n-1))

i = i - 1 c6 (S-(n-1))

} 0

A[i+1] = keyc7 (n-1)

} 0

}

Analysis of insertion Sort

Page 25: CS 3343: Analysis of Algorithms

04/19/23 25

Best case

• Array already sorted

1 i j

sorted Key

Inner loop stops when A[i] <= key, or i = 0

)(11

nnSn

j

Page 26: CS 3343: Analysis of Algorithms

04/19/23 26

Worst case

• Array originally in reverse order

1 i j

sorted

Inner loop stops when A[i] <= key

Key

)(2

)1(...21 2

1

nnn

njSn

j

Page 27: CS 3343: Analysis of Algorithms

04/19/23 27

Average case

• Array in random order

1 i j

sorted

Inner loop stops when A[i] <= key

Key

)(4

)1(

2

1

2)( 2

11

nnn

jj

SEn

j

n

j

Page 28: CS 3343: Analysis of Algorithms

04/19/23 28

Find the order of growth for sums

• How to find out the actual order of growth?– Remember some formulas– Learn how to guess and prove

)()( 2

1

njnTn

j

...

?2

)(

?2)(

?)log()(

1

1

1

n

jj

n

j

j

n

j

nnT

nT

jnT

Page 29: CS 3343: Analysis of Algorithms

04/19/23 29

Arithmetic series

• An arithmetic series is a sequence of numbers such that the difference of any two successive members of the sequence is a constant.

e.g.: 1, 2, 3, 4, 5

or 10, 12, 14, 16, 18, 20• In general:

Recursive definition

Closed form, or explicit formuladjaa

daa

j

jj

)1(1

1

Or:

Page 30: CS 3343: Analysis of Algorithms

04/19/23 30

Sum of arithmetic series

If a1, a2, …, an is an arithmetic series, then

2

)( 1

1

nn

ii

aana

Page 31: CS 3343: Analysis of Algorithms

04/19/23 31

Geometric series

• A geometric series is a sequence of numbers such that the ratio between any two successive members of the sequence is a constant.

e.g.: 1, 2, 4, 8, 16, 32

or 10, 20, 40, 80, 160

or 1, ½, ¼, 1/8, 1/16• In general:

Recursive definition

Closed form, or explicit formula0

1

1

ara

raaj

j

jj

Or:

Page 32: CS 3343: Analysis of Algorithms

04/19/23 32

Sum of geometric series

if r < 1

1

)1/()1(

)1/()1(1

1

0 n

rr

rr

r n

n

n

i

i if r > 1

if r = 1

112lim2

1lim

21

1)(lim

2

1lim

21212

122

02

1

0

02

1

1

21

02

1

0

111

0

n

in

n

iin

n

i

in

n

iin

nnnn

i

i

Page 33: CS 3343: Analysis of Algorithms

04/19/23 33

Important formulas

)1()(

)1()1(

1

1

)(2

)1(

)(1

1

0

2

1

1

rr

r

r

rr

nnn

i

nn

n

nn

i

i

n

i

n

i

)lg(lg

)(lg1

)2(22)1(2

)(1

)(3

1

1

1

1

11

1

33

1

2

nni

ni

nni

nk

ni

nn

i

n

i

n

i

nnn

i

i

kkn

i

k

n

i

Page 34: CS 3343: Analysis of Algorithms

04/19/23 34

Sum manipulation rules

n

xii

x

mii

n

mii

i ii i

i ii ii ii

aaa

acca

baba

1

)(

Example:

n

ii

n

ii

n

i

n

i

nin

i

i

nnn

nnii

11

1 1

1

1

2

1

2

22)1(224)24(

Page 35: CS 3343: Analysis of Algorithms

04/19/23 35

Recursive algorithms

• General idea:– Divide a large problem into smaller ones

• By a constant ratio• By a constant or some variable

– Solve each smaller one recursively or explicitly

– Combine the solutions of smaller ones to form a solution for the original problem

Divide and Conquer

Page 36: CS 3343: Analysis of Algorithms

04/19/23 36

How to analyze the time-efficiency of a recursive algorithm?

• Express the running time on input of size n as a function of the running time on smaller problems

Page 37: CS 3343: Analysis of Algorithms

04/19/23 37

Analyzing merge sort

MERGE-SORT A[1 . . n]1. If n = 1, done.2. Recursively sort A[ 1 . . n/2 ]

and A[ n/2+1 . . n ] .3. “Merge” the 2 sorted lists

T(n)Θ(1)2T(n/2)

f(n)

Sloppiness: Should be T( n/2 ) + T( n/2 ) , but it turns out not to matter asymptotically.

Page 38: CS 3343: Analysis of Algorithms

04/19/23 38

Analyzing merge sort

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Merge two sorted subarrays

T(n) = 2 T(n/2) + f(n) +Θ(1)

# subproblemssubproblem size

Work dividing and

Combining

1. What is the time for the base case?

2. What is f(n)?

3. What is the growth order of T(n)?

Constant

Page 39: CS 3343: Analysis of Algorithms

04/19/23 39

Solving recurrence

• Running time of many algorithms can be expressed in one of the following two recursive forms

)()/()(

)()()(

nfbnaTnT

nfbnaTnT

or

Challenge: how to solve the recurrence to get a closed form, e.g. T(n) = Θ (n2) or T(n) = Θ(nlgn), or at least some bound such as T(n) = O(n2)?

Page 40: CS 3343: Analysis of Algorithms

04/19/23 40

Solving recurrence

1. Recurrence tree (iteration) method- Good for guessing an answer

2. Substitution method- Generic method, rigid, but may be hard

3. Master method- Easy to learn, useful in limited cases only

- Some tricks may help in other cases

Page 41: CS 3343: Analysis of Algorithms

04/19/23 41

The master method

The master method applies to recurrences of the form

T(n) = a T(n/b) + f (n) ,

where a 1, b > 1, and f is asymptotically positive.

1. Divide the problem into a subproblems, each of size n/b

2. Conquer the subproblems by solving them recursively.

3. Combine subproblem solutions

Divide + combine takes f(n) time.

Page 42: CS 3343: Analysis of Algorithms

04/19/23 42

Master theoremT(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ) T(n) = (nlogba) .

CASE 2: f (n) = (nlogba) T(n) = (nlogba log n) .

CASE 3: f (n) = (nlogba + ) and a f (n/b) c f (n) T(n) = ( f (n)) .

Key: compare f(n) with nlogba

e.g.: merge sort: T(n) = 2 T(n/2) + Θ(n)a = 2, b = 2 nlogba = n

CASE 2 T(n) = Θ(n log n) .

Page 43: CS 3343: Analysis of Algorithms

04/19/23 43

Case 1

Compare f (n) with nlogba:f (n) = O(nlogba – ) for some constant > 0.

: f (n) grows polynomially slower than nlogba (by an n factor).

Solution: T(n) = (nlogba) i.e., aT(n/b) dominates

e.g. T(n) = 2T(n/2) + 1

T(n) = 4 T(n/2) + n

T(n) = 2T(n/2) + log n

T(n) = 8T(n/2) + n2

Page 44: CS 3343: Analysis of Algorithms

04/19/23 44

Case 3

Compare f (n) with nlogba:f (n) = (nlogba + ) for some constant > 0.

: f (n) grows polynomially faster than nlogba (by an n factor).

Solution: T(n) = (f(n)) i.e., f(n) dominates

e.g. T(n) = T(n/2) + n

T(n) = 2 T(n/2) + n2

T(n) = 4T(n/2) + n3

T(n) = 8T(n/2) + n4

Page 45: CS 3343: Analysis of Algorithms

04/19/23 45

Case 2

Compare f (n) with nlogba:f (n) = (nlogba).

