crs young scientist 2010 final 2

Upload: tiofene

Post on 06-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    1/54

    Solubility Improvement by Solid StateProperties Modification

    2002-2010 Eurand. All rights reserved.

    Young Scientist Workshop Development of Poorly Soluble DrugsPortland (OR)July, 10, 2010

    Paolo Gatti, PhDSenior Scientist,

    Formulation Team Leader

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    2/54

    1. Influence of drug solid state properties

    on solubility

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    3/54

    Increases by: Increasing surface area (A)

    Increasing equilibrium solubility (Cs)

    Increases by: Reducing melting enthalpy

    Reducing melting tempertature (Tm)

    Solubility and Solid State Properties

    Cs: Equilibrium solubility of the drug R: gases constant

    D: Diffusion coefficient of the drug in solution V: Volume of the solution

    h:stagnant layer thickness A:Surface area of the solid drug (bulk property)

    S:Activity coefficient of the drug in solution : Melting molar enthalpy of the drug

    T: Solution temperature Tm:Melting temperature of the drug

    Hm

    Solubilization rate Equilibrium solubility

    (Hm)

    CChV

    DA

    dT

    dCS

    )]([ 111

    m

    m

    s

    STTR

    H

    eC

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    4/54

    Micronized crystalline solid

    Dissolution rate increase (Kinetic effect)

    Crystalline structure

    Long range order Hm>0 Micrometric size range(Indicative: 1-100 micron)

    Higher surface area

    than original solid

    Solubility and Solid State Properties

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    5/54

    Nanocrystalline solid

    than originalsolid

    Dissolution rate increase (Kinetic effect)Solubility increase (Thermodynamic effect)

    Nanometric size range

    0

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    6/54

    Crystals and crystallites

    Most solid crystalline materials are polycrystalline, that is they are made of

    a large number of crystallites possibly randomly oriented.

    Crystallites can have contact interfaces (boundaries), can be separated by

    distortions or strains in the solid structure and/or can be embedded in

    region of amorphous material.

    Crystallite is a domain of solid having the same properties of a single

    crystal

    Solubility and Solid State Properties

    Structure stress

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    7/54

    Amorphous solid

    No long range order

    (Less than 2 nm extension)

    Negligible melting enthalpy compared to original solid

    Dissolution rate increase (Kinetic effect)

    Solubility increase (Thermodynamic effect)

    Solubility and Solid State Properties

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    8/54

    Griseofulvin case study

    Griseofulvin

    solid state

    Crystalline domains

    average diameter

    Equilibrium solubility

    (g/ml)

    Amorphous -- 235.0 2.0

    Nanocrystals 89.8 nm 60.2 4.3

    Micronized crystals 6 m 11.9 0.5

    Grassi, Grassi, Lapasin, Colombo, UnderstandingDrugRelease and Absorption Mechanisms, Chap. VI, CRCPress,2007

    From IDR data

    Solubility and Solid State Properties

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    9/54

    Solubility and Solid State Properties

    DSC and XRPD traces color codeBlue line: native drug nanocrystals Red line: recrystallized drug microcrystals

    DSC Pattern

    Temperature (C)

    200 205 210 215 220 225 230

    HeatFlow(

    mW

    g-1)

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    native drug

    re-crystallized drug

    XRD Pattern

    2 (deg)

    10 15 20 25 30

    Intensity

    (a.u.)

    0

    2000

    4000

    6000

    8000

    10000

    re-crystallized drug

    native drug

    Grassi, Grassi, Lapasin, Colombo, UnderstandingDrugRelease and Absorption Mechanisms, Chap. VI, CRC

    Press,2007

    Griseofulvine solid state analysis

    DSC trace XRPD trace

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    10/54

    2.Solid state properties modifications:

    applications to pharmaceutical product

    development

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    11/54

    Solid state properties modifications

    Property change Final drug status Bulk product type

    Crystal size

    reduction

    MicrocrystalsMicronized API powder

    Solid dispersion (micro)

    Nanocrystals

    Nanosuspension

    Solid nanocrystalsSolid dispersion (nano)

    Nanocomposite

    Solid phasetransition

    AmorphousSolid dispersion (Solid solution)

    Amorphous powder

    Metastable(pseudo)Polymorph

    API PowderSolid (nano)dispersion

    Molecular dispersion Solid solution (true)

