critical examination of failures of power system design and it's importance

4
@ IJTSRD | Available Online @ www ISSN No: 245 Inte R Critical Ex System Ph.D. Scholar (Electrical) Senior Lecturer in the Depa Ex- Assistant prof DR Radh ABSTRACT The fault analysis of a power system is provide proper information for the switchgear, relays setting and system stabi The basic circumstances for the occurrenc power system are due to insulation fail damage or human error. The fault may be symmetrical or asymmetrical and also it is conductors in one or more phases. The faul power system is carried out to pro information for the selection of switchgear, and system stability operation. Keyword: Fault analysis, power system symmetrical faults Introduction: The generation, transmission and di electrical power are concerned with large i power system. First electrical power gene place in power plant, now for the distribu we require high voltage in order to reduc thereby transmission loss. So for the trans generated voltage is stepped-up by means o To maintain continuous power supply objective of any power system. There are a or other natural events which disturb th power system, like wind & ice, physical broken conductor in one or more phases analysis of a power system is carried o proper information for the selection of swit setting and system stability operation w.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 56 - 6470 | www.ijtsrd.com | Volum ernational Journal of Trend in Sc Research and Development (IJT International Open Access Journ xamination of Failures of Powe m Design and its Importance Saquib Shakil Mallick ), M. Tech (Power system), B. Tech (EE), Diplo artment of Electrical Engineering, Pakur Polytec fessor in the Department of Electrical Engineerin hakrishnan Institute of Technology, Jaipur carried out to selection of ility operation. ce of fault in a ilure, physical e in nature of due to broken lt analysis of a ovide proper , relays setting m failure, and istribution of interconnected eration is take ution purposes ce line current smission level of transformer. is the prime few abnormal he stability of l accident and etc. The fault out to provide tchgear, relays n. The basic circumstances for the occurren system are due to insulation fai human error. The fault may be or asymmetrical and also it is d in one or more phases. A pow static but changes during opera of generators and transmission l (addition of generators and tra may be symmetrical or a symmetrical fault is one where involved. fault may be due to sh and live conductor, it may be du one or more phases, but some fault may be the reason involvi short-circuit as well as broken c When the insulation of the sys points or a conducting object c live point, a short circuit or a fau CAUSES OF POWER SYSTE Lightning Heavy winds Trees falling across lines Vehicles colliding with t Birds shorting lines Aircraft colliding with li Vandalism Small animals entering s Line breaks due to exces c 2017 Page: 1039 me - 2 | Issue 1 cientific TSRD) nal er oma (EE)) chnic, Pakur ng, nce of fault in a power ilure, physical damage or in nature of symmetrical due to broken conductors wer system failure is not ation (switching on or off lines) and during planning ansmission lines). Faults symmetrical nature. A e one or two phases are hort-circuit between earth ue to broken conductor in etimes the occurrence of ing both the factor means conductor. stem fails at one or more comes into contact with a ult occurs. EM FAILURE s towers or poles ines switchgear ssive loading

Upload: ijtsrd

Post on 12-Aug-2019

4 views

Category:

Education


0 download

DESCRIPTION

The fault analysis of a power system is carried out to provide proper information for the selection of switchgear, relays setting and system stability operation. The basic circumstances for the occurrence of fault in a power system are due to insulation failure, physical damage or human error. The fault may be in nature of symmetrical or asymmetrical and also it is due to broken conductors in one or more phases. The fault analysis of a power system is carried out to provide proper information for the selection of switchgear, relays setting and system stability operation. Saquib Shakil Mallick "Critical Examination of Failures of Power System Design and It's Importance" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-1 , December 2017, URL: https://www.ijtsrd.com/papers/ijtsrd7066.pdf Paper URL: http://www.ijtsrd.com/engineering/electrical-engineering/7066/critical-examination-of-failures-of-power-system-design-and-its-importance/saquib-shakil-mallick

TRANSCRIPT

Page 1: Critical Examination of Failures of Power System Design and It's Importance

