course instructor: scott fendorf 301 green; 3-5238; fendorf@pangeafendorf@pangea teaching...

22
Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf @ pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar @ pangea Jim Neiss 325 Green; 3-4152 jneiss @ pangea Meeting Times : Lecture: 9 – 10:15 pm Tuesday, Thursday Recitation: 2:15 –3:30 pm Thursdays Location : 131 Green or A25 Mitchell GES 166/266, Soil Chemistry

Upload: erik-gilmore

Post on 02-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Course Instructor: Scott Fendorf

301 Green; 3-5238; Fendorf@pangea

Teaching Assistants: Ben Kocar

325 Green; 3-4152 kocar@pangea

Jim Neiss

325 Green; 3-4152 jneiss@pangea

 Meeting Times:

Lecture: 9 – 10:15 pm Tuesday, Thursday

Recitation: 2:15 –3:30 pm Thursdays

 Location:

131 Green or A25 Mitchell

GES 166/266, Soil Chemistry

Page 2: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Course Website

“http//soils.stanford.edu/classes/GES166.htm”.

Course Objectives:

• To define the chemical composition of soil materials

• To comprehend the chemical (and biochemical) factors functioning within soil systems

• To define the chemical factors influencing the fate of elements (contaminant and nutrient) within soils

Recommended Text and Reading Assignments:

Environmental Chemistry of Soils by Murray B. McBride, 1st Edition, Oxford Press.

Page 3: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Grading and Exams: • Grading

• Participation

• Philosophy  

• Recitation 

• Graduate (266) Credit

Page 4: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Mn+

Mn+x

ReductionOxidation

Mineral

Bacteria

Soil ProfileSoil Profile

Organic ligand

Surface complex

adsorption

desorption

complexation

degradation

Aqueous Metal Ion

Metal-Organic Complex

OrganicMatter

release

deposition

biomineralization

Mineralogical transformation

precipitationprecipitationdissolutiondissolution

GES166/266: Soil ChemistryGES166/266: Soil Chemistry

Page 5: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Salt Affected Soils

Page 6: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Acid Soils

Page 7: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Arsenic in Bangladesh

Largest Mass Poisoning in History: A Result of Arsenic in Drinking Water

Page 8: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Bangladesh: Water-Use History

• Subsurface wells installed in early 1970s

- avoids surface pathogens

• Irrigated agriculture initiated mid-1970s

• Arsenic poisoning detected late-1980s, extensive exposure noted in 1990s

Page 9: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

125,000 people ( 0.1%)

3,000-7,000 people/y

1,860,000 people (1%)Arsenicosis

Skin Cancer

Internal Cancers(projection)

Exposure(> 50 ppb)

36,000,000 people (19%)

Conditions in Bangladesh

Page 10: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Bangladesh

Average Total Arsenic: < 40 mg/KgExposure to Hazardous Levels: 36 Million

Page 11: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Mississippi River Valley

Average Total Arsenic: 90 mg/KgExposure to Hazardous Levels: None reported

Page 12: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Dissolved Arsenic Profiles

Average Well-Depth: 30 m

Harvey et al. (2002)

Page 13: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Bangladesh

Where does the arsenic come from?

FeAsSFeAsS

Page 14: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Chemistry of Arsenic

• Arsenic generally persists as As(III) or As(V) within surface and subsurface environments

- lower valent states, such as As(0), occur

• Retention Characteristics

Arsenate (HxAsO4x-3):

- binds to broad class of oxic solids- adsorption increases with decreasing pH

Arsenite (HxAsO3x-3):

- binds to Fe-oxides- adsorption maximum between pH 7 and 9- reacts with sulfides

Page 15: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Release of Arsenic

• Release of As to the aqueous phase is promoted by:

1. High pH conditions (pH > 8.5)

2. Competing anions (e.g., phosphate)

3. Transition to anaerobic state- arsenic reduction

- mineralogical changes

Page 16: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Bangladesh: Dry Season

Page 17: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Bangladesh: Monsoonal Season

Page 18: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Anaerobic ConditionsAnaerobic Conditions

• Arsenic is strongly retained within most aerated soilsArsenic is strongly retained within most aerated soils– Arsenate forms strong surface complexesArsenate forms strong surface complexes

• Upon a transition from aerobic to anaerobic conditions:Upon a transition from aerobic to anaerobic conditions:

(i) conversion of arsenate to arsenite(i) conversion of arsenate to arsenite

(ii) reductive dissolution of Fe(III)-(hydr)oxides(ii) reductive dissolution of Fe(III)-(hydr)oxides

Is the fate of arsenic tied to Fe?Is the fate of arsenic tied to Fe?

• Generation of sulfide and sulfide minerals will impact As Generation of sulfide and sulfide minerals will impact As sequestrationsequestration

Mobility of arsenic is commonly enhanced under reducing conditions. Why?

Page 19: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Fe(OH)3

AsO33-

AsO43-

Al(OH)3 AsO43-

Red.

Red.

Fe(OH)3AsO4

3-

Fe2+

AsO33-

AsO43-

+

Adsorbate Reduction Adsorbent Reduction

Red.

Red.

Possible Mobilization Processes

Fe(OH)3 AsO33-

Page 20: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

x y

z

xy

z

xy

z

x

y

z

Fe(OH)3•nH2O goethite

magnetite

siderite

Iron Biomineralization

Fe(II) aq

Low(< 0.3 mM)

MediumMedium(> 0.3 mM)(> 0.3 mM)

IRB+ S(-II)

green rust

iron sulfide

+ HCO3-

conversion

Page 21: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

0

0.5

1

1.5

2

2.5

3

3.5

Mag Lep Goe F Fs

Ad

sorp

tio

n C

apac

ity

(Mo

les/

Kg

)

Arsenate

Arsenite

Arsenic Retention Capacities

Iron Reductive Transformation

pH 7

Page 22: Course Instructor: Scott Fendorf 301 Green; 3-5238; Fendorf@pangeaFendorf@pangea Teaching Assistants: Ben Kocar 325 Green; 3-4152 kocar@pangeakocar@pangea

Conclusions: Reductive Transformations

As(V)-SolidLimited FeOx

As(III) aq

if

As(V)-Fe(OH)3

As(III) -FeOOH + As(III) aq

Low [Fe2+]

As(III) –Fe3O4

+ As(III) aq

As(III) –Fe3O4

+ As(III) aq

Mod [Fe2+]

As(III) –GR + As(III) aqAs(III) –GR + As(III) aq

High [Fe2+]

[S(-II)]

As2S3As2S3

FeSx

As-FeSx

(AsFeS)

+ As(III) aq

As-FeSx

(AsFeS)

+ As(III) aq

Reduction

(high S:Fe)

(low S:Fe)

Carbon Addition