crystal imperfection ch 4

Upload: maxxolimous

Post on 07-Jul-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Crystal Imperfection CH 4

    1/44

    Chapter 4

    Crystal Defects andNoncrystalline Structure–

    Imperfection

    ME 2105 – Dr. Lindeke

  • 8/18/2019 Crystal Imperfection CH 4

    2/44

    In our pervious Lecture when

    discussing Crystals we

     ASSUMED PERFEC !RDER 

     In real materials we find:

    Crystalline Defects or lattice irregularity

     Most real materials have one or more “errors in perfection”

    with dimensions on the order of an atomic diameter to many

    lattice sites

    De"ects can #e classi"ication$%& according to geo'etry

     (point) line or plane*

    +& di'ensions o" the de"ect

  • 8/18/2019 Crystal Imperfection CH 4

    3/44

     alcohol. Mixing occurs on the

    molecular scale.

    We can defne thismixture/s!utin na "ei#ht r $atmic%

    &asis

    ' simi!ar discussincan app!( t$mixtures% ) meta!s– ca!!ed a!!(s

  • 8/18/2019 Crystal Imperfection CH 4

    4/44

    * +acancies,

    -acant atmic sites in a structure.

    * e!)-nterstitia!s,-extra atms psitined &et"een atmic sites.

    int De)ects – in the s!idstate are mre predicta&!e

    +acanc(

    distrtin) p!anes

    se!)-interstitia!distrtin) p!anes

  • 8/18/2019 Crystal Imperfection CH 4

    5/44

    P!I, DEFECS

    • he si'plest o" the point de"ect is a vacancy) or vacant lattice site&

    • All crystalline solids contain vacancies&

    • Principles o" ther'odyna'ics is used e-plain the necessity o" the

    e-istence o" vacancies in crystalline solids&

    • he presence o" vacancies increases the entropy (rando'ness* o"the crystal&

    • he e.uili#riu' nu'#er o" vacancies "or a given .uantity o"

    'aterial depends on and increases with te'perature as "ollows$ (an

    Arrhenius 'odel*

     N v=  N  exp(-Qv/kT)

     Equilibrium no of vacancies

    !otal no of atomic sites Energy required to form vacancy

    T = absolute temperature in °Kelvin

    k = gas or Boltzmann’s constant

  • 8/18/2019 Crystal Imperfection CH 4

    6/44

     3" utcmes i) impurit( 6 added t hst '6,

    * !id s!utin )  in ' i.e.7 randm dist. ) pintde)ects6

    * !id s!utin )  in ' p!us partic!es ) a new  phase usua!!( )r a !ar#er amunt ) 6

    89

    u&stitutina! s!ids!n.

    e.#.7 Cu in :i6

    nterstitia! s!ids!n.

    e.#.7 C in ;e6

    ecnd phase partic!e--di

  • 8/18/2019 Crystal Imperfection CH 4

    7/44

    Solid solution of nickel in copper shown

    along a (100) plane. This is asu&stitutina! solid solution with nickelatoms sustituting for copper atomson fcc atom sites.

  • 8/18/2019 Crystal Imperfection CH 4

    8/44

    mper)ectins in !ids

    Cnditins )r su&stitutina! s!id s!utin..6

    • =ume – 9ther( ru!es – 1. ∆r atmic radius6 > 15?

     – 2. rximit( in peridic ta&!e• i.e.7 simi!ar e!ectrne#atiities

     – @. ame cr(sta! structure )r pure meta!s

     – 4. +a!enc( eAua!it(• '!! e!se &ein# eAua!7 a meta! "i!! hae a #reater

    tendenc( t diss!e a meta! ) hi#her a!enc( thanne ) !"er a!enc( it prides mre e!ectrns t the$c!ud%6

  • 8/18/2019 Crystal Imperfection CH 4

    9/44

    mper)ectins in !ids

    'pp!icatin ) =ume–9ther( ru!es – !id!utins

    1. Wu!d (u predict

    mre '! r '#t diss!e in Bn

    2. Mre Bn r '!

    in Cu

     3a&!e n p. 107 !allister "e.