@ IJTSRD | Available Online @ www.ijtsrd.com

ISSN No: 2456

InternationalResearch

Critical Examination of Failures of Power System Design a

Ph.D. Scholar (Electrical), M. Tech (Power system), B. Tech (EE), Diploma (EE))Senior Lecturer in the Departm

Ex- Assistant professor iDR Radhakrishnan Institute

ABSTRACT

The fault analysis of a power system is carried out to provide proper information for the selection of switchgear, relays setting and system stability operation. The basic circumstances for the occurrence of fault in a power system are due to insulation failure, physical damage or human error. The fault may be in nature of symmetrical or asymmetrical and also it is due to broken conductors in one or more phases. The fault analysis of a power system is carried out to provide proper information for the selection of switchgear, relays setting and system stability operation.

Keyword: Fault analysis, power system fsymmetrical faults

Introduction:

The generation, transmission and distribution of electrical power are concerned with large interconnected power system. First electrical power generation is take place in power plant, now for the distribution purposes we require high voltage in order to reduce line current thereby transmission loss. So for the transmission level generated voltage is stepped-up by means of transformer.

To maintain continuous power supply is the prime objective of any power system. There are a few abnormal or other natural events which disturb the stability of power system, like wind & ice, physical accident and broken conductor in one or more phases etc. The fault analysis of a power system is carried out to provide proper information for the selection of switchgear, relays setting and system stability operation. The basic

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific Research and Development (IJTSRD)

International Open Access Journal

Critical Examination of Failures of Power System Design and its Importance

Saquib Shakil Mallick

cholar (Electrical), M. Tech (Power system), B. Tech (EE), Diploma (EE))ecturer in the Department of Electrical Engineering, Pakur Polytechnic, Pakur

Assistant professor in the Department of Electrical EngineeringDR Radhakrishnan Institute of Technology, Jaipur

The fault analysis of a power system is carried out to provide proper information for the selection of switchgear, relays setting and system stability operation.

he basic circumstances for the occurrence of fault in a power system are due to insulation failure, physical damage or human error. The fault may be in nature of symmetrical or asymmetrical and also it is due to broken

fault analysis of a power system is carried out to provide proper information for the selection of switchgear, relays setting

Fault analysis, power system failure, and

The generation, transmission and distribution of electrical power are concerned with large interconnected power system. First electrical power generation is take place in power plant, now for the distribution purposes

duce line current thereby transmission loss. So for the transmission level

up by means of transformer.

To maintain continuous power supply is the prime objective of any power system. There are a few abnormal

vents which disturb the stability of power system, like wind & ice, physical accident and broken conductor in one or more phases etc. The fault analysis of a power system is carried out to provide proper information for the selection of switchgear, relays setting and system stability operation. The basic

circumstances for the occurrence of fault in a power system are due to insulation failure, physical damage or human error. The fault may be in nature of symmetrical or asymmetrical and also it is due to broin one or more phases. A power system failure is not static but changes during operation (switching on or off of generators and transmission lines) and during planning (addition of generators and transmission lines). Faults may be symmetrical or a symmetrical nature. A symmetrical fault is one where one or two phases are involved. fault may be due to shortand live conductor, it may be due to broken conductor in one or more phases, but sometimes the occurrence of fault may be the reason involving both the factor means short-circuit as well as broken conductor.

When the insulation of the system fails at one or more points or a conducting object comes into contact with a live point, a short circuit or a fault occurs.

CAUSES OF POWER SYSTEM FAILURE

Lightning Heavy winds Trees falling across lines Vehicles colliding with towers or poles Birds shorting lines Aircraft colliding with lines Vandalism Small animals entering switchgear Line breaks due to excessive loading

Dec 2017 Page: 1039

| www.ijtsrd.com | Volume - 2 | Issue – 1

Scientific (IJTSRD)

International Open Access Journal

Critical Examination of Failures of Power

cholar (Electrical), M. Tech (Power system), B. Tech (EE), Diploma (EE)) akur Polytechnic, Pakur

ngineering,

circumstances for the occurrence of fault in a power system are due to insulation failure, physical damage or human error. The fault may be in nature of symmetrical or asymmetrical and also it is due to broken conductors in one or more phases. A power system failure is not static but changes during operation (switching on or off of generators and transmission lines) and during planning (addition of generators and transmission lines). Faults

l or a symmetrical nature. A symmetrical fault is one where one or two phases are involved. fault may be due to short-circuit between earth and live conductor, it may be due to broken conductor in one or more phases, but sometimes the occurrence of

ay be the reason involving both the factor means circuit as well as broken conductor.