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    12/54

    Modified solid

    Bottom-Uptechnologies

    Top-Downtechnologies

    DemolitionOriginal solid phase is disintegrated

    Solid state properties modifications

    Build-upFrom free molecules

    to the new solid phase

    Two possible strategies

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    13/54

    2.1 Size reduction

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    14/54

    Size reduction - Nanocrystals

    Top-Down

    Dry Milling

    Wet Milling

    High Pressure Homogenization

    Bottom-Up

    Precipitation

    Process type

    Applicable technologies

    Biorise HEMA (Eurand)

    Dissocubes and IDD-P (Skyepharma)

    Nanocrystals (Elan-Nanosystems)

    Biorise SIA (Eurand)NanoEdge (Baxter)

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    15/54

    Elan-Nanosystems nanocrystal formulationsWet process conducted in beador pearl millloaded with:

    Crystalline drug suspended in aqueous or organic vehicle

    Suspension stabilizers and wetting agents

    Size reduction Top-DownMarketed technologies examples

    Milling media (up to 75% of the mill volume)Low energy process

    Minor risk of degradation / phase transition

    than in dry or high pressure homogenization

    processes

    Suspension of nanocrystals into theprocess vehicle

    Application for parenteral administration

    (nanocrystals smaller than 200 nm) Schematic representation of media milling process(From E.Merisko- Liversidge et al., Eur.J.Ph.Sci ,18(2003), 113)

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    16/54

    Elan-Nanosystems nanocrystal formulationsPros

    Low energy milling

    Suitable for drugs insoluble both in water and organic solvents

    Wide suspension concentration range 1-400 mg/ml

    Cons

    Possible milling material erosion

    Nanosuspension stabilization against aggregation is needed

    Time consuming (from hours up to days)Solvent removal step in downstream process to solid dosage forms

    Spray-drying, freeze drying, wet granulation,

    Possible nanocrystals aggregation

    Size reduction Top-DownMarketed technologies examples

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    17/54

    Elan-Nanosystems nanocrystal formulations

    Four products on the market (oral administration)

    Rapamune (2000, Wyeth) Syrolimus Immunosuppressant

    Emend (2001, Merck) Aprepitant Antiemetic

    TriCor (2004, Abbott) Fenofibrate treatment of hypercholesterolemia

    MegAce ES (2005, Par Pharmaceuticals) Megestrol acetate Anticachetic

    Size reduction Top-DownMarketed technologies examples

    http://www.pharmalot.com/wp-content/uploads/2008/03/tricor.jpg
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    18/54

    Dissocube e IDD-P by Skyepharma

    Size reduction Top-DownMarketed technologies examples

    Working pressure up to 4000 bar

    Cavitation shockwaves energy breaks solid particlesin the region across the gap

    Gap diameter between 5 and 30 microns Drug suspension pass through the homogenizer one

    or more times depending on the desired final size anddrug milling behaviour

    Wet process in high pressure or jet stream homogenizers

    Crystalline drug suspended in aqueous or hydrophilic organic solvent

    Stabilizer / wetting agent might be added

    High pressur piston-gaphomogenizer (Dissocube)

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    19/54

    Dissocube e IDD-P by Skyepharma

    Jet stream homogenizer (IDD-P)

    Size reduction Top-DownMarketed technologies examples

    Particle collisions, shearforce, cavitation

    Microfluidizer processor (Microfluidics)

    Z or Y shaped fluidizer

    Working pressure up to 2000 bar

    Particles collision and shear force at the flows conjunctionresults in size reduction

    Drug suspension pass through the homogenizer usaully 10-30 time.

