cpt-5 jee mains maths (top) held on 14-june-15

7
 COMMON PRACTICE TEST –5  J EE MAINS BATCH 12 th TOP BATCH Date : 14/06/2015 MATHEAMTICS SOLUTION 1. Sol. B Let 2 x 1 x t 2 1 x 1 x t f (t ) = –1 + 2 1 t range is (–1, ). 2. Sol. A Replacing f (x) by x, we f (x) = x 2 ffff (x) = x 16 also (f (x 4 )) 2 = x 16 . 3. Sol. C f (x) = 7 + {8x} + |tan 2x + cot 2x| period is LCM of 1 8 and 1 4 . 4. Sol. C If n(A) = n, n(B) = r then total number of functions = r n . Total number of into function = r C 1 (r 1) n  r C 2 (r– 2) n + … Here r = 3, n = 4 r n = 3 4 = 81 X = 3 C 1 2 4  3 C 2 1 4 = 45 Y = 81 – 45 = 36 |X Y| = 9.

Upload: bluel1

Post on 04-Nov-2015

6 views

Category:

Documents


0 download

DESCRIPTION

Cpt-5 Jee Mains Maths (Top) Held on 14-June-15 IIT Ashram

TRANSCRIPT

  • COMMON PRACTICE TEST 5JEE MAINS

    BATCH 12th TOP BATCH Date : 14/06/2015

    MATHEAMTICS SOLUTION

    1.

    Sol. B

    Let 2x 1 x t 2 1x 1 x

    t

    f (t) = 1 + 21t

    range is (1, ).2.

    Sol. A

    Replacing f (x) by x, we f (x) = x2

    ffff (x) = x16 also (f (x4))2 = x16.3.

    Sol. Cf (x) = 7 + {8x} + |tan 2x + cot 2x|

    period is LCM of 18

    and 14

    .

    4.

    Sol. C

    If n(A) = n, n(B) = r then total number of functions = rn.

    Total number of into function = rC1 (r 1)n rC2 (r 2)n +

    Here r = 3, n = 4

    rn = 34 = 81

    X = 3C1 24 3C2 14 = 45

    Y = 81 45 = 36

    |X Y| = 9.

  • 5.

    Sol. A

    Given equation can be written as

    x2 3 = 3[sin x]

    Case I: x2 3 = 3 when [sin x] = 1

    x = 0 but sin x 1Case II: x2 3 = 0 when [sin x] = 0

    x = 3 x = 3 gives [sin x] = 0Case III: x2 3 = 3 when [sin x] = 1

    x = 6 but [sin x] 1.

    Number of solution is one i.e. x = 3 .

    6.

    Sol. A

    The Given function is f (x) = sin3 x sin 3x

    f (x) = 3sin x sin3x4 sin 3x

    f (x) = 38

    (cos 2x cos 4x) 18

    (1 cos 6x)

    period of f (x) is .7.

    Sol. A

    Let g (x) be the inverse of f, so f (g (x)) = x

    4(g(x))3 3g (x) = x

    Let g (x) = cos cos 3 = x = xcos31 1

    So g (x) = cos

    xcos31 1

    8.

    Sol. D

    f (x) 1 + f (1 x) 1 = 0.

    So, g (x) + g (1 x) = 0.

    Putting x = x + 12

    we get, g 1 x2

    + g1 x2

    = 0.

  • So it is symmetrical about 1, 02

    .

    9.

    Sol. D

    f (x) = 1 x3, so f1 (x) = (1 x)1/3.

    Clearly f (x) = f1 (x) meet at (0, 1) and (1, 0) other then the line y = x.

    10.

    Sol. C

    . 4x2 + 4x + 4 + sin (x) = (2x + 1)2 + sin (x) + 3 2.Now as 1 < 2 < e, the required value of n is 3.

    11.

    Sol. B

    y = |sin1 2x2 1|

    y =1 2

    1 2 2

    sin (2x 1) 4xsin (2x 1) | 2x | 1 x

    x 0 and sin1 (2x2 1) 0 and |2x2 1| 1 |x| 1

    x 0, x 12

    .

    12.

    Sol. A

    Put = tan x = 2 sin 2 y = 2 cos 2 z = x2 + y2 xy = 4 2 sin 4 z [2, 6].

    13.