: f (n) and nlogba grow at similar rate.

Solution: T(n) = (nlogba log n)

e.g. T(n) = T(n/2) + 1

T(n) = 2 T(n/2) + n

T(n) = 4T(n/2) + n2

T(n) = 8T(n/2) + n3

Page 46: CS 3343: Analysis of Algorithms

04/19/23 46

Recursion tree

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

Page 47: CS 3343: Analysis of Algorithms

04/19/23 47

Recursion tree

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)

Page 48: CS 3343: Analysis of Algorithms

04/19/23 48

Recursion tree

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn

Page 49: CS 3343: Analysis of Algorithms

04/19/23 49

Recursion tree

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2

Page 50: CS 3343: Analysis of Algorithms

04/19/23 50

Recursion tree

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)

Page 51: CS 3343: Analysis of Algorithms

04/19/23 51

Recursion tree

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)

h = log n

Page 52: CS 3343: Analysis of Algorithms

04/19/23 52

Recursion tree

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)

h = log n

dn

Page 53: CS 3343: Analysis of Algorithms

04/19/23 53

Recursion tree

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)

h = log n

dn

dn

Page 54: CS 3343: Analysis of Algorithms

04/19/23 54

Recursion tree

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)

h = log n

dn

dn

dn

Page 55: CS 3343: Analysis of Algorithms

04/19/23 55

Recursion tree

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)

h = log n

dn

dn

dn

#leaves = n (n)

Page 56: CS 3343: Analysis of Algorithms

04/19/23 56

Recursion tree

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)

h = log n

dn

dn

dn

#leaves = n (n)

Total(n log n)

Page 57: CS 3343: Analysis of Algorithms

04/19/23 57

Substitution method

1. Guess the form of the solution:(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).

The most general method to solve a recurrence (prove O and separately):

Page 58: CS 3343: Analysis of Algorithms

04/19/23 58

• Recurrence: T(n) = 2T(n/2) + n.• Guess: T(n) = O(n log n). (eg. by recurrence tree

method)• To prove, have to show T(n) ≤ c n log n for

some c > 0 and for all n > n0

• Proof by induction: assume it is true for T(n/2), prove that it is also true for T(n). This means:

• Fact: T(n) = 2T(n/2) + n• Assumption: T(n/2)≤ cn/2 log (n/2)• Need to Prove: T(n)≤ c n log (n)

Proof by substitution

Page 59: CS 3343: Analysis of Algorithms

04/19/23 59

Proof

• Fact: T(n) = 2T(n/2) + n• Assumption: T(n/2)≤ cn/2 log (n/2)• Need to Prove: T(n)≤ c n log (n)

• Proof: Substitute T(n/2) into the recurrence function

=> T(n) = 2 T(n/2) + n ≤ cn log (n/2) + n=> T(n) ≤ c n log n - c n + n=> T(n) ≤ c n log n (if we choose c ≥ 1).

Page 60: CS 3343: Analysis of Algorithms

04/19/23 60

• Recurrence: T(n) = 2T(n/2) + n.• Guess: T(n) = Ω(n log n). • To prove, have to show T(n) ≥ c n log n for

some c > 0 and for all n > n0

• Proof by induction: assume it is true for T(n/2), prove that it is also true for T(n). This means:

• Fact: • Assumption:• Need to Prove: T(n) ≥ c n log (n)

Proof by substitution

T(n) = 2T(n/2) + n

T(n/2) ≥ cn/2 log (n/2)

Page 61: CS 3343: Analysis of Algorithms

04/19/23 61

Proof

• Fact: T(n) = 2T(n/2) + n• Assumption: T(n/2) ≥ cn/2 log (n/2)• Need to Prove: T(n) ≥ c n log (n)

• Proof: Substitute T(n/2) into the recurrence function

=> T(n) = 2 T(n/2) + n ≥ cn log (n/2) + n=> T(n) ≥ c n log n - c n + n=> T(n) ≥ c n log n (if we choose c ≤ 1).

Page 62: CS 3343: Analysis of Algorithms

04/19/23 62

Quick sort

Quicksort an n-element array:

1. Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray x elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.

3. Combine: Trivial.

x x xx ≥ x≥ x

Key: Linear-time partitioning subroutine.

Page 63: CS 3343: Analysis of Algorithms

04/19/23 63

Partition

• All the action takes place in the partition() function– Rearranges the subarray in place– End result: two subarrays

• All values in first subarray all values in second

– Returns the index of the “pivot” element separating the two subarrays

x x xx ≥ x≥ xp rq

Page 64: CS 3343: Analysis of Algorithms

04/19/23 64

Partition CodePartition(A, p, r) x = A[p]; // pivot is the first element i = p; j = r + 1; while (TRUE) {

repeat i++; until A[i] > x or i >= j; repeat j--; until A[j] < x or j < i; if (i < j) Swap (A[i], A[j]); else break;

} swap (A[p], A[j]); return j;

What is the running time of partition()?

partition() runs in O(n) time

Page 65: CS 3343: Analysis of Algorithms

04/19/23 65

i j66 1010 55 88 1313 33 22 1111x = 6

p r

i j66 1010 55 88 1313 33 22 1111

i j66 22 55 88 1313 33 1010 1111

i j66 22 55 88 1313 33 1010 1111

i j66 22 55 33 1313 88 1010 1111

ij66 22 55 33 1313 88 1010 1111

33 22 55 66 1313 88 1010 1111qp r

Page 66: CS 3343: Analysis of Algorithms

04/19/23 66

66 1010 55 88 1111 33 22 1313

33 22 55 66 1111 88 1010 1313

22 33 55 66 88 1010 1111 1313

22 33 55 66 1010 88 1111 1313

22 33 55 66 88 1010 1111 1313

Page 67: CS 3343: Analysis of Algorithms

04/19/23 67

Quicksort Runtimes

• Best case runtime Tbest(n) O(n log n)

• Worst case runtime Tworst(n) O(n2)

• Worse than mergesort? Why is it called quicksort then?

• Its average runtime Tavg(n) O(n log n )

• Better even, the expected runtime of randomized quicksort is O(n log n)

Page 68: CS 3343: Analysis of Algorithms

04/19/23 68

Randomized quicksort

• Randomly choose an element as pivot– Every time need to do a partition, throw a die to

decide which element to use as the pivot– Each element has 1/n probability to be selected

Partition(A, p, r) d = random(); // a random number between 0 and 1 index = p + floor((r-p+1) * d); // p<=index<=r swap(A[p], A[index]); x = A[p]; i = p; j = r + 1; while (TRUE) {

… }

Page 69: CS 3343: Analysis of Algorithms

04/19/23 69

Running time of randomized quicksort

• The expected running time is an average of all cases

T(n) =

T(0) + T(n–1) + dn if 0 : n–1 split,T(1) + T(n–2) + dn if 1 : n–2 split,T(n–1) + T(0) + dn if n–1 : 0 split,

)log()1()(1

)(1

0nnnknTkT

nnT

n

k

Expectation

Page 70: CS 3343: Analysis of Algorithms

04/19/23 70

Heaps

• In practice, heaps are usually implemented as arrays:

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1

Page 71: CS 3343: Analysis of Algorithms

04/19/23 71

Heaps

• To represent a complete binary tree as an array: – The root node is A[1]– Node i is A[i]– The parent of node i is A[i/2] (note: integer divide)– The left child of node i is A[2i]– The right child of node i is A[2i + 1]

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A = =

Page 72: CS 3343: Analysis of Algorithms

04/19/23 72

The Heap Property

• Heaps also satisfy the heap property:A[Parent(i)] A[i] for all nodes i > 1

– In other words, the value of a node is at most the value of its parent

– The value of a node should be greater than or equal to both its left and right children

• And all of its descendents

– Where is the largest element in a heap stored?