    Up to 50-100 cycles could be required depending on drug properties

    One product on the market (oral administration)Triglide (Sciele Pharma Inc, 2005) Fenofibrate treatment of hypercholesterolemia

    http://www.triglide.com/
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    20/54

    Dissocube e IDD-P by Skyepharma

    Pros

    No milling media contamination

    Suitable for drugs insoluble both in water and organic solvents

    Cons

    Drug has to be micronized before processing

    Equipment high cost

    Time consuming (IDD-P)

    Several cycles into homogenizers (10-15 to 50-100)

    Nanosuspension stabilization against aggregation is needed

    Solvent removal step in downstream process to solid dosage forms

    Spray-drying, freeze drying, wet granulation,

    Possible nanocrystals aggregation

    Size reduction Top-DownMarketed technologies examples

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    21/54

    Dry milling into vibrating or oscillating mill

    Crystalline active ingredient and carrier are coprocessed

    Composite product is obtained

    Nanocrystals dispersed into the carrier

    Possible formation of amorphous phase

    Biorise HEMA by Eurand

    Size reduction Top-DownMarketed technologies examples

    Milling energy, drug/carrier interactions and

    drug/carrier ratio mainly influence finished

    product characteristics Nanocrystalline domains average size

    Amorphous content

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    22/54

    Pros

    Carrier stabilized nanocrystals

    Possibility to obtain stabilized amorphous phase triggering process

    conditionsSuitable for drugs insoluble both in aqueous and organic vehicles

    Cons

    High energy process product heating

    Mill cooling during processLow melting point or thermally unstable drugs: case by case verification

    Possible milling media contamination

    Product adhesion to mill wall and milling media

    Biorise HEMA by Eurand

    Size reduction Top-DownMarketed technologies examples

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    23/54

    Biorise HEMA by EurandOne product on the market (oral administration)

    Nimedex (Italfarmaco, ) Nimesulide Antiinflammatory

    Size reduction Top-DownMarketed technologies examples

    FAST ONSET

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    24/54

    Size reduction Bottom-UpMarketed technologies examples

    Biorise SIA by EurandPrecipitation on solid

    Drug dissolved in suitable organic solvent

    Organic solution mixed with insoluble crosslinked carrier swelling

    Solvent removed

    Solid drug entrapment into/onto crosslinked carrier Nanocrystalline and/or amorphous phases solid dispersions

    Drug solubility into carrier solid solutions

    Crosslinked carrier network is a constrain to crystals growth Average size below 100 nm

    Stabilizing effect Maximum polymer network openingi.e. 40-50 nm for crospovidone

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    25/54

    Size reduction Bottom-UpMarketed technologies examples

    NanoEdge by Baxter

    Precipitation in liquid + homogenization Drug and surfactant dissolved in suitable water miscible solvent

    Aqueous buffer containing surfactant added into drug solution Drug precipitation

    Homogenization of the suspension contributes to reduce drug

    crystal size

    Solid powder can be obtainedSpray drying, freeze drying, etc.

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    26/54

    2.2 Amorphous phase

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    27/54

    Amorphous Phase

    Bulk Drug

    Solid dispersion

    Homogeneous mixture of solid drug into solid carrier(s) Amorphous

    Crystalline (micro-, nano-)

    Solid SolutionMolecular dispersion of drug into solid carrier(s)Some authors consider in this category also amorphous

    drug dispersions

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    28/54

    Amorphous PhaseSolid Dispersions (Solid Solutions)

    Top-Down

    Dry Co-Milling

    Bottom-Up

    Solvent evaporation

    Hot melt processing

    Process type

    Applicable technologies

    Biorise HEMA (Eurand)Biorise SIA (Eurand)

    Meltrex (Soliqs)

    Nanomorph (Soliqs)

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    29/54

    Thermal

    Solvent

    Mechanical Co-milling Biorise HEMA

    Solvent evaporation

    Precipitation

    Hot Melt Extrusion Meltrex

    Hot Melt Granulation

    Spray congealing

    Ultra-raffreddamento

    Top-Down

    Bottom-Up

    Amorphous PhaseSolid Dispersions

    Biorise SIA

    Nanomorph

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    30/54

    Solid APISolid

    Excipient

    Mixing

    Liquid mixture Hard capsules filling

    Melting

    MoltenExcipient

    Cooling

    Spraycongealing

    Multiparticolate(mcrospheres, pellets)

    Cool down tosolid

    Milling, sizing

    Multiparticolate(granules, powder)

    Solid dosage formdownstream

    Melting Molten API

    Amorphous PhaseSolid Dispersions

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    31/54

    Drug

    Solid

    excipient(s)

    Mixing

    Physical blend Hot melt extrusion

    Monolithicmatrix

    Hot melt granulation

    Multiparticulate(granules, pellets)

    Solid formsdownstream

    Highshear

    Lowshear

    Fluidbed

    Pelletization

    Multiparticulate(granules, pellets)