    #lement $tomic !r%stal #lectro& 'alenceadius Structure nega&

      (nm) tiit% 

    Cu 0.12F ;CC 1.G H2

    C 0.01= 0.048 0.00'# 0.1445 ;CC 1.G H1'! 0.14@1 ;CC 1.5 H@C 0.125@ =C 1.F H2Cr 0.124G CC 1. H@;e 0.1241 CC 1.F H2:i 0.124 ;CC 1.F H2d 0.1@ ;CC 2.2 H2Bn 0.1@@2 =C 1. H2

    Mre '! &ecause siIe is c!ser anda!. s hi#her – &ut nt t much&ecause ) structura! di

  • 8/18/2019 Crystal Imperfection CH 4

    10/44

    mper)ectins in !ids

    • Specication of composition

     – "ei#ht percent100x

    21

    11

    mm

    mC 

    +=

    m1 J mass ) cmpnent 1

    100x21

    1'

    1

    mm

    m

    nn

    nC 

    +=

    nm1 J num&er ) m!es ) cmpnent 1

     – atm percent

  • 8/18/2019 Crystal Imperfection CH 4

    11/44

    Wt. ? and 't. ? -- 'n examp!e

    T!picall! "e "ork "it# a basis "eig#t ($%%g or $ kg) or moles

    given& allo! b! "eig#t -- '% u* +% ,i

    '%%.++

    '.00 /

    +%%'.12

    01.' /

    .++.01$ or 01.$

    .++ '.12'.12

    .+$.++ '.12

    Cu

     Ni

    Cu

     Ni

     g n m

     g m

     g n m

     g m

    = =

    = =

    = ≈+

    = ≈+

    or +$.

  • 8/18/2019 Crystal Imperfection CH 4

    12/44

    Cnertin# et"een, Wt? and 't?6

    $ 2$

    $ 2 2 $

    2 $2

    $ 2 2 $

    $ $$

    $ $ 2 2

    2 22

    $ $ 2 2

    $%%

    $%%

    $%%

    $%%

    C AC 

    C A C A

    C AC  C A C A

    C AC 

    C A C AC A

    C C A C A

    ∗= ×∗ + ∗

    ∗= ×∗ + ∗

    ∗= ×

    ∗ + ∗∗

    = ×∗ + ∗

    Cnerts )rm"t? t 't? 'i 

    is atmic"ei#ht6

    Cnerts )rmat? t "t? 'iis atmic"ei#ht6

  • 8/18/2019 Crystal Imperfection CH 4

    13/44

    nterstitia! s!id s!utin app!ies t car&n in K-irn. 3he car&n atm is sma!! enu#h t ft

    "ith sme strain in the interstice r penin#6amn# adacent ;e atms in this imprtantstee! structure. 3his unit-ce!! structure can &ecmpared "ith that sh"n in ;i#ure @.4&.N

    ut the interstitia! s!u&i!it( is Auite !" since the siIe mismatch ) the site tthe radius ) a car&n atm is n!( a&ut 1/4

  • 8/18/2019 Crystal Imperfection CH 4

    14/44

    andom* sustitution solid solutioncan occur in +onic !r%stalline

    materials as well. ,ere of -i inMg. The 2O arrangement isuna/ected. The sustitution occurs

    among -i2H

     and Mg2H

     ions.

  • 8/18/2019 Crystal Imperfection CH 4

    15/44

     $ sustitution solid solution of $l2@ in Mg

    is not as simple as the case of -i in Mg.The requirement of charge neutralit% in theoerall compound permits onl% two $l@H ionsto ll eer% threeMg2H acant sites* leaing

    oneMg2H

     acanc%.

  • 8/18/2019 Crystal Imperfection CH 4

    16/44

    +ron oxide* Fe1O x  with x P 0.05* is an

    example of a nonstoichiometric compound.Similar to the case of Figure .2* oth Fe2H and Fe@H ions occup% the cation sites* withone Fe2H acanc% occurring for eer% twoFe@H ions present.