When the insulation of the system fails at one or more points or a conducting object comes into contact with a live point, a short circuit or a fault occurs.

ES OF POWER SYSTEM FAILURE

Trees falling across lines Vehicles colliding with towers or poles

Aircraft colliding with lines

Small animals entering switchgear Line breaks due to excessive loading

Page 2: Critical Examination of Failures of Power System Design and It's Importance

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1040

COMMON POWER SYSTEM FAILURE:

Power system failure may be categorized as one of four types; in order of frequency of occurrence, they are:

Single line to ground failure Line to line failure Double line to ground failure Balanced three phase failure

The first three types constitutes severe unbalanced operating conditions which involves only one or two phases hence referred to as unsymmetrical faults. In the fourth type, a fault involving all the three phases occurs therefore referred to as symmetrical (balanced) fault.

Fault Analysis:

Under normal condition, power system said to be working under balanced condition with all the equipment having a normal load current and bus voltage within a

specified limit. The balance condition of a power system may be disrupted due to fault in the system. The fault in a system is nothing but a failure that interfaces with normal flow of current. Short circuit possess a very huge amount of current in the circuit, hence for the protection purpose we need protective equipment to avoid damage of equipment. Short circuit may be classified as:-

Symmetrical fault Un symmetrical fault

Symmetrical fault (three-phase short-circuit): - in symmetrical fault occur when all of three phases are short-circuited to each other, and more often three phases with earth as well. Three phases short-circuited fault is very rarely occur but by nature it is one of the most severe type of fault which having large amount of current. Representation of such kind of fault is given below.

Unsymmetrical fault: -

The fault condition in which balance state of the system network disrupted is called as unsymmetrical or unbalanced fault. This kind of fault includes one or two phases, when such fault occurs voltage and current become unbalanced. ) unsymmetrical fault includes line to ground (L-G), double line to ground (L-L-G), and line to line fault (L-L). Study says that among the power system fault almost 60 to 75 % faults are line to ground fault (L-G) fault. Occurrence of LLG fault is about 15 to 25%, and the least is 5-15% which is the case of L-L fault.

Page 3: Critical Examination of Failures of Power System Design and It's Importance

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1041

EFFECTS OF POWER SYSTEM FAILURE

Failure may lead to fire breakout that consequently results into loss of property, loss of life and destruction of a power system network. Faults also leads to cut of supply in areas beyond the fault point in a transmission and distribution network leading to power blackouts; this interferes with industrial and commercial activities that supports economic growth, stalls learning activities in institutions, work in offices, domestic applications and creates insecurity at night. It necessary upon occurance of fault, the faulty section must be disconnected from the system as soon as possible, that’s why because the healthy part of the system not affected.

Literature Review

There are so many literatures available on reliability of power system, stability and causes of fault and symmetrical and a symmetrical fault. Here a few has been taken for reference and further work has been carried out.

Research Methodology

To enable the analysis of failure potential during early design, functional modeling has been introduced in prior work as a basis for system representation for the majority of design stage reliability methods. Functional modeling is a system representation method, developed as a means to enhance the concept generation stage of product design (Pahl and Beitz, 1996). Using this approach, designers identify specific functions that a product must accomplish and connect these functions in a block diagram with the EMS flows that are transformed by the functions. Functional modeling has also been used in reverse engineering methods such as the Force Flow Analysis. This method dissects products into components and the forces acting on and between components and finally into the functions that components embody. Most of the function-based methods in the research community make use of the Functional Basis (Hirtz et al., 2002;

Stone and Wood, 2000) in order to provide a standard taxonomy for concept design and avoid the use of designer specific function and flow descriptions. Based on the usefulness of functional modeling for system representation in early design, it has also been used as part of the system representation in many early design reliability methods.

