cost effective debottleneck expansions

25
Cost Effective DeBottleneck / Expansion Project Revamps Ray Elshout PE, Energy Systems Engineering, Pasadena CA  USA Peter Nick PE, Consultant, Yorba Linda CA  USA Lynn Brown, PE, Consultant, Placentia, CA

Upload: energy-construction-forum

Post on 17-Jan-2017

168 views

Category:

Services


0 download

TRANSCRIPT

Page 1: Cost Effective Debottleneck Expansions

Cost Effective DeBottleneck / Expansion Project Revamps

Ray Elshout PE, Energy Systems Engineering, Pasadena CA  USA

Peter Nick PE, Consultant, Yorba Linda CA  USA

Lynn Brown, PE, Consultant, Placentia, CA

Page 2: Cost Effective Debottleneck Expansions

Once Upon a Timeo Greenfield plants ‐ preferred way to expand  ~ 25‐30% ROI

o Engineering tools ‐ Then ‐ labor intensive ‐maximum manhrs.                    Now ‐minimize manhrs w new‐fangled computer programs.

o Only a relatively few E&C (former acronym) firms were true service provider candidates and usually the only difference among them was project‐by‐project willingness to “make‐a‐deal” Rephrase – not sure what we are getting at here.

o Plant performance criteria ‐ increased capacity; lower operating & feed/product costs. 

o Scope changes  ‐ time consuming & engineering labor intensive

Page 3: Cost Effective Debottleneck Expansions

Now the Playing Field Has Changed

o Today – Tight Capital,  wide fluctuations in cost of energy.      Grassroots projects ‐ often not economically feasible.

o Engineering tools ‐ more productive ‐ several commercial data packages  &          ‐ E&C company proprietary data packages.

o Int’l EPCM firms ‐ engineering services at lower prices.                              Construction providers catching up.

o Now ‐ Plant performance & Safety, environmental, operating flexibility 

o Optimal scope changes & case studies ‐ performed earlier in project.  

o Improved Project productivity ‐ Lower fees and shorter schedules.CAN YOU KEEP UP AND COMPETE ?

Page 4: Cost Effective Debottleneck Expansions

Smaller Expectations = Smaller ProjectsIncreasing Capacity ‐ Debottleneck existing, instead of NEW, while also                     ‐ reducing energy usage, improving profitability.

Debottlenecking ‐ > difficult vs new. Identify major, limiting equipment.

Modify ‐ increase capacity, etc. ‐ to the limit of these equipment items.

Two types of revamp projects must be noted:

1. Revamp affects primarily just the re‐engineered units. Minor utility, construction procedures (UNIT online) are the primary concerns.  

2. Revamp unit yield changes affect many units in the refinery. Construction/Startup more complex. Economics performed for entire plant.  Most refinery revamps follow this pattern.

Page 5: Cost Effective Debottleneck Expansions

REVAMP APPROACHTrial & Error ‐ Look @ alternate options, equipment to be modified, Or‐ supplemented with additional equipment.  

Then ‐ preliminary cost estimates ‐ Can the improvement in economics support the costs of the modifications ?

Method ‐ The FEED approach – Front End Engineering & Design  

‐More detailed cost estimates made as engineering detail proceeds:

FEL‐0 (aka Appraise) conceptual estimate based on PFD & equipment list.

FEL‐1 (aka Select) factored estimate ‐ equipment prices X cost factors.

FEL‐2 (aka Define) conceptual estimate w estimating programs and conceptual take‐offs.

Page 6: Cost Effective Debottleneck Expansions

PRE FEL‐0 TIPS, TRICKS & TRAPSWith a Complete Picture of the Revamp BASECASE

If FEL‐0 still positive, Client And/Or Contractor Reps Gather : 

BFD*/PFD**/P&ID**

MAJOR PROCESS EQUIPMENT SPECS & DETAILED VESSEL DWGS** 

MAINTENANCE RECORDS ‐MECHANICAL INTEGRITY INSPECTIONS***

THERMAL IMAGING SLIDES @ NEAR MAX CAPACITY* ?

PROCESS & CONTROL LOOP DATA ‐ AT LEAST  ONE YEAR PRIOR**

PLANT LP RUNS &/OR PRODUCTION SCHEDULE ‐ ONE YEAR PRIOR*

PLANT RELIABILITY DATA & AVAILABILITY ASSESSMENTS**

PROCESS H&MB / RATING MODELS ** +

*  DEGREE OF NEED+  DEVELOP IF MISSING

Page 7: Cost Effective Debottleneck Expansions

Test Run & Start of Staff up

TEST RUN ++  24 ‐72 hour test run ‐ develop actual operating data.   Process simulators (e.g. HYSIS/ASPEN, PROMAX, PRO II, ChemCad)          ‐ construct a REASONABLE model of actual current operations if historical data is not adequate).

