cqed susceptibility of superconducting transmons coupled to a microstrip resonator cavity david...

7
cQED Susceptibility of Superconducting Transmons coupled to a Microstrip Resonator Cavity David Pappas, Martin Sandberg, Jiansong Gao, Michael Vissers NIST, Boulder, CO 80303 Anton Kockum, Goran Johansson Chalmers University of Technology, Gӧteborg, Sweden

Upload: ciara-dixey

Post on 15-Dec-2015

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: CQED Susceptibility of Superconducting Transmons coupled to a Microstrip Resonator Cavity David Pappas, Martin Sandberg, Jiansong Gao, Michael Vissers

cQED Susceptibility of Superconducting Transmons coupled to a Microstrip Resonator Cavity

David Pappas, Martin Sandberg, Jiansong Gao, Michael VissersNIST, Boulder, CO 80303

Anton Kockum, Goran JohanssonChalmers University of Technology, Gӧteborg, Sweden

Page 2: CQED Susceptibility of Superconducting Transmons coupled to a Microstrip Resonator Cavity David Pappas, Martin Sandberg, Jiansong Gao, Michael Vissers

OutlineWhat do you do when your qubit

frequency is too close to your cavity? “Quantum art”

• Response of a coupled qubit-cavity system to a strong drive at finite temperature– Singly dressed - qubit + cavity– Doubly dressed system –

• qubit+cavity+ drive• two photon processes

– Triply dressed• three photon processes

Page 3: CQED Susceptibility of Superconducting Transmons coupled to a Microstrip Resonator Cavity David Pappas, Martin Sandberg, Jiansong Gao, Michael Vissers

“2½D” - Transmon coupled to microstrip cavity• Standard large-pad transmon,

GHz• Measured with microstrip cavity

– Measured at 20 mK– Radiation decay suppressed due to

proximity of ground plane• T1 2 - 10 s

– Coupling strength MHz– = 6.525 Ghz

• – Lifetime strongly Purcell limited– In resonant regime (not dispersive)

Sandberg, et al., APL 102, 072601 (2013)

Qubit

Page 4: CQED Susceptibility of Superconducting Transmons coupled to a Microstrip Resonator Cavity David Pappas, Martin Sandberg, Jiansong Gao, Michael Vissers

Cavity response to a probe toneVNA S21

probe

1 2

• Measure transmission, S21 at T∽100 mK• Susceptibility of the system

• frequency & power dependence• High power – bare cavity• Low power – excitation spectrum of

“singly dressed” qubit+cavity

cavity

Qubit-cavity excitations

High power

Low power

Page 5: CQED Susceptibility of Superconducting Transmons coupled to a Microstrip Resonator Cavity David Pappas, Martin Sandberg, Jiansong Gao, Michael Vissers

Model with Jaynes-Cummings Hamiltonian• Include 4 lowest qubit states, ,,, 3 lowest photon numbers in cavity, ,,

Excitation spectrum Transition Frequency (GHz)

0 - 7 18.5350 - 6 17.6500 - 5 13.2250 - 4 12.6601 - 7 12.4310 - 3 12.0032 - 7 11.9191 - 6 11.5462 - 6 11.0341 - 5 7.1210 - 2 6.6162 - 5 6.6091 - 4 6.5563 - 7 6.5320 - 1 6.1042 - 4 6.0441 - 3 5.8994 - 7 5.8753 - 6 5.6472 - 3 5.3875 - 7 5.3104 - 6 4.9905 - 6 4.4253 - 5 1.2226 - 7 0.8853 - 4 0.6574 - 5 0.5651 - 2 0.512

Page 6: CQED Susceptibility of Superconducting Transmons coupled to a Microstrip Resonator Cavity David Pappas, Martin Sandberg, Jiansong Gao, Michael Vissers

Line identificationTransition Frequency (GHz)

0 - 7 18.5350 - 6 17.6500 - 5 13.2250 - 4 12.6601 - 7 12.4310 - 3 12.0032 - 7 11.9191 - 6 11.5462 - 6 11.0341 - 5 7.1210 - 2 6.6162 - 5 6.6091 - 4 6.5563 - 7 6.5320 - 1 6.1042 - 4 6.0441 - 3 5.8994 - 7 5.8753 - 6 5.6472 - 3 5.3875 - 7 5.3104 - 6 4.9905 - 6 4.4253 - 5 1.2226 - 7 0.8853 - 4 0.6574 - 5 0.5651 - 2 0.512

cavitycavity

0-21-43-7

• Use low power probe tone to measure the system

• Add high power drive (i.e. pump) for susceptibilty

Page 7: CQED Susceptibility of Superconducting Transmons coupled to a Microstrip Resonator Cavity David Pappas, Martin Sandberg, Jiansong Gao, Michael Vissers

Susceptibility measurementVNA S21

probe

1 2

drive

Drive tone, D (GHz)