The first method that proposed a function-based approach to failure analysis was the Function Failure Design Method (FFDM) (Tumer and Stone, 2003; Stone et al., 2005). In FFDM, the functional model is developed to represent the system design, which serves as a basis for generating configuration concepts of component implementations of function. Based on historical failure data for these types of components, it is then possible to establish likely failure modes for a given function. However, because historic failure data for components is configuration-specific, failure propagation is difficult to incorporate into an analysis, limiting the method to single, independent faults.

Several other methods built upon the FFDM methodology. Hutcheson et al. introduced a methodology to enable the design of health monitoring modules concurrently with system conceptual design to reveal, model, and eliminate associated risks and failures (Hutcheson et al., 2006). Also the Risk in Early Design (RED) methodology determined functional failure likelihood and consequence-based risk assessment to identifying high-risk and low-risk function failure combinations (Grantham-Lough et al., 2008).

Failure Propagation Analysis in Design

A limitation of these previous methods is the singular and independent nature of the failure capable of analysis. To overcome this limitation, other research efforts have focused on including the propagation of failure in the analysis. As a direct extension of FFDM and RED

Page 4: Critical Examination of Failures of Power System Design and It's Importance

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

introduced above, a failure propagation method was introduced by Krus and Grantham-Lough (Krus and Grantham Lough, 2007) to develop failure propagation mapping based on historical data using a functional model for system representation.

Failure propagation is analyzed using a Function Event Network of all possible causation relationships in the function structure. This type of approachprobabilistic analysis by applying a statistical reliability to the failure of each function in the function structure. An extension of this work is the Conceptual Stress and Conceptual Strength Interference Theory (CSCSIT) method (Huang and Jin, 2008), where the conceptual strength of a function is the ability of a function to continue to operate while under normal energy, material and signal (EMS) flows. In this method, conceptual stresses are the EMS flows in the function structure. The application of interference theory is used to define functional faults as when the output flow from a function is out of a specified normal range.

CONCLUSION

Fault analysis or short circuit analysis is carried out to determine the value of voltage and hence current during the event of fault, it helps for the appropriate selection of the circuit breaker. So that we can save the power network with abnormal or unbalance condition with a minimum time.

REFERENCE

1. (Berenji et al., 2003) H. Berenji, J. Ametha, and Vengerov. Inductive Learning for Fault Diagnosis.In Proceedings of the 12th IEEE International Conference on Fuzzy Systems, pages 726–731, 2003.

2. (Clarkson, 2004) Simons C. Eckert C. Clarkson, P.Predicting change propagation in complex design. Journal of Mechanical Design, 126:788, 2004.

3. (de Kleer and Kurien, 2003) J. de Kleer and J. Kurien.Fundamentals of model-based diagnosis. Safe Process,2003.

4. (Deb et al., 1995) S. Deb, K. R. Pattipati, V. Raghavan,M. Shakeri, and R. Shrestha. Multisignalflow graphs: a novel approach for system testabilityanalysis and fault diagnosis. IEEE Aerospace andElectronics Systems Magazine, 10:14–25, 1995.

5. (Grantham-Lough et al., 2008) K. Grantham

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017

introduced above, a failure propagation method was Lough (Krus and ailure propagation

mapping based on historical data using a functional

Failure propagation is analyzed using a Function Event Network of all possible causation relationships in the function structure. This type of approach allows for a probabilistic analysis by applying a statistical reliability to the failure of each function in the function structure. An extension of this work is the Conceptual Stress and Conceptual Strength Interference Theory (CSCSIT)

Jin, 2008), where the conceptual strength of a function is the ability of a function to continue to operate while under normal energy, material and signal (EMS) flows. In this method, conceptual stresses are the EMS flows in the function structure. The

lication of interference theory is used to define functional faults as when the output flow from a function

Fault analysis or short circuit analysis is carried out to current during

the event of fault, it helps for the appropriate selection of the circuit breaker. So that we can save the power network with abnormal or unbalance condition with a

(Berenji et al., 2003) H. Berenji, J. Ametha, and D. Vengerov. Inductive Learning for Fault Diagnosis.In Proceedings of the 12th IEEE International Conference on Fuzzy Systems, pages

(Clarkson, 2004) Simons C. Eckert C. Clarkson, P.Predicting change propagation in complex design. Journal of Mechanical Design, 126:788,

(de Kleer and Kurien, 2003) J. de Kleer and J. based diagnosis.

