cpe/ee 427, cpe 527 vlsi design i cmos invertermilenka/cpe527-07f/lectures/cmosinverter.pdfdsp | v...

22
•VLSI Design I; A. Milenkovic •1 CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter Department of Electrical and Computer Engineering University of Alabama in Huntsville Aleksandar Milenkovic 9/11/2006 VLSI Design I; A. Milenkovic 2 CMOS Inverter: A First Look V DD V out C L V in

Upload: others

Post on 24-Jan-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •1

CPE/EE 427, CPE 527 VLSI Design I

CMOS Inverter

Department of Electrical and Computer Engineering University of Alabama in Huntsville

Aleksandar Milenkovic

9/11/2006 VLSI Design I; A. Milenkovic 2

CMOS Inverter: A First Look

VDD

Vout

CL

Vin

Page 2: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •2

9/11/2006 VLSI Design I; A. Milenkovic 3

CMOS Inverter: Steady State Response

VDD

Rn

Vout = 0

Vin = V DD

VDD

Rp

Vout = 1

Vin = 0

VOL = 0VOH = VDD

VM = f(Rn, Rp)

9/11/2006 VLSI Design I; A. Milenkovic 4

CMOS Properties• Full rail-to-rail swing ⇒ high noise margins

– Logic levels not dependent upon the relative device sizes ⇒transistors can be minimum size ⇒ ratioless

• Always a path to Vdd or GND in steady state ⇒ low output impedance (output resistance in kΩ range) ⇒large fan-out (albeit with degraded performance)

• Extremely high input resistance (gate of MOS transistor is near perfect insulator) ⇒ nearly zero steady-state input current

• No direct path steady-state between power and ground ⇒ no static power dissipation

• Propagation delay function of load capacitance and resistance of transistors

Page 3: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •3

9/11/2006 VLSI Design I; A. Milenkovic 5

Short Channel I-V Plot (NMOS)

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

I D( A

)

VDS (V)

X 10-4

VGS = 1.0V

VGS = 1.5V

VGS = 2.0V

VGS = 2.5V

Line

ar d

epen

denc

e

NMOS transistor, 0.25um, Ld = 0.25um, W/L = 1.5, VDD = 2.5V, VT = 0.4V

9/11/2006 VLSI Design I; A. Milenkovic 6

Short Channel I-V Plot (PMOS)

-1

-0.8

-0.6

-0.4

-0.2

00-1-2

I D( A

)

VDS (V)

X 10-4

VGS = -1.0V

VGS = -1.5V

VGS = -2.0V

VGS = -2.5V

PMOS transistor, 0.25um, Ld = 0.25um, W/L = 1.5, VDD = 2.5V, VT = -0.4V

• All polarities of all voltages and currents are reversed

Page 4: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •4

9/11/2006 VLSI Design I; A. Milenkovic 7

nMOS Operation

Vgsn >

Vdsn >

Vgsn >

Vdsn <

Vgsn <SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

9/11/2006 VLSI Design I; A. Milenkovic 8

nMOS Operation

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn < Vtn

SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Page 5: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •5

9/11/2006 VLSI Design I; A. Milenkovic 9

nMOS Operation

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn < Vtn

SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

9/11/2006 VLSI Design I; A. Milenkovic 10

nMOS Operation

Vgsn > Vtn

Vin > Vtn

Vdsn > Vgsn – Vtn

Vout > Vin - Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn < Vgsn – Vtn

Vout < Vin - Vtn

Vgsn < Vtn

Vin < Vtn

SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

Page 6: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •6

9/11/2006 VLSI Design I; A. Milenkovic 11

pMOS Operation

Vgsp <

Vdsp <

Vgsp <

Vdsp >

Vgsp >SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

9/11/2006 VLSI Design I; A. Milenkovic 12

pMOS Operation

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp > Vtp

SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Page 7: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •7

9/11/2006 VLSI Design I; A. Milenkovic 13

pMOS Operation

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp > Vtp

SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

9/11/2006 VLSI Design I; A. Milenkovic 14

pMOS Operation

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp < Vgsp – Vtp

Vout < Vin - Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp > Vgsp – Vtp

Vout > Vin - Vtp

Vgsp > Vtp

Vin > VDD + Vtp

SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

Page 8: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •8

9/11/2006 VLSI Design I; A. Milenkovic 15

I-V Characteristics

• Make pMOS is wider than nMOS such that βn = βp

Vgsn5

Vgsn4

Vgsn3

Vgsn2Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

9/11/2006 VLSI Design I; A. Milenkovic 16

Current vs. Vout, Vin

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Page 9: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •9