Page 73: CS 3343: Analysis of Algorithms

04/19/23 73

Heap Operations: Heapify()

Heapify(A, i){ // precondition: subtrees rooted at l and r are heaps

l = Left(i); r = Right(i);if (l <= heap_size(A) && A[l] > A[i])

largest = l;else

largest = i;if (r <= heap_size(A) && A[r] > A[largest])

largest = r;if (largest != i) {

Swap(A, i, largest);Heapify(A, largest);

}} // postcondition: subtree rooted at i is a heap

Among A[l], A[i], A[r],which one is largest?

If violation, fix it.

Page 74: CS 3343: Analysis of Algorithms

04/19/23 74

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 4 10 14 7 9 3 2 8 1A =

Page 75: CS 3343: Analysis of Algorithms

04/19/23 75

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 10 14 7 9 3 2 8 1A = 4

Page 76: CS 3343: Analysis of Algorithms

04/19/23 76

Heapify() Example

16

4 10

14 7 9 3

2 8 1

16 10 7 9 3 2 8 1A = 4 14

Page 77: CS 3343: Analysis of Algorithms

04/19/23 77

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 8 1A = 4

Page 78: CS 3343: Analysis of Algorithms

04/19/23 78

Heapify() Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 1A = 4 8

Page 79: CS 3343: Analysis of Algorithms

04/19/23 79

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 1A = 4

Page 80: CS 3343: Analysis of Algorithms

04/19/23 80

Heapify() Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

Page 81: CS 3343: Analysis of Algorithms

04/19/23 81

Analyzing Heapify(): Formal

• T(n) T(2n/3) + (1)

• By case 2 of the Master Theorem,

T(n) = O(lg n)

• Thus, Heapify() takes logarithmic time

Page 82: CS 3343: Analysis of Algorithms

04/19/23 82

Heap Operations: BuildHeap()

• We can build a heap in a bottom-up manner by running Heapify() on successive subarrays– Fact: for array of length n, all elements in range

A[n/2 + 1 .. n] are heaps (Why?)– So:

• Walk backwards through the array from n/2 to 1, calling Heapify() on each node.

• Order of processing guarantees that the children of node i are heaps when i is processed

Page 83: CS 3343: Analysis of Algorithms

04/19/23 83

BuildHeap()

// given an unsorted array A, make A a heap

BuildHeap(A)

{

heap_size(A) = length(A);

for (i = length[A]/2 downto 1)Heapify(A, i);

}

Page 84: CS 3343: Analysis of Algorithms

04/19/23 84

BuildHeap() Example

• Work through exampleA = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}

4

1 3

2 16 9 10

14 8 7

Page 85: CS 3343: Analysis of Algorithms

04/19/23 85

4

1 3

2 16 9 10

14 8 7

Page 86: CS 3343: Analysis of Algorithms

04/19/23 86

4

1 3

14 16 9 10

2 8 7

Page 87: CS 3343: Analysis of Algorithms

04/19/23 87

4

1 10

14 16 9 3

2 8 7

Page 88: CS 3343: Analysis of Algorithms

04/19/23 88

4

16 10

14 7 9 3

2 8 1

Page 89: CS 3343: Analysis of Algorithms

04/19/23 89

16

14 10

8 7 9 3

2 4 1

Page 90: CS 3343: Analysis of Algorithms

04/19/23 90

Analyzing BuildHeap(): Tight

• To Heapify() a subtree takes O(h) time where h is the height of the subtree– h = O(lg m), m = # nodes in subtree– The height of most subtrees is small

• Fact: an n-element heap has at most n/2h+1 nodes of height h

• CLR 7.3 uses this fact to prove that BuildHeap() takes O(n) time

Page 91: CS 3343: Analysis of Algorithms

04/19/23 91

Heapsort Example

• Work through exampleA = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}

4

1 3

2 16 9 10

14 8 7

4 1 3 2 16 9 10 14 8 7A =

Page 92: CS 3343: Analysis of Algorithms

04/19/23 92

Heapsort Example

• First: build a heap

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

Page 93: CS 3343: Analysis of Algorithms

04/19/23 93

Heapsort Example

• Swap last and first

1

14 10

8 7 9 3

2 4 16

1 14 10 8 7 9 3 2 4 16A =

Page 94: CS 3343: Analysis of Algorithms

04/19/23 94

Heapsort Example

• Last element sorted

1

14 10

8 7 9 3

2 4 16

1 14 10 8 7 9 3 2 4 16A =

Page 95: CS 3343: Analysis of Algorithms

04/19/23 95

Heapsort Example

• Restore heap on remaining unsorted elements

14

8 10

4 7 9 3

2 1 16 Heapify

14 8 10 4 7 9 3 2 1 16A =

Page 96: CS 3343: Analysis of Algorithms

04/19/23 96

Heapsort Example

• Repeat: swap new last and first

1

8 10

4 7 9 3

2 14 16

1 8 10 4 7 9 3 2 14 16A =

Page 97: CS 3343: Analysis of Algorithms

04/19/23 97

Heapsort Example

• Restore heap

10

8 9

4 7 1 3

2 14 16

10 8 9 4 7 1 3 2 14 16A =

Page 98: CS 3343: Analysis of Algorithms

04/19/23 98

Heapsort Example

• Repeat

9

8 3

4 7 1 2

10 14 16

9 8 3 4 7 1 2 10 14 16A =

Page 99: CS 3343: Analysis of Algorithms

04/19/23 99

Heapsort Example

• Repeat

8

7 3

4 2 1 9

10 14 16

8 7 3 4 2 1 9 10 14 16A =

Page 100: CS 3343: Analysis of Algorithms

04/19/23 100

Heapsort Example

• Repeat

1

2 3

4 7 8 9

10 14 16

1 2 3 4 7 8 9 10 14 16A =

Page 101: CS 3343: Analysis of Algorithms

04/19/23 101

Analyzing Heapsort

• The call to BuildHeap() takes O(n) time

• Each of the n - 1 calls to Heapify() takes O(lg n) time

• Thus the total time taken by HeapSort() = O(n) + (n - 1) O(lg n)= O(n) + O(n lg n)= O(n lg n)

Page 102: CS 3343: Analysis of Algorithms

04/19/23 102

HeapExtractMax Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

Page 103: CS 3343: Analysis of Algorithms

04/19/23 103

HeapExtractMax Example

Swap first and last, then remove last

1

14 10

8 7 9 3

2 4 16

14 10 8 7 9 3 2 4 16A = 1

Page 104: CS 3343: Analysis of Algorithms

04/19/23 104

HeapExtractMax Example

Heapify

14

8 10

4 7 9 3

2 1

10 7 9 3 2 16A =

16

14 8 4 1

Page 105: CS 3343: Analysis of Algorithms

04/19/23 105

HeapChangeKey Example

Increase key

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

Page 106: CS 3343: Analysis of Algorithms

04/19/23 106

HeapChangeKey Example

Increase key

16

14 10

15 7 9 3

2 4 1

16 14 10 7 9 3 2 4 1A = 15

Page 107: CS 3343: Analysis of Algorithms

04/19/23 107

HeapChangeKey Example

Increase key

16

15 10

14 7 9 3

2 4 1

16 10 7 9 3 2 4 1A = 1415

Page 108: CS 3343: Analysis of Algorithms

04/19/23 108

HeapInsert Example

HeapInsert(A, 17)

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

Page 109: CS 3343: Analysis of Algorithms

04/19/23 109

HeapInsert Example

HeapInsert(A, 17)

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

-∞

-∞

-∞ makes it a valid heap

Page 110: CS 3343: Analysis of Algorithms

04/19/23 110

HeapInsert Example

HeapInsert(A, 17)