    Amorphous PhaseSolid Dispersions

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    32/54

    Amorphous PhaseSolid Dispersions

    From http://www.soliqs.com/Technology.17.0.html

    Melt Extrusion line for production of tablet shaped dosage form byMeltrex Technology

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    33/54

    Drug

    Solid

    excipient(s)

    Mixing

    Solvent evaporation

    Filtration / solventremoval

    Solid(micro/nanoparticles)

    Solvent

    Superctitical fluid Spray drying Vacuum dryingFreeze drying

    Solid product Solid forms downstream

    Solid(powder)

    Amorphous PhaseSolid Dispersions

    Antisolventprecipitation

    Liquid

    Suspension

    Solution

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    34/54

    Promising approach with several applications and advantagesSolubility enhancement, controlled release, stability enhancement, etc.

    Much research work both in academia and industry but.

    .limited practical application..Few marketed products based on solid dispersion/solution technologies

    Gris-PEG (Pedinol Pharm.) Griseofulvine dispersed in Poliethylene glycol

    Cesamet(Valeant Pharm.) Nabilone dispersed in Polyvinylpyrrolidone

    Prograf (Fujisawa) Tacrolimus dispersed in HPMC

    Certicabe (Novartis) Everolimus dispersed in HPMC

    Kaletra(Abbott) Lopinavir and Ritonavir in solid matrix by Meltrex technology

    .because of some formulation and development issues

    Amorphous PhaseSolid Dispersions

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    35/54

    Example of success: Kaletra

    Meltrex tablets Lopinavir+Ritonavir Anti-HIV product (Abbott)

    FDA Approved in 2005

    Designed as an improvement of origina Kaletra Soft-gel capsules

    Amorphous PhaseSolid Dispersions

    Meltrex technology

    PK profile comparable to that of capsules, but no food effect

    Dosing regimen and patient compliance improvement

    From three-six capsules/day to two-four tablets/day of comparable size

    Solid formulation more stable than liquid

    Room temperature instead refrigerated storage

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    36/54

    Major issuesChemical and/or physical stability

    Crystallization of amorphous phases impacts product performance, i.e.

    drug solubility / solubility rate

    Carrier and/or drug

    Molecular mobility - Promoted by Exceeding glass transition temperature of the system

    Plasticizing effect of water (or other solvents)

    Limited drug load for molecular and amorphous dispersions

    Drug solubility / miscibility in the carrier at solid state

    oversaturation drug crystallizationProduct characterization

    Special technique required for solid phases characterization

    Validation for submission purposes could be complex

    Amorphous PhaseSolid Dispersions

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    37/54

    2.3 Physical-chemical characterization of compositesystems containing nanocrystalline and

    amorphous domains

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    38/54

    Bulk analysis

    Particle SizeLaser light diffraction (LLD)Mercury porosimetry (MP)

    Solid Phases (Qualitative and Quantitative)X-Ray powder diffraction analysis (XRPD)Differential scanning calorimetry (DSC)

    Solubilization KineticSurface analysis

    Specific Surface AreaMercury PorosimetryGas Adsorption

    Surface Mapping

    Liquid-Solid contact angleAtomic force microscopy + micro thermal analysis (AFM-TA)Scanning electron microscopy + energy dispersive spectroscopy (SEM-EDS)X-Ray Photo-electron spectroscopy (XPS)Micro Raman Spectroscopy

    Techniques useful for Solid Phases Characterization

    Solid state characterization

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    39/54

    Qualitative evaluation of solid phases

    Crystalline vs amorphous

    Quantitative evaluation of solid phases

    Calibration curve : i.e. crystalline drug and carrier at different ratios

    Crystallite size estimation

    Scherrer equation relates increase of full-width of the peak at half of its maximal intensity(FWHM, ) with size of crystallites (), through a costant (K), x-Ray wavelength () and theBragg angle ()

    Other microstructures features could affect FWHM enlargement beside crystallite size,therefore peaks fitting refinement (i.e. Rietveld method) and deconvolution analysis (i.e.Warren-Averbach) have to be applied

    X Ray Powder Diffraction

    Solid state characterization

    cos

    K

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    40/54

    Solid state characterization

    2 (deg)

    8 12 16 20 24 28 32 36 40

    Intensity

    (a.u.)