9/11/2006 VLSI Design I; A. Milenkovic 17

Load Line Analysis

Vin0

Vin0

Idsn, |Idsp|

VoutVDD

• Vin = 0

9/11/2006 VLSI Design I; A. Milenkovic 18

Load Line Analysis

Vin1

Vin1Idsn, |Idsp|

VoutVDD

• Vin = 0.2VDD

Page 10: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •10

9/11/2006 VLSI Design I; A. Milenkovic 19

Load Line Analysis

Vin2

Vin2

Idsn, |Idsp|

VoutVDD

• Vin = 0.4VDD

9/11/2006 VLSI Design I; A. Milenkovic 20

Load Line Analysis

Vin3

Vin3

Idsn, |Idsp|

VoutVDD

• Vin = 0.6VDD

Page 11: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •11

9/11/2006 VLSI Design I; A. Milenkovic 21

Load Line Analysis

Vin4

Vin4

Idsn, |Idsp|

VoutVDD

• Vin = 0.8VDD

9/11/2006 VLSI Design I; A. Milenkovic 22

Load Line Analysis

Vin5Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

• Vin = VDD

Page 12: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •12

9/11/2006 VLSI Design I; A. Milenkovic 23

Load Line Summary

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

9/11/2006 VLSI Design I; A. Milenkovic 24

DC Transfer Curve

• Transcribe points onto Vin vs. Vout plot

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Page 13: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •13

9/11/2006 VLSI Design I; A. Milenkovic 25

CMOS Inverter Load Lines

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

I Dn

( A)

Vout (V)

X 10-4

Vin = 1.0V

Vin = 1.5V

Vin = 2.0V

Vin = 2.5V

0.25um, W/Ln = 1.5, W/Lp = 4.5, VDD = 2.5V, VTn = 0.4V, VTp = -0.4V

Vin = 0V

Vin = 0.5V

Vin = 1.0V

Vin = 1.5VVin = 0.5VVin = 2.0V

Vin = 2.5V

Vin = 2VVin = 1.5V Vin = 1V

Vin = 0.5V

Vin = 0V

PMOS NMOS

9/11/2006 VLSI Design I; A. Milenkovic 26

CMOS Inverter VTC

00.5

11.5

22.5

0 0.5 1 1.5 2 2.5Vin (V)

V out

(V)

Page 14: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •14

9/11/2006 VLSI Design I; A. Milenkovic 27

Operating Regions

• Revisit transistor operating regions

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+VtpEDCBA

pMOSnMOSRegion

9/11/2006 VLSI Design I; A. Milenkovic 28

CMOS Inverter VTC

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

Vin (V)

Vou

t(V

)

NMOS offPMOS res

NMOS satPMOS res

NMOS satPMOS sat

NMOS resPMOS sat NMOS res

PMOS off0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

Vin (V)

Vou

t(V

)

NMOS offPMOS res

NMOS satPMOS res

NMOS satPMOS sat

NMOS resPMOS sat NMOS res

PMOS off

Page 15: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •15

9/11/2006 VLSI Design I; A. Milenkovic 29

Beta Ratio

• If βp / βn ≠ 1, switching point will move from VDD/2• Called skewed gate• Other gates: collapse into equivalent inverter

Vout

0

Vin

VDD

VDD

0.51

2

10p

n

ββ

=

0.1p

n

ββ

=

9/11/2006 VLSI Design I; A. Milenkovic 30

Noise Margins

• How much noise can a gate input see before it does not recognize the input?

IndeterminateRegion

NML

NMH

Input CharacteristicsOutput Characteristics

VOH

VDD

VOL

GND

VIH

VIL

Logical HighInput Range

Logical LowInput Range

Logical HighOutput Range

Logical LowOutput Range

Page 16: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •16

9/11/2006 VLSI Design I; A. Milenkovic 31

Logic Levels

• To maximize noise margins, select logic levels at

VDD

Vin

Vout

VDD

βp/βn > 1

Vin Vout

0

9/11/2006 VLSI Design I; A. Milenkovic 32

Logic Levels

• To maximize noise margins, select logic levels at – unity gain point of DC transfer characteristic

VDD

Vin

Vout

VOH

VDD

VOL

VIL VIHVtn

Unity Gain PointsSlope = -1

VDD-|Vtp|

βp/βn > 1

Vin Vout

0

Page 17: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •17

9/11/2006 VLSI Design I; A. Milenkovic 33

CMOS Inverter: Switch Model of Dynamic Behavior

VDD

Rn

Vout

CL

Vin = V DD

VDD

Rp

Vout

CL

Vin = 0

9/11/2006 VLSI Design I; A. Milenkovic 34

CMOS Inverter: Switch Model of Dynamic Behavior

VDD

Rn

Vout

CL

Vin = V DD

VDD

Rp

Vout

CL

Vin = 0

Gate response time is determined by the time to charge CL through Rp (discharge CL through Rn)

Page 18: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •18

9/11/2006 VLSI Design I; A. Milenkovic 35

Relative Transistor Sizing

• When designing static CMOS circuits, balance the driving strengths of the transistors by making the PMOS section wider than the NMOS section to– maximize the noise margins and– obtain symmetrical characteristics