  • 8/18/2019 Crystal Imperfection CH 4

    17/44

    • Frenkel Defect

      --a cation is out of place.

    • Shottky Defect  --a paired set of cation and anion vacancies.

    • !uili"riu# concentration of defectskT  / QDe~   −

    fro# $.%. &offatt %.$. (earsall

    and ). $ulff The Structure and

    Properties of Materials *ol. 1

    Structure )ohn $iley and Sons

    +nc. p. ,.

    De)ects in Ceramictructures

    Shottky

    Defect

    Frenkel

    Defect

  • 8/18/2019 Crystal Imperfection CH 4

    18/44

    'nd,* s!ip &et"een cr(sta! p!anes resu!t "hen dis!catinsme7* this mtin prduces permanent p!astic6de)rmatin.

    're ca!!ed Dis!catins,

    chematic ) Binc =C6,

    * &e)re de)rmatin * a)ter tensi!e e!n#atin

    s!ip steps "hichare the ph(sica!

    eidence ) !ar#enum&ers )dis!catinss!ippin# a!n#the c!se packedp!ane Q0001R

    Line De)ects

    'dapted )rm ;i#. .F7 !allister "e.

  • 8/18/2019 Crystal Imperfection CH 4

    19/44

    Linear De)ects Dis!catins6

     – 're ne-dimensina! de)ects arund "hich atms aremisa!i#ned

    • Ed#e dis!catin, – extra ha!)-p!ane ) atms inserted in a cr(sta!

    structure

     – b (the berger’s vector is ⊥ perpendicu!ar6 tdis!catin !ine

    • cre" dis!catin, – spira! p!anar ramp resu!tin# )rm shear de)rmatin

     – b is || para!!e!6 t dis!catin !ine

    !urger’s vector" b# is a measure of latticedistortion and is measured as a distance along theclose pac$ed directions in the lattice

  • 8/18/2019 Crystal Imperfection CH 4

    20/44

    Ed#e Dis!catin

    ;i#. 4.@7 !allister "e.

    Ed#e Dis!catin

  • 8/18/2019 Crystal Imperfection CH 4

    21/44

    3enition of the 4urgers ector* b*relatie to an edge dislocation. (a) +nthe perfect cr%stal* an mS n atomicstep loop closes at the starting point.() +n the region of a dislocation* thesame loop does not close* and theclosure ector (b represents themagnitude of the structural defect.For the edge dislocation* the 4urgers

    ector is perpendicu!ar to thedislocation line.

  • 8/18/2019 Crystal Imperfection CH 4

    22/44

    Screw dislocation. The spiral stacking of cr%stal planes leads to the 4urgers ector eing parallel to

    the dislocation line.

  • 8/18/2019 Crystal Imperfection CH 4

    23/44

    Mixed dislocation. This dislocation has oth edge

    and screw character with a single 4urgers ectorconsistent with the pure edge and pure screwregions.

  • 8/18/2019 Crystal Imperfection CH 4

    24/44

    4urgers ector for thealuminum oxide structure.The large repeat distancein this relatiel% complex

    structure causes the4urgers ector to eroken up into two (for2O ) or four (for $l@H )

     partial dislocations* each

    representing a smaller slip

  • 8/18/2019 Crystal Imperfection CH 4

    25/44

    mper)ectins in !ids

    Dis!catins are isi&!e in 36 e!ectrn micr#raphs

    'dapted )rm ;i#. 4.7 !allister "e.

  • 8/18/2019 Crystal Imperfection CH 4

    26/44

    Dis!catins T Cr(sta! tructures

    * tructure, c!se-

    packed  p!anes T directins  are pre)erred.

    ie" nt t"

    c!se-packedp!anes.

    c!se-packed p!ane &ttm6c!se-packed p!ane tp6

    c!se-packed directins

    * Cmparisn amn# cr(sta! structures,  ;CC, man( c!se-packed p!anes/directinsU  =C, n!( ne p!ane7 @ directinsU  CC, nne $super-c!se% man( $near c!se%

    * pecimens that"ere tensi!e

      tested.