16

14 10

8 7 9 3

2 4 1

16 10 8 9 3 2 4 1A =

17

1714 7

Now call changeKey

Page 111: CS 3343: Analysis of Algorithms

04/19/23 111

HeapInsert Example

HeapInsert(A, 17)

17

16 10

8 14 9 3

2 4 1

17 10 8 9 3 2 4 1A =

7

716 14

Page 112: CS 3343: Analysis of Algorithms

04/19/23 112

• Heapify: Θ(log n)• BuildHeap: Θ(n)• HeapSort: Θ(nlog n)

• HeapMaximum: Θ(1)• HeapExtractMax: Θ(log n)• HeapChangeKey: Θ(log n)• HeapInsert: Θ(log n)

Page 113: CS 3343: Analysis of Algorithms

04/19/23 113

Counting sort

for i 1 to kdo C[i] 0

for j 1 to ndo C[A[ j]] C[A[ j]] + 1 ⊳ C[i] = |{key = i}|

for i 2 to kdo C[i] C[i] + C[i–1] ⊳ C[i] = |{key i}|

for j n downto 1do B[C[A[ j]]] A[ j]

C[A[ j]] C[A[ j]] – 1

1.

2.

3.

4.

Initialize

Count

Compute running sum

Re-arrange

Page 114: CS 3343: Analysis of Algorithms

04/19/23 114

Counting sort

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22

1 2 3 4

C': 11 11 33 55

for i 2 to kdo C[i] C[i] + C[i–1] ⊳ C[i] = |{key i}|

3.

Page 115: CS 3343: Analysis of Algorithms

04/19/23 115

Loop 4: re-arrange

A: 44 11 33 44 33

B: 33

1 2 3 4 5

C: 11 11 33 55

1 2 3 4

C': 11 11 33 55

for j n downto 1do B[C[A[ j]]] A[ j]

C[A[ j]] C[A[ j]] – 1

4.

Page 116: CS 3343: Analysis of Algorithms

04/19/23 116

Analysisfor i 1 to k

do C[i] 0

(n)

(k)

(n)

(k)

for j 1 to ndo C[A[ j]] C[A[ j]] + 1

for i 2 to kdo C[i] C[i] + C[i–1]

for j n downto 1do B[C[A[ j]]] A[ j]

C[A[ j]] C[A[ j]] – 1

(n + k)

1.

2.

3.

4.

Page 117: CS 3343: Analysis of Algorithms

04/19/23 117

Stable sorting

Counting sort is a stable sort: it preserves the input order among equal elements.

A: 44 11 33 44 33

B: 11 33 33 44 44

Why this is important?What other algorithms have this property?

Page 118: CS 3343: Analysis of Algorithms

04/19/23 118

Radix sort

• Similar to sorting the address books

• Treat each digit as a key

• Start from the least significant bit

198099109123518183599340199540380128115295384700101594539614696382408360201039258538614386507628681328936

Most significant Least significant

Page 119: CS 3343: Analysis of Algorithms

04/19/23 119

Time complexity

• Sort each of the d digits by counting sort• Total cost: d (n + k)

– k = 10– Total cost: Θ(dn)

• Partition the d digits into groups of 3– Total cost: (n+103)d/3

• We work with binaries rather than decimals– Partition a binary number into groups of r bits– Total cost: (n+2r)d/r– Choose r = log n– Total cost: dn / log n– Compare with dn log n

• Catch: faster than quicksort only when n is very large

Page 120: CS 3343: Analysis of Algorithms

04/19/23 120

Randomized selection algorithm

RAND-SELECT(A, p, q, i) ⊳ i th smallest of A[ p . . q] if p = q & i > 1 then error!r RAND-PARTITION(A, p, q)k r – p + 1 ⊳ k = rank(A[r])if i = k then return A[ r]if i < k

then return RAND-SELECT( A, p, r – 1, i )else return RAND-SELECT( A, r + 1, q, i – k )

A[r] A[r] A[r] A[r]rp q

k

Page 121: CS 3343: Analysis of Algorithms

04/19/23 121

Example

pivot

i = 677 1010 55 88 1111 33 22 1313

k = 4

Select the 6 – 4 = 2nd smallest recursively.

Select the i = 6th smallest:

33 22 55 77 1111 88 1010 1313

Partition:

Page 122: CS 3343: Analysis of Algorithms

04/19/23 122

77 1010 55 88 1111 33 22 1313

33 22 55 77 1111 88 1010 1313

1010

1010 88 1111 1313

88 1010

Complete example: select the 6th smallest element.

i = 6

k = 4

i = 6 – 4 = 2

k = 3

i = 2 < k

k = 2

i = 2 = k

Note: here we always used first element as pivot to do the partition (instead of rand-partition).

Page 123: CS 3343: Analysis of Algorithms

04/19/23 123

Intuition for analysis

Lucky:101log 9/10 nn

CASE 3T(n) = T(9n/10) + (n)

= (n)Unlucky:

T(n) = T(n – 1) + (n)= (n2)

arithmetic series

Worse than sorting!

(All our analyses today assume that all elements are distinct.)

Page 124: CS 3343: Analysis of Algorithms

04/19/23 124

Running time of randomized selection

• For upper bound, assume ith element always falls in larger side of partition

• The expected running time is an average of all cases

T(n) ≤

T(max(0, n–1)) + n if 0 : n–1 split,T(max(1, n–2)) + n if 1 : n–2 split,T(max(n–1, 0)) + n if n–1 : 0 split,

)()1,max(1

)(1

0nnknkT

nnT

n

k

Expectation

Page 125: CS 3343: Analysis of Algorithms

04/19/23 125

Worst-case linear-time selection

if i = k then return xelseif i < k

then recursively SELECT the i th smallest element in the

lower partelse recursively SELECT the (i–

k)th smallest element in the upper part

SELECT(i, n)1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.2. Recursively SELECT the median x of the n/5

group medians to be the pivot.3. Partition around the pivot x. Let k = rank(x).4.

Same as RAND-SELECT

Page 126: CS 3343: Analysis of Algorithms

04/19/23 126

Developing the recurrence

if i = k then return xelseif i < k

then recursively SELECT the i th smallest element in the

lower partelse recursively SELECT the (i–

k)th smallest element in the upper part

SELECT(i, n)1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.2. Recursively SELECT the median x of the n/5

group medians to be the pivot.3. Partition around the pivot x. Let k = rank(x).4.

T(n)

(n)

T(n/5)

(n)

T(7n/10+3)

Page 127: CS 3343: Analysis of Algorithms

04/19/23 127

nnTnTnT

3

107

51

)(

Solving the recurrence

if c ≥ 20 and n ≥ 60cn

ncncn

ncn

ncncn

nncncnT

)20/(

20/19

4/35

)3107()5()(

Assumption: T(k) ck for all k < n

if n ≥ 60

Page 128: CS 3343: Analysis of Algorithms

04/19/23 128

Elements of dynamic programming

• Optimal sub-structures– Optimal solutions to the original problem

contains optimal solutions to sub-problems

• Overlapping sub-problems– Some sub-problems appear in many solutions

Page 129: CS 3343: Analysis of Algorithms

04/19/23 129

Two steps to dynamic programming

• Formulate the solution as a recurrence relation of solutions to subproblems.

• Specify an order to solve the subproblems so you always have what you need.

Page 130: CS 3343: Analysis of Algorithms

04/19/23 130

Optimal subpaths

• Claim: if a path startgoal is optimal, any sub-path, startx, or xgoal, or xy, where x, y is on the optimal path, is also the shortest.

• Proof by contradiction– If the subpath between x and y is not the shortest, we can

replace it with the shorter one, which will reduce the total length of the new path => the optimal path from start to goal is not the shortest => contradiction!