9/11/2006 VLSI Design I; A. Milenkovic 36

Switching Threshold• VM where Vin = Vout (both PMOS and NMOS in

saturation since VDS = VGS)VM ≈ rVDD/(1 + r) where r = kpVDSATp/knVDSATn

• Switching threshold set by the ratio r, which compares the relative driving strengths of the PMOS and NMOS transistors

• Want VM = VDD/2 (to have comparable high and low noise margins), so want r ≈ 1

(W/L)p kn’VDSATn(VM-VTn-VDSATn/2)(W/L)n kp’VDSATp(VDD-VM+VTp+VDSATp/2)

=

Page 19: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •19

9/11/2006 VLSI Design I; A. Milenkovic 37

Switch Threshold Example

• In our generic 0.25 micron CMOS process, using the process parameters from slide L03.25, a VDD = 2.5V, and a minimum size NMOS device ((W/L)n of 1.5)

-0.1-30 x 10-6-1-0.4-0.4PMOS0.06115 x 10-60.630.40.43NMOSλ(V-1)k’(A/V2)VDSAT(V)γ(V0.5)VT0(V)

(W/L)p

(W/L)n

=

9/11/2006 VLSI Design I; A. Milenkovic 38

Switch Threshold Example

• In our generic 0.25 micron CMOS process, using the process parameters, a VDD = 2.5V, and a minimum size NMOS device ((W/L)n of 1.5)

-0.1-30 x 10-6-1-0.4-0.4PMOS0.06115 x 10-60.630.40.43NMOSλ(V-1)k’(A/V2)VDSAT(V)γ(V0.5)VT0(V)

(W/L)p 115 x 10-6 0.63 (1.25 – 0.43 – 0.63/2)

(W/L)n -30 x 10-6 -1.0 (1.25 – 0.4 – 1.0/2)= x x = 3.5

(W/L)p = 3.5 x 1.5 = 5.25 for a VM of 1.25V

Page 20: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •20

9/11/2006 VLSI Design I; A. Milenkovic 39

Simulated Inverter VM

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 1 10(W/L)p/(W/L)n

VM

(V)

VM is relatively insensitive to variations in device ratio

setting the ratio to 3, 2.5 and 2 gives VM’s of 1.22V, 1.18V, and 1.13V

Increasing the width of the PMOS moves VMtowards VDD

Increasing the width of the NMOS moves VMtoward GND

.1

Note: x-axis is semilog

~3.4

9/11/2006 VLSI Design I; A. Milenkovic 40

Noise Margins Determining VIH and VIL

0

1

2

3

VIL VIHVin

V out

VOH = VDD

VM

By definition, VIH and VIL are where dVout/dVin = -1 (= gain)

VOL = GND

A piece-wise linear approximation of VTC

NMH = VDD - VIHNML = VIL - GND

Approximating: VIH = VM - VM /gVIL = VM + (VDD - VM )/g

So high gain in the transition region is very desirable

Page 21: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •21

9/11/2006 VLSI Design I; A. Milenkovic 41

CMOS Inverter VTC from Simulation

00.5

11.5

22.5

0 0.5 1 1.5 2 2.5Vin (V)

Vou

t(V

)0.25um, (W/L)p/(W/L)n = 3.4(W/L)n = 1.5 (min size)VDD = 2.5V

VM ≈ 1.25V, g = -27.5

VIL = 1.2V, VIH = 1.3VNML = NMH = 1.2(actual values are VIL = 1.03V, VIH = 1.45VNML = 1.03V & NMH = 1.05V)

Output resistance low-output = 2.4kΩhigh-output = 3.3kΩ

9/11/2006 VLSI Design I; A. Milenkovic 42

Gain Determinates

-18-16-14-12-10-8-6-4-20

0 0.5 1 1.5 2Vin

gain

Gain is a strong function of the slopes of the currents in the saturation region, for Vin = VM

(1+r)g ≈ ----------------------------------

(VM-VTn-VDSATn/2)(λn - λp )

Determined by technology parameters, especially channel length modulation (λ). Only designer influence through supply voltage and VM (transistor sizing).

Page 22: CPE/EE 427, CPE 527 VLSI Design I CMOS Invertermilenka/cpe527-07F/lectures/CMOSInverter.pdfdsp | V out V DD 9/11/2006 VLSI Design I; A. Milenkovic 24 DC Transfer Curve • Transcribe

•VLSI Design I; A. Milenkovic •22

9/11/2006 VLSI Design I; A. Milenkovic 43

Impact of Process Variation on VTC Curve

00.5

11.5

22.5

0 0.5 1 1.5 2 2.5Vin (V)

Vou

t(V

)

Nominal

Good PMOSBad NMOS

Bad PMOSGood NMOS

process variations (mostly) cause a shift in the switching threshold

9/11/2006 VLSI Design I; A. Milenkovic 44

Scaling the Supply Voltage

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5Vin (V)

Vou

t(V

)

Device threshold voltages are kept (virtually) constant

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

Vin (V)

Vou

t(V

)

Gain=-1

Device threshold voltages are kept (virtually) constant