    M# =C6

    '! ;CC6

    tensi!e directin

  • 8/18/2019 Crystal Imperfection CH 4

    27/44

    • 8ne case is a t"in &undar( p!ane6  – Essentia!!( a reVectin ) atm psitins acrss the

    t"innin# p!ane.

    • tackin# )au!ts – ;r ;CC meta!s an errr in 'C'C packin# seAuence – Ex, 'C''C

    !anar De)ects in !ids

    'dapted )rm ;i#. 4.G7 !allister "e.

  • 8/18/2019 Crystal Imperfection CH 4

    28/44

    Simple iew of the surface of a cr%stallinematerial.

  • 8/18/2019 Crystal Imperfection CH 4

    29/44

     $ more detailed model of the elaorate ledgelikestructure of the surface of a cr%stalline material.#ach cue represents a single atom. =From 9. >.

    ,irth and ?. M. >ound* . Chem. h(s. 2* 1812(1

  • 8/18/2019 Crystal Imperfection CH 4

    30/44

    T%pical opticalmicrograph of a grain

    structure* 100S. Thematerial is a low&caronsteel. The grainoundaries hae een

    lightl% etched with achemical solution so thatthe% reBect lightdi/erentl% from the

     polished grains* there%

    giing a distinctiecontrast. (From Meta!s=and&k* Cth ed.* 'ol. "D't!as ) Micrstructures )

    ndustria! '!!(s*

  • 8/18/2019 Crystal Imperfection CH 4

    31/44

    Simple grain&oundar%structure. This is termed atilt oundar% ecause it is

    formed when two adEacentcr%stalline grains are tiltedrelatie to each other % afew degrees (). The

    resulting structure isequialent to isolated edgedislocations separated %the distance G* where isthe length of the 4urgersector* b. (From 5. T. ead*Dis!catins in Cr(sta!s*Mc?raw&,ill 4ook !ompan%*-ew ;ork* 1

  • 8/18/2019 Crystal Imperfection CH 4

    32/44

    he ledge /rowth leads to structures with /rain

    0oundries he shape and average si1e or

    dia'eter o" the grains "or so'e polycrystalline

    speci'ens are large enough to o#serve with the

    unaided eye& (Macrosocipic e-a'ination*

  • 8/18/2019 Crystal Imperfection CH 4

    33/44

    Specimen for the calculation of the grain&siIenumer* ? is dened at a magnication of 100S.This material is a low&caron steel similar to that

    shown in Figure .1C. (From Meta!s =and&k* Cthed.* 'ol. "D 't!as ) Micrstructures ) ndustria!'!!(s* $merican Societ% for Metals* Metals >ark*,* 1

  • 8/18/2019 Crystal Imperfection CH 4

    34/44

    * Xse)u! up t ∼2000Y ma#nifcatin 6.

    * !ishin# remes sur)ace )eatures e.#.7scratches6* Etchin# chan#es reVectance7 dependin# ncr(sta! rientatin since di

  • 8/18/2019 Crystal Imperfection CH 4

    35/44

    ince Zrain

    &undaries...* are p!aner imper)ectins7* are mre suscepti&!e  t etchin#7* ma( &e reea!ed as  dark !ines7

    * re!ate chan#e in cr(sta!rientatin acrss&undar(.

    curtes( ) L.C. mithand C. rad(7 the:atina! ureau )tandards7 Washin#tn7

    DC n" the :atina!nstitute ) tandardsand 3echn!#(7Zaithers&ur#7 MDN.6

    8ptica! Micrscp(

    '3M #rain

    siIe num&er

    - J 2? & 1

    num&er ) #rains/in2 at 100x

    ma#nifcatin

    ;e-Cr a!!(&6

    #rain &undar(

    sur)ace #re

     p!ished sur)ace

    a6

  • 8/18/2019 Crystal Imperfection CH 4

    36/44

    ASM (A'erican Society "or testing and Materials*

    2ISUAL C3ARS (3$%%x) eac# "it# a number

    Quick an4 eas! 5 use4 6or steel

    ASM has prepared several standard co'parison charts) all having di""erentaverage grain si1es& o each is assigned a nu'#er "ro' % to %4) which is ter'ed

    the grain si1e nu'#er5 the larger this nu'#er) the s'aller the grains&

    , 6 + " 7% ,o. o6 grains/s7uare inc#

    8rain size no.