– Hence, the subpath xy must be the shortest among all paths from x to y

start goalx ya

bc

b’

a + b + c is shortest

b’ < b

a + b’ + c < a + b + c

Page 131: CS 3343: Analysis of Algorithms

04/19/23 131

Dynamic programming illustration3 9 1 2

3 2 5 2

2 4 2 3

3 6 3 3

1 2 3 2

5 3 3 3 3

2 3 3 9 3

6 2 3 7 4

4 6 3 1 3

3 12 13 15

6 8 13 15

9 11 13 16

11 14 17 20

17 17 18 20

0

5

7

13

17

S

G

F(i-1, j) + dist(i-1, j, i, j) F(i, j) = min

F(i, j-1) + dist(i, j-1, i, j)

Page 132: CS 3343: Analysis of Algorithms

04/19/23 132

Trace back

3 9 1 2

3 2 5 2

2 4 2 3

3 6 3 3

1 2 3 2

5 3 3 3 3

2 3 3 9 3

6 2 3 7 4

4 6 3 1 3

3 12 13 15

6 8 13 15

9 11 13 16

11 14 17 20

17 17 18 20

0

5

7

13

17

Page 133: CS 3343: Analysis of Algorithms

04/19/23 133

Longest Common Subsequence

• Given two sequences x[1 . . m] and y[1 . . n], find a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA = LCS(x, y)

functional notation, but not a function

Page 134: CS 3343: Analysis of Algorithms

04/19/23 134

Optimal substructure

• Notice that the LCS problem has optimal substructure: parts of the final solution are solutions of subproblems.– If z = LCS(x, y), then any prefix of z is an LCS of a prefix of

x and a prefix of y.

• Subproblems: “find LCS of pairs of prefixes of x and y”

x

y

m

nz

i

j

Page 135: CS 3343: Analysis of Algorithms

04/19/23 135

Finding length of LCS

• Let c[i, j] be the length of LCS(x[1..i], y[1..j])=> c[m, n] is the length of LCS(x, y)

• If x[m] = y[n]c[m, n] = c[m-1, n-1] + 1

• If x[m] != y[n]c[m, n] = max { c[m-1, n], c[m, n-1] }

x

y

m

n

Page 136: CS 3343: Analysis of Algorithms

04/19/23 136

DP Algorithm

• Key: find out the correct order to solve the sub-problems• Total number of sub-problems: m * n

c[i, j] =c[i–1, j–1] + 1 if x[i] = y[j],max{c[i–1, j], c[i, j–1]} otherwise.

C(i, j)

0

m

0 n

i

j

Page 137: CS 3343: Analysis of Algorithms

04/19/23 137

LCS Example (0)j 0 1 2 3 4 5

0

1

2

3

4

i

X[i]

A

B

C

B

Y[j] BB ACD

X = ABCB; m = |X| = 4Y = BDCAB; n = |Y| = 5Allocate array c[5,6]

ABCBBDCAB

Page 138: CS 3343: Analysis of Algorithms

04/19/23 138

LCS Example (1)j 0 1 2 3 4 5

0

1

2

3

4

i

A

B

C

B

BB ACD

0

0

00000

0

0

0

for i = 1 to m c[i,0] = 0 for j = 1 to n c[0,j] = 0

ABCBBDCAB

X[i]

Y[j]

Page 139: CS 3343: Analysis of Algorithms

04/19/23 139

LCS Example (2)j 0 1 2 3 4 5

0

1

2

3

4

i

A

B

C

B

BB ACD

0

0

00000

0

0

0

if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] )

0

ABCBBDCAB

X[i]

Y[j]

Page 140: CS 3343: Analysis of Algorithms

04/19/23 140

LCS Example (3)j 0 1 2 3 4 5

0

1

2

3

4

i

A

B

C

B

BB ACD

0

0

00000

0

0

0

if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] )

0 0 0

ABCBBDCAB

X[i]

Y[j]

Page 141: CS 3343: Analysis of Algorithms

04/19/23 141

LCS Example (4)j 0 1 2 3 4 5

0

1

2

3

4

i

A

B

C

B

BB ACD

0

0

00000

0

0

0

if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] )

0 0 0 1

ABCBBDCAB

X[i]

Y[j]

Page 142: CS 3343: Analysis of Algorithms

04/19/23 142

LCS Example (5)j 0 1 2 3 4 5

0

1

2

3

4

i

A

B

C

B

BB ACD

0

0

00000

0

0

0

if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] )

000 1 1

ABCBBDCAB

X[i]

Y[j]

Page 143: CS 3343: Analysis of Algorithms

04/19/23 143

LCS Example (6)j 0 1 2 3 4 5

0

1

2

3

4

i

A

B

C

B

BB ACD

0

0

00000

0

0

0

if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] )

0 0 10 1

1

ABCBBDCAB

X[i]

Y[j]

Page 144: CS 3343: Analysis of Algorithms

04/19/23 144

LCS Example (7)j 0 1 2 3 4 5

0

1

2

3

4

i

A

B

C

B

BB ACD

0

0

00000

0

0

0

if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 1 11

ABCBBDCAB

X[i]

Y[j]

Page 145: CS 3343: Analysis of Algorithms

04/19/23 145

LCS Example (8)j 0 1 2 3 4 5

0

1

2

3

4

i

A

B

C

B

BB ACD

0

0

00000

0

0

0

if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 1 1 1 2

ABCBBDCAB

X[i]

Y[j]

Page 146: CS 3343: Analysis of Algorithms

04/19/23 146

LCS Example (14)j 0 1 2 3 4 5

0

1

2

3

4

i

A

B

C

B

BB ACD

0

0

00000

0

0

0

if ( Xi == Yj ) c[i,j] = c[i-1,j-1] + 1 else c[i,j] = max( c[i-1,j], c[i,j-1] )

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3

ABCBBDCAB

X[i]

Y[j]

Page 147: CS 3343: Analysis of Algorithms

04/19/23 147

LCS Algorithm Running Time

• LCS algorithm calculates the values of each entry of the array c[m,n]

• So what is the running time?

O(m*n)

since each c[i,j] is calculated in constant time, and there are m*n elements in the array

Page 148: CS 3343: Analysis of Algorithms

04/19/23 148

How to find actual LCS

• The algorithm just found the length of LCS, but not LCS itself.• How to find the actual LCS?• For each c[i,j] we know how it was acquired:

• A match happens only when the first equation is taken

• So we can start from c[m,n] and go backwards, remember x[i] whenever c[i,j] = c[i-1, j-1]+1.

2

2 3

2 For example, here c[i,j] = c[i-1,j-1] +1 = 2+1=3

otherwise]),1[],1,[max(

],[][ if1]1,1[],[

jicjic

jyixjicjic

Page 149: CS 3343: Analysis of Algorithms

04/19/23 149

Finding LCSj 0 1 2 3 4 5

0

1

2

3

4

i

A

B

C

BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3B

X[i]

Y[j]

Time for trace back: O(m+n).