    Sol. B

    1 1 xf (x)x

    21 x x 1 1 x 1 x 1 0x x 1 ( 1 as function is onto)Given that above equation has only one root

    1 2 3 .

  • 14.

    Sol. D

    Periods of sin 3xtanand

    2xsin,x

    4 are 8, 4 and 3 respectively

    Period of the given function = L.C.M. (8, 4, 3) = 24.15.

    Sol. B

    1024

    1r2 rlog =

    102

    1r2 rlog

    =

    12

    2r2

    2

    rlog +

    12

    2r2

    3

    2

    rlog +

    12

    2r2

    4

    3

    rlog + ... +

    12

    2r2

    10

    9

    rlog + 102 2log .

    = 2.1 + 22 .2 +23 .3 +24.4 + . . . . + 29 .9 + 10

    = 10r.29

    1r

    r

    = 8204.

    16.

    Sol. C

    F(x) = f(x).g(x).h(x)

    F(x) = f(x).g(x).h(x) + f(x).g(x).h(x) + f(x).g(x).h(x) F(x1) = f( x1).g(x1).h(x1) + f(x1).g( x1).h(x1) + f(x1).g(x1).h( x1) 21F (x1) = 4 f ( x1).g(x1).h(x1) + (-7) f(x1).g ( x1).h(x1) + k f(x1).g(x1).h ( x1) 21 F(x1) = ( 4 - 7 + k) F(x1) k = 24 .

    17.

    Sol. (A)

    Dividing the numerator and denominator by x2, the given integral becomes

    x1xtan1

    x1x

    dxx11

    12

    2

    Let x +x1 = tanv c|v|logvdv

  • = log cx

    1xtan2

    1

    . Hence k = 1.

    18.

    Sol. B

    x 22tanxe tan x dx1 tanx 4

    x 2e tan x sec x dx

    4 4

    xe tan x c4 .

    19.

    Sol. (A)

    Multiply Dr & Nr by cosec2x, then

    I = 22

    xcot3ecxcos4ecxcosxcot4xeccos3

    dx

    = cxcos34xsinc

    xcot3ecxcos41dx

    )x(f)x(f2

    20.

    Sol. A

    Put t3x2x

    I = c3x2x

    58dtt

    51 8

    1

    8/7

    21

    Sol. C

    Put x9/2 = t then dtdxx29 2/7 , So given integral reduces to

    c1xxIn92c1ttIn

    92

    1t

    dt92 92/92

    2

    22.

    Sol. (B)

    Given integral = 222

    sincossincos

    d

  • = cossin sincos d = log|sin + cos| + c.23.

    Sol. I = dx2xtanx)xcos1ln(= dx2xtanxdx1.)xcos1(ln(

    = ln(1+ cosx). x + dx2xtanxdxx.2xcos2

    2xcos

    2xsin2

    2

    = ln(1+ cosx). x + dx2xtanxdx2xtanx + c= ln (1+ cosx). x + c.

    24.

    Sol. A

    x 12 2 2 2

    1 1 2xe tan x dx1 x 1 x (1 x )

    x 1

    21e tan x c

    1 x .

    25.

    Sol. B

    Let I = 2x tan x sec x dx(tan x x) = 22

    2

    x sin x dx(sin x xcos x)cos x

    cos x

    = 2x sinx dx

    (sinx xcos x)Put sin x x cos x = t x sin x dx = dt

    I = 2dt 1 1c c

    t x cos x sin xt .

    26.

    Sol. C

    Putting a6 + x8 = t2

    I =2 3 3

    2 6 3t a t adt t ln c

    2t a t a .

  • 27.

    Sol. A

    Let 3x = cos 3dx = - sin d

    dcos3131dsinsin3cos

    31 2

    2

    = c91sin

    91 3 = cx3cos

    91x91

    91 312 .

    28.

    Sol. B

    A is an idempotent matrix. Hence A2 = A An = A so thatAB = A(I A) = A A2 = A A = 0.

    29.

    Sol. B

    We have A A = I, B B = I

    A = A-1, B = B-1

    Now (AB) = B A = B-1 A-1 = (AB)-1

    30.

    Sol. B

    We have 4A A and A A A A A A A A A = 4 4 4A A A A 1 A A Hence (B) is the correct answer.