    :83E, 3he '3M #rain siIe is re!ated rre!ates6 a #rain area $T 100x M$?-+F+!$T+-

  • 8/18/2019 Crystal Imperfection CH 4

    37/44

    Determinin# Zrain iIe7 usin# a

    micr#raph taken at @00x 

    • We cunt 14 #rainsin a 1 in2 area nthe @00x6 ima#e

    •  3 reprt '3M#rain siIe "eneeded a measure) : at 100x nt@00x

    • We need acnersin methd[

    ( ) ( )( )   ( ) ( )

    ( ) ( )

    ( )( ) ( )

    2

    $2$%%

    9 is mag. o6 image

     , is measure4 grain count at 9

    no" solve 6or 8&

    log( ) 2 log log $%% $ log 2

    log 2log +$

    log 2log $+ 2log %% +

    $ :.1 1%.%$

    G

     M 

     M 

     M 

    m

     M  N 

     N M G

     N M G

    G

    −   = ÷  

    + − = −

    + −= +

    + −= + = ≅

    ;r this same materia! h" man(

  • 8/18/2019 Crystal Imperfection CH 4

    38/44

    ;r this same materia!7 h" man(Zrains "u!d expect /in2 at 100x 't

    50x

    $ 1 $ 2

    2 2

    1 $

    2 2

    (at $%%x)2 2 $21 grains/in

     ,o"* #o" man! grain "oul4 ; expect at 0%x<$%% $%%

     , 2 $210%

     , $212 0$2 grains/in

    G

     M 

     M 

     N 

     M 

    − −

    = = ≅

     = ∗ = ÷ ÷

     = =

  • 8/18/2019 Crystal Imperfection CH 4

    39/44

    >t $%%x

    T di i l h ti i i f

  • 8/18/2019 Crystal Imperfection CH 4

    40/44

    Two&dimensional schematics gie a comparison of(a) a cr%stalline oxide and () a non&cr%stallineoxide. The non&cr%stalline material retains short&range order (the triangularl% coordinated uildinglock)* ut loses long&range order (cr%stallinit%).This illustration was also used to dene glass in!hapter 1 (Figure 1.C).

  • 8/18/2019 Crystal Imperfection CH 4

    41/44

    4ernal model of an amorphous metal structure. Theirregular stacking of atoms is represented as aconnected set of pol%hedra. #ach pol%hedron is

     produced % drawing lines etween the centers ofadEacent atoms. Such pol%hedra are irregular inshape and the stacking is not repetitie.

  • 8/18/2019 Crystal Imperfection CH 4

    42/44

     $ chemical impurit% suchas -aH is a glassmodier* reaking up therandom network and

    leaing nonridgingox%gen ions. =From 4. #.5arren* . 'm. Ceram.c. 24* 8@2 (1

  • 8/18/2019 Crystal Imperfection CH 4

    43/44

    Schematic illustration ofmedium&range ordering in a!aJSi2 glass. #dge&sharing

    !a octahedra hae een

    identied % neutron&di/ractionexperiments. =From >. ,.?askell et al.* :ature @50* 2"@(1

  • 8/18/2019 Crystal Imperfection CH 4

    44/44

    ummar(

    • int7 Line7 ur)ace and +!umetric de)ects exist ins!ids.

    •  3he num&er and t(pe ) de)ects can &e aried andcntr!!ed – T  cntr!s acanc( cnc.

     – amunt ) p!astic de)rmatin cntr!s \ ) dis!catins

     – Wei#ht ) char#e materia!s determine cncentratin )su&stitutina! r interstitia! pint ]de)ects^

    • De)ects a