(Deb et al., 1995) S. Deb, K. R. Pattipati, V. Raghavan,M. Shakeri, and R. Shrestha. Multisignalflow graphs: a novel approach for system testabilityanalysis and fault diagnosis. IEEE Aerospace andElectronics Systems Magazine,

ugh et al., 2008) K. Grantham-

Lough,R. B. Stone, and I. Y. Tumer. ImplementationProcedures for the Risk in Early Design (RED)Method. Journal of Industrial and Systems Engineering,2(2):126

6. (Huang and Jin, 2008) Z. Huang and Y. Jin. ConceptualStress and Conceptual Strength for FunctionalDesign-for-Reliability. In Proceedings of the ASMEDesign Engineering Technical Conferences; InternationalDesign Theory and Methodology Conference,2008.

7. (Meshkat et al., 2007) L. Meshkat, S. Jenkins,S. Mandutianu, and V. Heron. Automated Generationof Risk and Failure Models during Early PhaseDesign. In Proceedings of the IEEE AerospaceConference, 2007.

8. (Otto and Wood, 2001) K. N. Otto and K. L. Wood.Product Design: Techniques in reverse engineeringand new product dHall, 2001.

9. (Yairi et al., 2001) T. Yairi, Y. Kato, and K. Hori.Fault Detection by Mining Association Rules fromHouse-keeping Data. In Proceedings of theSAIRAS, 2001.

10. (Weld and de Kleer, 1987) D. Weld and J. de Kleer.Readings in qualitative physics. Morgan Kauffman,1987.

Author Profile

ER. SAQUIB SHAKIL MALLICKhis diploma in electrical branch from alpolytechnic, (Jamshedpur) session 2001, he passed his B.tech from College for Education Research and Technology(RCERT), Jaipur in the session 2010, obtained his M.tech (power system)

from Suresh gyan Vihar university in the session 2013, and now pursuing Ph.D. (electrical) from university of technology and medical science” sehore (m.p).

He has given almost six years of teaching experience in various engineering colleges as an Assistant professor. And currently working as a senior lecturer in electrical Department in Pakur Polytech Pakur (JHARKHAND)

Email - [email protected]

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Dec 2017 Page: 1042

Lough,R. B. Stone, and I. Y. Tumer. ImplementationProcedures for the Risk in Early Design (RED)Method. Journal of Industrial and Systems Engineering,2(2):126–143, 2008.

(Huang and Jin, 2008) Z. Huang and Y. Jin. ess and Conceptual Strength for

Reliability. In Proceedings of the ASMEDesign Engineering Technical Conferences; InternationalDesign Theory and Methodology Conference,2008.

(Meshkat et al., 2007) L. Meshkat, S. Jenkins,S. and V. Heron. Automated

Generationof Risk and Failure Models during Early PhaseDesign. In Proceedings of the IEEE AerospaceConference, 2007.

(Otto and Wood, 2001) K. N. Otto and K. L. Wood.Product Design: Techniques in reverse engineeringand new product development. Prentice

(Yairi et al., 2001) T. Yairi, Y. Kato, and K. Hori.Fault Detection by Mining Association Rules

keeping Data. In Proceedings of

(Weld and de Kleer, 1987) D. Weld and J. de itative physics. Morgan

SAQUIB SHAKIL MALLICK has Completed his diploma in electrical branch from al-kabir polytechnic, (Jamshedpur) session 2001, he passed his B.tech from Regional College for Education Research and Technology (RCERT), Jaipur in the session 2010, obtained his M.tech (power system)

from Suresh gyan Vihar university in the session 2013, (electrical) from sri satya sai

university of technology and medical science” sehore

He has given almost six years of teaching experience in various engineering colleges as an Assistant professor. And currently working as a senior lecturer in electrical Department in Pakur Polytech Pakur (JHARKHAND)

[email protected]