Additional Staff

‐ ONBOARD EPCM ‐ PROJ MGR / LEAD PROCESS+ 0.5‐2/MECH+0.5/IAC 0.5 ‐OTHERS PART OR FULL TIME AS NEEDED

‐ CLIENT ‐ PLANT MGR/PLANNING MGR/PROJ MGR/ CORP &PLANT STAFF AS  NEEDED.

‐ IMPORTANT NEEDS THIS PHASE ‐ OUTSTANDING PROCESS MODELER, COST DATA BANK & ESTIMATOR

Page 8: Cost Effective Debottleneck Expansions

FEL‐0 TIPS, TRICKS & TRAPSDEFINE BASECASE & PLANT CONSTRAINTS

Analyze Gathered Data for Consistency**

Develop FEL‐0 Scope Of Work (SOW) ‐ Get Project Team & Client BUY‐IN **

Setup BASECASEMODELS (PRO II, Aspen Tech, PROMAX, Chemstations, etc.) +**

ModifyModels for each Case Study ‐ OPTIMIZE Based on Independent ProcessVariables **

Estimate Preliminary Capital & Operating Costs ‐ EACH CASE** 

Estimate Plant Wide Economics from Client LP*  or from Yield Config Model (e.g.PETROPLAN, etc.)**+ 

*       DEGREE OF NEED+  DEVELOP IF MISSING

Page 9: Cost Effective Debottleneck Expansions

FEL‐0 TIPS, TRICKS & TRAPSAnalyzing The Problem & Avoiding Tunnel Vision

Initial case evaluation ‐ Look at a broad range of potential schemes. Brainstorm with a group of different disciplines.

Process Optimization alternatives from equipment revamps. Heat exchange revamps from Pinch Point analysis,  new column trays,  new vessel ID reductions, etc.

Operational representation in these sessions is essential.  Their Buy‐In is essential.  They have detailed knowledge of  day‐to‐day, operating subtleties of any given unit.

Limitations ‐major existing equipment –Modifications to existing major equipment ‐ typically more cost‐effective than New equipment. Changing nozzles, internals, impellers, motors, etc. ‐ usually cost‐effective. Reuse of existing foundations. 

Constructabilitymust be considered.  Piping, utility support system conflicts. Plot space available, laydown room for construction, etc. Reuse of existing foundations. 

Page 10: Cost Effective Debottleneck Expansions

FEL‐0 TIPS, TRICKS & TRAPSDetermining the Capital Costs

Defining the Problem ‐ Process Description, marked up PFD, SOWSome cases may not survive the initial screening.  

Total Installed Costs – TIC ‐ increasing accuracy as engineering proceeds.

Preliminary Engineering – Cost Estimating purposes only ‐ not final design. Contractor beware ‐ Do Not waste Manhrs on unnecessary detail.

FEED approach – conducted by the principles above. “Screen” the options.Do Not waste ManHrs on options which are not economic. Experienced Construction/Operations personnel vital in upfront screening phases  This assures Constructability, Operability.

Page 11: Cost Effective Debottleneck Expansions

FEL‐0 TIPS, TRICKS & TRAPSConceptual Screening Cost Estimates I

We now have : Revamp PFD, Equipment List & SOW ‐ each option.

Conceptual  Cost Estimates ~ +100/‐50% accurate. Use cost /capacity curves ‐past projects w escalation.  TIC is GENERAL ‐ No specific design.

Exponential Capacity Cost (ECC) factorials ‐ $ vs Size 0.6 to 0.7 ‐ equipment w declining unit cost  to capacity ratio.0.70‐0.8 ‐modularized pkgs 1.0 – identical. Vendor discounts w large order..

One approach ‐ new/modified Revamp ‐ % updated ISBL existing cost.  TICNEW/TICEXIST  x (RateNEW/RateCEXIST)0.7 , or appropriate ECC factorial.

Page 12: Cost Effective Debottleneck Expansions

FEL‐0 TIPS, TRICKS & TRAPSConceptual Screening Cost Estimates II

The Outside battery Limits Costs (OSBL) is much defined and more difficult to pin down the accuracy without doing more engineering.  So the cost are good enough for comparative evaluations of the cases, 

but not good enough to make a go ahead recommendation. 