    composite systemraw material

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    41/54

    DSCQualitative evaluation

    Temperature (C)

    60 80 100 120 140 160 180 200 220

    HeatFlow(W/g)(composite)

    0.76

    0.80

    0.84

    0.88

    HeatFlow(W/g)(rawmaterial)

    5

    10

    15

    20

    Weight(%)

    (composite)

    99.3

    99.4

    99.5

    99.6

    99.7

    99.8

    99.9

    100.0DSC signal of composite system

    DSC signal of raw material

    TGA signal of composite system

    Raw griseofulvin (red trace): Solid-Liquid Phase transition happens at about 220C Heat flowscale 5-20 W/g

    Composite system (blue trace): Endotherm at about 180C corresponds to Solid-Liquid phaseTransition of nanocrystalline griseofulvin (nanocomposite griseofulvin/crospovidone) Heat flow

    scale 0.76-0.88 W/g

    Solid state characterization

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    42/54

    For a composite sample containing drug in crystalline and amorphous phases the enthalpy offusion is the sum of enthalpy of fusion of each of the j solid phases:

    Specific enthalpy of fusion usually is estimated using DSC data from pure crystalline drug / matrixphysical mixtures of known drug content.

    Nanocrystalline phase specific melting enthalpy, being temperature dependant, can be calculatedapplying Kirchoff law starting from parameters experimentally measured for standard drug

    DSCQuantitative evaluation

    jj

    mjs

    m hmH

    Solid state characterization

    m :mass of the jthphasehm:specific enthalpy of fusion of the j

    thphase

    Drug X/Crospovidone 1:2 w/w

    Biorise HEMA compositesDrug X melting points

    About 148C: nanocrystals

    About 160C: standard product

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    43/54

    Surface Mapping Techniques Phases

    Liquid Solid Contact Angle MeasurementSolid phase type impact on contact angle value

    Technique useful only for non swellable carriers

    Atomic Force Microscopy+micro Thermal Analysis

    Images obtained based on bothTopography

    Thermal conductivity/diffusivity

    40-50 nm resolution

    Micro-Raman

    Raman Microscope is a conventional Raman spectrometer confocally coupled

    with an optical microscope

    Laser beam can be focused at the sample surface with resolution down to 1 mScanning Electron Microscopy+Energy Dispersive X-Ray Spectroscopy (SEM-EDS)

    Scanning electron microscope is coupled with a probe detecting X-Ray produced

    by the interaction of electrons with the sample

    X-Ray emission is different for each atom chemical mapping

    Solid state characterization

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    44/54

    Composite microstructure andmorphology investigation

    Nimesulide-Crospovidone Case Study

    Nimesulide-Crospovidone composite case study

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    45/54

    Nimesulide-Crospovidone composite case study

    2(deg)

    5 10 15 20 25 30

    Intensity

    (a.u.) NN

    PN

    NC

    NN : native (raw) nimesulide - PN : polymorphic nimesulide: mixture of forms I and II

    NC : nimesulide/crospovidone nanocomposite

    Coherent domain (crystallite) size by XRPDprofile analysis using double-Voight and FPA#

    = 17 3 nm

    Strain: 3%-17%

    # D. Balzar in R.L. Snyder, H.J. Bunge, J. Fiala (Eds),Defect and Microstructure analysis by diffraction;;International Union of Crystallography, OxfordUniversity Press, New York, 1999

    Nimesulide/Crospovidone nanocomposites (1/2.5 w/w ) prepared by solvent

    induced activation (F. Carli et al. Int. J. Pharm. 33, 115 (1986)) Nimesulide exists in two polymorphic modifications (P. Bergese et al. Comp. Sci. Technol.,

    63, 1197 (2003))

    Form I (Native material)

    Form II that is metastable

    Solid state characterization - microstructure

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    46/54

    Morphology Scanning electron microscopy

    Epossidic

    resinNC particles

    Ultramicrotome

    Solid state characterization - microstructure

    Nimesulide-Crospovidone composite case study

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    47/54

    Nimesulide-Crospovidone composite case study

    Molecular Dispersion Scanning electron microscopy + energy dispersive X-rayspectroscopy (SEM-EDS)