Page 150: CS 3343: Analysis of Algorithms

04/19/23 150

Finding LCS (2)j 0 1 2 3 4 5

0

1

2

3

4

i

A

B

C

BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3B

B C BLCS (reversed order):

LCS (straight order): B C B (this string turned out to be a palindrome)

X[i]

Y[j]

Page 151: CS 3343: Analysis of Algorithms

04/19/23 151

LCS as a longest path problem

A

B

C

B

BB ACD

1

1

1 1

1

1

Page 152: CS 3343: Analysis of Algorithms

04/19/23 152

LCS as a longest path problem

A

B

C

B

BB ACD

0 0 0 0 0 0

0 0 0 0 1 1

0 1 1 1 1 2

0 1 1 2 2 2

0 1 1 1 2 3

1

1

1 1

1

1

Page 153: CS 3343: Analysis of Algorithms

04/19/23 153

Restaurant location problem 1

• You work in the fast food business• Your company plans to open up new restaurants in

Texas along I-35

• Towns along the highway called t1, t2, …, tn

• Restaurants at ti has estimated annual profit pi

• No two restaurants can be located within 10 miles of each other due to some regulation

• Your boss wants to maximize the total profit• You want a big bonus

10 mile

Page 154: CS 3343: Analysis of Algorithms

04/19/23 154

A DP algorithm

• Suppose you’ve already found the optimal solution

• It will either include tn or not include tn

• Case 1: tn not included in optimal solution

– Best solution same as best solution for t1 , …, tn-1

• Case 2: tn included in optimal solution

– Best solution is pn + best solution for t1 , …, tj , where j < n is the largest index so that dist(tj, tn) ≥ 10

Page 155: CS 3343: Analysis of Algorithms

04/19/23 155

Recurrence formulation

• Let S(i) be the total profit of the optimal solution when the first i towns are considered (not necessarily selected)– S(n) is the optimal solution to the complete problem

S(n-1)

S(j) + pn j < n & dist (tj, tn) ≥ 10S(n) = max

S(i-1)

S(j) + pi j < i & dist (tj, ti) ≥ 10S(i) = max

Generalize

Number of sub-problems: n. Boundary condition: S(0) = 0.

Dependency: ii-1jS

Page 156: CS 3343: Analysis of Algorithms

04/19/23 156

Example

• Natural greedy 1: 6 + 3 + 4 + 12 = 25• Natural greedy 2: 12 + 9 + 3 = 24

5 2 2 6 6 63 10 7

6 7 9 8 3 3 2 4 12 5

Distance (mi)

Profit (100k)

6 7 9 9 10 12 12 14 26 26S(i)

S(i-1)

S(j) + pi j < i & dist (tj, ti) ≥ 10S(i) = max

100

07 3 4 12

dummy

Optimal: 26

Page 157: CS 3343: Analysis of Algorithms

04/19/23 157

Complexity

• Time: (nk), where k is the maximum number of towns that are within 10 miles to the left of any town– In the worst case, (n2)

– Can be improved to (n) with some preprocessing tricks

• Memory: Θ(n)

Page 158: CS 3343: Analysis of Algorithms

04/19/23 158

Knapsack problem

Three versions:

0-1 knapsack problem: take each item or leave it

Fractional knapsack problem: items are divisible

Unbounded knapsack problem: unlimited supplies of each item.

Which one is easiest to solve?

•Each item has a value and a weight•Objective: maximize value•Constraint: knapsack has a weight

limitation

We study the 0-1 problem today.

Page 159: CS 3343: Analysis of Algorithms

04/19/23 159

Formal definition (0-1 problem)

• Knapsack has weight limit W• Items labeled 1, 2, …, n (arbitrarily)

• Items have weights w1, w2, …, wn

– Assume all weights are integers

– For practical reason, only consider wi < W

• Items have values v1, v2, …, vn

• Objective: find a subset of items, S, such that iS wi W and iS vi is maximal among all such (feasible) subsets

Page 160: CS 3343: Analysis of Algorithms

04/19/23 160

A DP algorithm

• Suppose you’ve find the optimal solution S

• Case 1: item n is included

• Case 2: item n is not included

Total weight limit:W

wn

Total weight limit:W

Find an optimal solution using items 1, 2, …, n-1 with weight limit W - wn

wn

Find an optimal solution using items 1, 2, …, n-1 with weight limit W

Page 161: CS 3343: Analysis of Algorithms

04/19/23 161

Recursive formulation

• Let V[i, w] be the optimal total value when items 1, 2, …, i are considered for a knapsack with weight limit w

=> V[n, W] is the optimal solution

V[n, W] = maxV[n-1, W-wn] + vn

V[n-1, W]

Generalize

V[i, w] = maxV[i-1, w-wi] + vi item i is taken

V[i-1, w] item i not taken

V[i-1, w] if wi > w item i not taken

Boundary condition: V[i, 0] = 0, V[0, w] = 0. Number of sub-problems = ?

Page 162: CS 3343: Analysis of Algorithms

04/19/23 162

Example

• n = 6 (# of items)• W = 10 (weight limit)• Items (weight, value):

2 24 33 35 62 46 9

Page 163: CS 3343: Analysis of Algorithms

04/19/23 163

0

0

0

0

0

0

00000000000

w 0 1 2 3 4 5 6 7 8 9 10

425

6

4

3

2

1

i

96

65

33

34

22

viwi

maxV[i-1, w-wi] + vi item i is taken

V[i-1, w] item i not taken

V[i-1, w] if wi > w item i not taken

V[i, w] =

V[i, w]

V[i-1, w]V[i-1, w-wi]

6

wi

5

Page 164: CS 3343: Analysis of Algorithms

04/19/23 164

107400

1310764400

9633200

8653200

555532200

2222222200

00000000000

w 0 1 2 3 4 5 6 7 8 9 10

i wi vi

1 2 2

2 4 3

3 3 3

4 5 6

5 2 4

6 6 9

maxV[i-1, w-wi] + vi item i is taken

V[i-1, w] item i not taken

V[i-1, w] if wi > w item i not taken

V[i, w] =

2

4

3

6

5

6

7

5

9

6

8

10

9 11

8

3

12 13

13 15

Page 165: CS 3343: Analysis of Algorithms

04/19/23 165

107400

1310764400

9633200

8653200

555532200

2222222200

00000000000

w 0 1 2 3 4 5 6 7 8 9 10

i wi vi

1 2 2

2 4 3

3 3 3

4 5 6

5 2 4

6 6 9

2

4

3

6

5

6

7

5

9

6

8

10

9 11

8

3

12 13

13 15

Item: 6, 5, 1

Weight: 6 + 2 + 2 = 10

Value: 9 + 4 + 2 = 15

Optimal value: 15

Page 166: CS 3343: Analysis of Algorithms

04/19/23 166

Time complexity

• Θ (nW)• Polynomial?

– Pseudo-polynomial– Works well if W is small

• Consider following items (weight, value):(10, 5), (15, 6), (20, 5), (18, 6)

• Weight limit 35– Optimal solution: item 2, 4 (value = 12). Iterate: 2^4 = 16 subsets– Dynamic programming: fill up a 4 x 35 = 140 table entries

• What’s the problem?– Many entries are unused: no such weight combination– Top-down may be better

Page 167: CS 3343: Analysis of Algorithms

04/19/23 167

Longest increasing subsequence

• Given a sequence of numbers1 2 5 3 2 9 4 9 3 5 6 8

• Find a longest subsequence that is non-decreasing– E.g. 1 2 5 9– It has to be a subsequence of the original list– It has to in sorted order

=> It is a subsequence of the sorted list

Original list: 1 2 5 3 2 9 4 9 3 5 6 8LCS:Sorted: 1 2 2 3 3 4 5 5 6 8 9 9

1 2 3 4 5 6 8

Page 168: CS 3343: Analysis of Algorithms

04/19/23 168

Events scheduling problem

• A list of events to schedule (or shows to see)– ei has start time si and finishing time fi

– Indexed such that fi < fj if i < j• Each event has a value vi

• Schedule to make the largest value– You can attend only one event at any time

• Very similar to the new restaurant location problem– Sort events according to their finish time– Consider: if the last event is included or not

Time

e1 e2

e3e4 e5

e6

e7

e8

e9

Page 169: CS 3343: Analysis of Algorithms

04/19/23 169

Events scheduling problem

Time

e1 e2

e3e4 e5

e6

e7

e8

e9

• V(i) is the optimal value that can be achieved when the first i events are considered