These for initial purposes could be taken as some percentage of the ISBL costs (say add 50 percent of ISBL costs to get the OSBL additional costs) for starting purposes.  The important thing is that all the 

items associated with a modification are included and nothing is forgotten.  

Typically things are forgotten so the under run is rare.

Even though the estimating may be extremely rough, the trends between the cases tend to reflect what costs are for more detailed estimates. Screening on this basis should sometimes be reviewed to make sure something has not been ruled out prematurely.  Sometimes, but rarely, cost may indicate that the 

project is not feasible and must be re thought. 

To guide the whole decision making process, the refinery operator usually supplies economic criteria for a Go‐No Go  decision  by which the revamp will be judged. Initially a simple return on investment based on the before tax economic revenues in terms of years for payout. Later on in the evaluation 

Discounted Cash Flow (DCF) including more economic development is made.

Page 13: Cost Effective Debottleneck Expansions

FEL‐1 TIPS, TRICKS & TRAPS INarrowing in on accuracy

At this level of cost estimating, engineering work needs to  the degree that the specifications allow . Most Larger Refineries already have general equipment specification used for various vendors to quote their particular equipment type.  They also have a preferred vendor list. Obviously, the more definitive 

the specification is, the better the cost vendors can provide.  

Multiple vendor quotes are suggested if time permits.  So the process data plus a general  pecificationswould be useful to get estimates that represent current  design practices.

The original equipment vendors can be very useful in the evaluation of their supplied equipment in the new services they may be switched. With pumps you supply the flow rates, material gravities and 

differential pressure and the vendor can then make their evaluation.

Generally, factored type of cost estimates are utilized to generate the installed equipment costs.  Ie.,  the individual equipment items are multiplied by a factor (typically 4.0 for pumps, 3.0 for heat 

exchangers, 2.5 for big compressors and etc.) to represent the as built cost.  

Sum up these individual equipment factor estimates to get the total facility incremental cost factored estimate.  These estimates are considered +50 /‐25 percent for ISBL assuming nothing is forgotten.

Page 14: Cost Effective Debottleneck Expansions

FEL‐1 TIPS, TRICKS & TRAPS IINarrowing in on accuracy

As with FEL‐0, costs are  only for the ISBL portion and the OSBL portion has to be added.  The accuracy of the estimate is good enough for comparison of the cases, but not accurate to initiate the project.

Note that in addition to the cost of new equipment, you need to consider the costs of removing equipment and demolishing if required to make space for replacement equipment.  If an exchanger is just switched in service the cost of the piping including both sides is the only cost.  But if the exchanger has to be physically moved and the foundation modified for the new equipment, this cost should include these items.

At this level of estimating, it may be obvious which project options are not optimum. But it may be necessary to come back and visit some of the deleted options at a later time.

In this phase, it may be appropriate to examine whether a change in sparing/redundancy considerations is called for to  maximize reusability and also process availability.  One of the underilized optimization 

modeling techniques are RAM studies with which annual availability estimates can be estimated along with duration and types of failure induced downtimes.   If that downtime causes excessive flaring incidents,  for 

example, the costs could be far beyond lost production time.

Page 15: Cost Effective Debottleneck Expansions

FEL‐2 TIPS, TRICKS & TRAPS ILast Iteration before Design to Build Step

The next level of cost estimate requires preliminary marked up P & ID’s and equipment data sheets, which provide firm equipment pricing from vendors.  

Computer estimating tools like Icarus/IPE/KBASE can be used to provide the necessary inclusion of the cost component for the piping, electrical, civil/structural portions of estimate without doing a detailed take‐off.   Then we can utilize plot plan and some hand sketches to estimate the rough and dirty cost of 

equipment installation and associated piping runs, foundations and other plot specific items.  

Constructability need to be part of the evaluation.    Equipment weights are important for the structure needs .This gives estimators a better feel for how much additional extra contingency may be appropriate.  The objective is to get enough information so that a cost estimating program can be used to include the required peripheral piping, foundations, electrical, instrumentation and structural requirements sufficient 

for cost estimating.  

So some additional engineering is done, but it is not detailed engineering it is for the purposes of cost estimating level.  A seasoned cost estimator is critical , and apply the appropriate factors to arrive at 

reasonable installed costs.

Page 16: Cost Effective Debottleneck Expansions

FEL‐2 TIPS, TRICKS & TRAPS IILast Iteration before Design to Build Steps

Estimates of this level are considered +25/‐15 percent accurate.  Again, this is the inside battery limits only.  Anything forgotten obviously is not included in the cost estimate.  