    Nimesulide: nonsteroidal antiinflammatory,

    C13H12N2O5 S

    Crospovidone:

    cross-linked polyvinylpirrolidone, [C6H9NO]n

    Sulphur main X-ray emission(Ka, 2.307 keV) overlaps with principal gold X-ray emissions:

    the sample was sputtered with titanium

    Sulphur can be used to track nimesulide molecules eventually dispersed into the

    crospovidone network

    Solid state characterization - microstructure

    Nimesulide-Crospovidone composite case study

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    48/54

    Nimesulide-Crospovidone composite case study

    Molecular Dispersion Scanning electron microscopy + energy dispersive X-rayspectroscopy (SEM-EDS)

    1.1740.542

    0.304

    Energy (KeV)

    1 2 3 4

    cps

    0

    5

    10

    15 peak area=0.542peak area=0.304

    peak area=1.174

    S

    C

    J. Phys. Chem. B, 2004, 108, 15488-15493Composites Part. A, 2005, 36, 443-448

    Solid state characterization - microstructure

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    49/54

    Raman shift (cm-1)

    300 400 500 600 700 800 900

    Intensity

    (a.u.)

    4000

    6000

    8000

    10000

    12000

    14000

    Intensity

    (a.u.)

    4000

    4400

    4800

    52002

    1

    402

    20

    25

    30

    35

    40

    Leng

    thY(m)

    25 30 35 40

    Length X (m)

    200

    150

    100

    50

    Phases distribution Raman microscopy (Raman)

    Amorphous

    Crystalline

    Solid state characterization - microstructure

    Surface scanning by collecting a Raman

    spectrum with steps of 1 m2

    Intensity projection of the crystalline

    nimesulide peak at 402 cm-1

    MAP

    Nimesulide-Crospovidone composite case study

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    50/54

    Conclusions

    Nimesulide Crospovidone composite case study

    XRD: crystalline nimesulide is packed in 17 nm crystallites

    SEM: nimesulide micro- and nanoparticles segregated onto the

    crospovidone surface as well as wrapped up by the crospovidone matrix

    EDS: there is a presence of nimesulide also in zones where the polymer

    surface is free from nimesulide particles

    Raman: domains of crystalline nimesulide surrounded by amorphousnimesulide

    Solid state characterization - microstructure

    Nimesulide-Crospovidone composite case studyCaratterizzazione

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    51/54

    Conclusions

    Nimesulide Crospovidone composite case study

    Nimesulide is constrained by the crospovidone into three main

    arrangements:

    an amorphous phase dispersed into the molecular crosslinked

    network of the polymer

    nanocrystals wrapped up by the polymer

    drug layers, made of micro- and nanocrystals, segregated onto the

    popcorn-like surface of the polymer

    According to XRD data, the micro- and nanocrystals are highlydisordered and made of crystallites with an average diameter of 17 nm

    Caratterizzazionechimico-fisica

    Nimesulide-Crospovidone composite case study

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javasc
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    52/54

    Nimesulide Crospovidone composite case study

    Paolo Gatti, PhD

    Eurand RD Senior [email protected]

    Or come at

    Both 722

    Technical questions

    Thanks for Your Attention !!!

    http://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javaschttp://www.soliqs.com/javascmailto:[email protected]:[email protected]
  • 8/2/2019 CRS Young Scientist 2010 Final 2

    53/54

    Solubility and Solid State Properties

    SOLVATION AND DIFFUSION DEPEND ONSOLUTE AND SOLVENT CHEMICAL

    NATURE AND ON SYSTEM CONDITIONS WETTING AND FUSION DEPEND ALSO

    ON MICROSTRUCTURE OF THE SOLUTEIN THE SOLID STATE

  • 8/2/2019 CRS Young Scientist 2010 Final 2

    54/54

    Time (s)

    0 100 200 300 400

    Concentration(mg/ml)

    0

    200

    400

    600

    0 20 40 60

    0

    1

    2

    3

    4

    experimental data for 100% amorphous TEM

    simulations

    experimental data for 100% nanocrystalline MPA

    Solubilization Kinetic

    Amorphous and Nanocrystalline Composite Materials

    Comparison of solubilization kinetics in non-sink conditions

    (Dispersed Amount Method)

    M. Grassi, I. Colombo, R. Lapasin,

    J. Controlled Release 68 (2000), 97-113

    Solid state characterization