• V(n) =

V(n-1) en not selected

en selectedV(j) + vn

max {

j < n and fj < sn

s9 f9

s8 f8

s7 f7

Page 170: CS 3343: Analysis of Algorithms

04/19/23 170

Coin change problem

• Given some denomination of coins (e.g., 2, 5, 7, 10), decide if it is possible to make change for a value (e.g, 13), or minimize the number of coins

• Version 1: Unlimited number of coins for each denomination– Unbounded knapsack problem

• Version 2: Use each denomination at most once– 0-1 Knapsack problem

Page 171: CS 3343: Analysis of Algorithms

04/19/23 171

Use DP algorithm to solve new problems

• Directly map a new problem to a known problem• Modify an algorithm for a similar task• Design your own

– Think about the problem recursively– Optimal solution to a larger problem can be computed

from the optimal solution of one or more subproblems– These sub-problems can be solved in certain

manageable order– Works nicely for naturally ordered data such as

strings, trees, some special graphs– Trickier for general graphs

• The text book has some very good exercises.

Page 172: CS 3343: Analysis of Algorithms

04/19/23 172

Unit-profit restaurant location problem

• Now the objective is to maximize the number of new restaurants (subject to the distance constraint)– In other words, we assume that each

restaurant makes the same profit, no matter where it is opened

10 mile

Page 173: CS 3343: Analysis of Algorithms

04/19/23 173

A DP Algorithm

• Exactly as before, but pi = 1 for all i

S(i-1)

S(j) + 1 j < i & dist (tj, ti) ≥ 10S(i) = max

S(i-1)

S(j) + pi j < i & dist (tj, ti) ≥ 10S(i) = max

Page 174: CS 3343: Analysis of Algorithms

04/19/23 174

Greedy algorithm for restaurant location problem

select t1

d = 0;

for (i = 2 to n)

d = d + dist(ti, ti-1);

if (d >= min_dist)

select ti

d = 0;

end

end

5 2 2 6 6 63 10 7

d 0 5 7 9 150

6 9 150

100

7

Page 175: CS 3343: Analysis of Algorithms

04/19/23 175

Complexity

• Time: Θ(n)

• Memory: – Θ(n) to store the input– Θ(1) for greedy selection

Page 176: CS 3343: Analysis of Algorithms

04/19/23 176

Optimal substructure• Claim 1: if A = [m1, m2, …, mk] is the optimal solution to the

restaurant location problem for a set of towns [t1, …, tn]

– m1 < m2 < … < mk are indices of the selected towns

– Then B = [m2, m3, …, mk] is the optimal solution to the sub-problem [tj, …, tn], where tj is the first town that are at least 10 miles to the right of tm1

• Proof by contradiction: suppose B is not the optimal solution to the sub-problem, which means there is a better solution B’ to the sub-problem– A’ = mi || B’ gives a better solution than A = mi || B => A is not

optimal => contradiction => B is optimal

m1 B’ (imaginary)A’

Bm1Am2 mk

Page 177: CS 3343: Analysis of Algorithms

04/19/23 177

Greedy choice property

• Claim 2: for the uniform-profit restaurant location problem, there is an optimal solution that chooses t1

• Proof by contradiction: suppose that no optimal solution can be obtained by choosing t1

– Say the first town chosen by the optimal solution S is ti, i > 1

– Replace ti with t1 will not violate the distance constraint, and the total profit remains the same => S’ is an optimal solution

– Contradiction– Therefore claim 2 is valid

S

S’

Page 178: CS 3343: Analysis of Algorithms

04/19/23 178

Fractional knapsack problem

0-1 knapsack problem: take each item or leave it

Fractional knapsack problem: items are divisible

Unbounded knapsack problem: unlimited supplies of each item.

Which one is easiest to solve?

•Each item has a value and a weight•Objective: maximize value•Constraint: knapsack has a weight

limitation

We can solve the fractional knapsack problem using greedy algorithm

Page 179: CS 3343: Analysis of Algorithms

04/19/23 179

Greedy algorithm for fractional knapsack problem

• Compute value/weight ratio for each item• Sort items by their value/weight ratio into

decreasing order– Call the remaining item with the highest ratio the most

valuable item (MVI)

• Iteratively: – If the weight limit can not be reached by adding MVI

• Select MVI

– Otherwise select MVI partially until weight limit

Page 180: CS 3343: Analysis of Algorithms

04/19/23 180

Example• Weight limit: 10

1.5

2

1.2

1

0.75

1

$ / LB

966

425

654

333

342

221

Value ($)

Weight (LB)

item

Page 181: CS 3343: Analysis of Algorithms

04/19/23 181

Example• Weight limit: 10

• Take item 5– 2 LB, $4

• Take item 6– 8 LB, $13

• Take 2 LB of item 4– 10 LB, 15.4

item Weight (LB)

Value ($)

$ / LB

5 2 4 2

6 6 9 1.5

4 5 6 1.2

1 2 2 1

3 3 3 1

2 4 3 0.75

Page 182: CS 3343: Analysis of Algorithms

04/19/23 182

Why is greedy algorithm for fractional knapsack problem valid?

• Claim: the optimal solution must contain the MVI as much as possible (either up to the weight limit or until MVI is exhausted)

• Proof by contradiction: suppose that the optimal solution does not use all available MVI (i.e., there is still w (w < W) pounds of MVI left while we choose other items)– We can replace w pounds of less valuable items by MVI– The total weight is the same, but with value higher than the

“optimal”– Contradiction

w w w w

Page 183: CS 3343: Analysis of Algorithms

04/19/23 183

Graphs

• A graph G = (V, E)– V = set of vertices– E = set of edges = subset of V V– Thus |E| = O(|V|2)

1

2 4

3

Vertices: {1, 2, 3, 4}

Edges: {(1, 2), (2, 3), (1, 3), (4, 3)}

Page 184: CS 3343: Analysis of Algorithms

04/19/23 184

Graphs: Adjacency Matrix

• Example:

1

2 4

3

A 1 2 3 4

1 0 1 1 0

2 0 0 1 0

3 0 0 0 0

4 0 0 1 0

How much storage does the adjacency matrix require?A: O(V2)

Page 185: CS 3343: Analysis of Algorithms

04/19/23 185

Graphs: Adjacency List

• Adjacency list: for each vertex v V, store a list of vertices adjacent to v

• Example:– Adj[1] = {2,3}– Adj[2] = {3}– Adj[3] = {}– Adj[4] = {3}

• Variation: can also keep a list of edges coming into vertex

1

2 4

3

Page 186: CS 3343: Analysis of Algorithms

04/19/23 186

Kruskal’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

e-h: 15

Page 187: CS 3343: Analysis of Algorithms

04/19/23 187

Kruskal’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

e-h: 15

Page 188: CS 3343: Analysis of Algorithms

04/19/23 188

Kruskal’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

e-h: 15

Page 189: CS 3343: Analysis of Algorithms

04/19/23 189

Kruskal’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

e-h: 15

Page 190: CS 3343: Analysis of Algorithms

04/19/23 190

Kruskal’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

e-h: 15

Page 191: CS 3343: Analysis of Algorithms

04/19/23 191

Kruskal’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

e-h: 15

Page 192: CS 3343: Analysis of Algorithms

04/19/23 192

Kruskal’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

e-h: 15

Page 193: CS 3343: Analysis of Algorithms

04/19/23 193

Kruskal’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

e-h: 15

Page 194: CS 3343: Analysis of Algorithms

04/19/23 194

Kruskal’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

e-h: 15

Page 195: CS 3343: Analysis of Algorithms

04/19/23 195

Kruskal’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

e-h: 15

Page 196: CS 3343: Analysis of Algorithms

04/19/23 196

Kruskal’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

e-h: 15

Page 197: CS 3343: Analysis of Algorithms

04/19/23 197

Time complexity

• Depending on implementation• Pseudocode:

sort all edges according to weightsT = {}. tree(v) = v for all v.for each edge (u, v)

if tree(u) != tree(v)T = T U (u, v);union (tree(u), tree(v))

Overall time complexityNaïve: Θ(nm)Better implementation: Θ(m log n)

Θ(m log m)= Θ(m log n) m edges

Avg time spent per edge

Naïve: Θ (n)Better: Θ (log n) using set union

Page 198: CS 3343: Analysis of Algorithms

04/19/23 198

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

a b c d e f g h

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Page 199: CS 3343: Analysis of Algorithms

04/19/23 199

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

ChangeKey

c b a d e f g h

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞

Page 200: CS 3343: Analysis of Algorithms

04/19/23 200

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

ExctractMin

h b a d e f g

∞ ∞ ∞ ∞ ∞ ∞ ∞

Page 201: CS 3343: Analysis of Algorithms

04/19/23 201

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

d b a h e f g

3 14 ∞ ∞ ∞ ∞ ∞

ChangeKey

Page 202: CS 3343: Analysis of Algorithms

04/19/23 202

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

b g a h e f

14

∞ ∞ ∞ ∞ ∞

ExctractMin

Page 203: CS 3343: Analysis of Algorithms

04/19/23 203

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

b e a h g f

8 10 ∞ ∞ ∞ ∞

Changekey

Page 204: CS 3343: Analysis of Algorithms

04/19/23 204

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

e f a h g

10 ∞ ∞ ∞ ∞

ExtractMin

Page 205: CS 3343: Analysis of Algorithms

04/19/23 205

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

f e a h g

5 10 6 ∞ ∞

Changekey

Page 206: CS 3343: Analysis of Algorithms

04/19/23 206

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

a e g h

6 10 ∞ ∞

ExtractMin

Page 207: CS 3343: Analysis of Algorithms

04/19/23 207

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

a e g h

6 7 9 ∞

Changekey

Page 208: CS 3343: Analysis of Algorithms

04/19/23 208

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

e h g

7 ∞ 9

ExtractMin

Page 209: CS 3343: Analysis of Algorithms

04/19/23 209

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

g h

9 ∞

ExtractMin

Page 210: CS 3343: Analysis of Algorithms

04/19/23 210

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

g h

9 15

Changekey

Page 211: CS 3343: Analysis of Algorithms

04/19/23 211

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

h

15

ExtractMin

Page 212: CS 3343: Analysis of Algorithms

04/19/23 212

Prim’s algorithm: example

aa

bb ff

cc ee

dd

gg

hh

6 125

14

3

8

10

15

9

7

Page 213: CS 3343: Analysis of Algorithms

04/19/23 213

Complete Prim’s AlgorithmMST-Prim(G, w, r) Q = V[G]; for each u Q key[u] = ; key[r] = 0; T = {}; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) T = T U (u, v); ChangeKey(v, w(u,v));

How often is ExtractMin() called?How often is ChangeKey() called?

n vertices

Θ(n) times

Θ(n2) times?

Θ(m) times

Overall running time: Θ(m log n)Cost per ChangeKey

Page 214: CS 3343: Analysis of Algorithms

04/19/23 214

Summary

• Kruskal’s algorithm– Θ(m log n)– Possibly Θ(m + n log n) with counting sort

• Prim’s algorithm– With priority queue : Θ(m log n)

• Assume graph represented by adj list

– With distance array : Θ(n^2)• Adj list or adj matrix

– For sparse graphs priority queue wins– For dense graphs distance array may be better

Page 215: CS 3343: Analysis of Algorithms

04/19/23 215

a b c d e f g h i

∞ 14 7 5 0 ∞ ∞ ∞ ∞

7

2

39

6

14

9

7

1

6

8

1

7

5

4

b

ed

cg

ai

hf

0

14

5

7

Dijkstra’s algorithm

Page 216: CS 3343: Analysis of Algorithms

04/19/23 216

a b c d e f g h i

11 11 7 5 0 ∞ ∞ ∞ ∞

7

2

39

6

14

9

7

1

6

8

1

7

5

4

b

ed

cg

ai

hf

0

14

5

7

11

11

Dijkstra’s algorithm

Page 217: CS 3343: Analysis of Algorithms

04/19/23 217

a b c d e f g h i

9 11 7 5 0 ∞ ∞ ∞ ∞

7

2

39

6

14

9

7

1

6

8

1

7

5

4

b

ed

cg

ai

hf

0

14

5

7

11

119

Dijkstra’s algorithm

Page 218: CS 3343: Analysis of Algorithms

04/19/23 218

a b c d e f g h i

9 11 7 5 0 12 ∞ ∞ 17

7

2

39

6

14

9

7

1

6

8

1

7

5

4

b

ed

cg

ai

hf

0

14

5

7

11

119

12

17

Dijkstra’s algorithm

Page 219: CS 3343: Analysis of Algorithms

04/19/23 219

a b c d e f g h i

9 11 7 5 0 12 ∞ 20 17

7

2

39

6

14

9

7

1

6

8

1

7

5

4

b

ed

cg

ai

hf

0

14

5

7

11

119

12

17

20

Dijkstra’s algorithm

Page 220: CS 3343: Analysis of Algorithms

04/19/23 220

a b c d e f g h i

9 11 7 5 0 12 ∞ 19 17

7

2

39

6

14

9

7

1

6

8

1

7

5

4

b

ed

cg

ai

hf

0

14

5

7

11

119

12

17

20

19

Dijkstra’s algorithm

Page 221: CS 3343: Analysis of Algorithms

04/19/23 221

a b c d e f g h i

9 11 7 5 0 12 18 18 17

7

2

39

6

14

9

7

1

6

8

1

7

5

4

b

ed

cg

ai

hf

0

14

5

7

11

119

12

17

20

19

18

18

Dijkstra’s algorithm

Page 222: CS 3343: Analysis of Algorithms

04/19/23 222

a b c d e f g h i

9 11 7 5 0 12 18 18 17

7

2

39

6

14

9

7

1

6

8

1

7

5

4

b

ed

cg

ai

hf

0

14

5

7

11

119

12

17

20

19

18

18

Dijkstra’s algorithm

Page 223: CS 3343: Analysis of Algorithms

04/19/23 223

a b c d e f g h i

9 11 7 5 0 12 18 18 17

7

2

39

6

14

9

7

1

6

8

1

7

5

4

b

ed

cg

ai

hf

0

14

5

7

11

119

12

17

20

19

18

18

Dijkstra’s algorithm

Page 224: CS 3343: Analysis of Algorithms

04/19/23 224

Prim’s AlgorithmMST-Prim(G, w, r) Q = V[G]; for each u Q key[u] = ; key[r] = 0; T = {}; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) T = T U (u, v); ChangeKey(v, w(u,v));

Overall running time: Θ(m log n)Cost per ChangeKey

Page 225: CS 3343: Analysis of Algorithms

04/19/23 225

Dijkstra’s AlgorithmDijkstra(G, w, r) Q = V[G]; for each u Q key[u] = ; key[r] = 0; T = {}; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and key[u]+w(u,v) < key[v]) T = T U (u, v); ChangeKey(v, key[u]+w(u,v));

Overall running time: Θ(m log n)Cost per ChangeKey

Running time of Dijkstra’s algorithm is the same as Prim’s algorithm

Page 226: CS 3343: Analysis of Algorithms

04/19/23 226

Good luck with your final!