The OSBL costs are still a factor of the ISBL costs.  To get better cost  evaluations than this , take‐offs of piping, electrical, civil/structural, instrumentation are needed.

This represents the best cost estimate to this design point without getting into much more detailed engineering which is costly.  The purpose is to do a screening amount the alternatives and determine if at 

this stage any of them satisfy the project implementation economic criteria or not.

At this point, assuming the client cost gating passes you through,  you are ready to finish the FEED phase.  If you have been careful up to FEL‐2, this allows a straight‐forward and effective upgrade for most of the 

FEL‐2 work products into FEED documentation in conjunction with P&ID AFE levels  and purchase requisitions/specs requiring (hopefully) minimal rework or supplementation.  The detailed design engineers 

will be called in en‐mass to finish the FEED process and start the AFC implementation.

Page 17: Cost Effective Debottleneck Expansions

EXAMPLES

Three examples of cost‐effective upgrading are presented to illustrate the process include refinery crude unit, vacuum unit and delayed coker unit..  Screening alternatives using the FEED process to keep cost estimates up to date with engineering as it is developed.  Then measures to keep the project on schedule and under budget are presented

Page 18: Cost Effective Debottleneck Expansions

Cost Effective Debottlenecking Projects

Historic Development Refinery Industry Volatile Crude oil Pricing Money Now Made at Refinery Screening Options

-Incremental Expansions Are Profitable Difficulty in Doing Retrofits Over Grass Roots Restraints of Major Equipment Control Scope Developing the Base Case for Reference Prudent Selecting of Expansion Cases Overall refinery Down Stream Units Control Upstream Using Petroplan Block Flow Diagram Modeling Starting the Evaluation

-Avoiding Tunnel Vision -Three Levels of Cost Estimating

FEL-0 Conceptual (Cost curves) FEL-1 (Factored Equipment Prices) FEL-2 Take-offs Using Icarus/IPE

Page 19: Cost Effective Debottleneck Expansions

Cost Effective debottlenecking ProjectsCost Estimating Techniques

FEL-0 Conceptual -Use Cost Curves for New Units -Use Percentage of New Unit -Adjust for Timing, Location and Quality of Construction -ISBL Cost only, Need to Add OSBL Costs (50% ISBL)

FEL-1 Factor Equipment Costs -Need Quotes on all Equipment -Use conventional Factors for Equipment Types -Add up All Equipment (Factor x Equip Price)

-Costs Represents the total ISBL Costs -Add OSBL Costs as Percentage

FEL-2 Take-Offs Using Icarus or Other Cost Models (Aspen) -Need equipment sizes, weights ,piping to/from, electric power, metallurgy, Insulation

Requirements, Support Requirements, Pipe distance to tie-in ,n Approximate number of Fittings, Instrumentation & Controls

-Costs Calculated For Each Equipment Item -Total is ISBL Costs ·-OSBL Costs based on Number of Utility Items

Page 20: Cost Effective Debottleneck Expansions

Cost Effective Debottlenecking Projects

Equipment Notes for Evaluation

· BFD's /PFD’s / HMB’s

· Process Simulations for Heat and Material balances / New Overall Plant Performance if needed· Equipment Evaluations

-Heat Exchanger Networks-Use Hextran or AES

-Heat Exchangers-Use HTRI /HTFS Programs

-Vessels-Adhere to ASME VIII sections 1 and 2 -Distillation Columns-Rate each section top and bottom

-Fired Heaters —Use PFR's Furnace- 5

-Air Coolers-Use PFR's AC-2 -Pumps-Head curves versus pump performance curves

-Reactors-check inlet distributor, catalyst loading, outlet collector and quench trays

-Centrifugal Compressor-head curve versus performance curve and driver power requirements

-Reciprocating Compressors —Check Unloading Capabilities

Page 21: Cost Effective Debottleneck Expansions

Cost effective Debottlenecking ProjectsCrude Unit Debottlenecking Example (see Figure 1)

Crude Preheat to DesalterDesalterCrude Preheat Upstream of Primary Column Primary Column Overhead System Debottlenecking Crude Preheat Upstream Crude Heater Retrofitting Convection Coil and Adding SCR-NOx to Heater Change to Packing Above the Flash Zone Replace Pump Impellers and Pump Motors as Required Add Additional Product Cooling

Vacuum Unit Debottlenecking Example (see Figure 2) Modify Flash Zone Inlet to use two Inlet Horns Add Slop Wax Recycle Add Boot Quench Retrofit heater for Convection Coil and SCR-NOXIncrease PA rates and Heat Exchange Add Booster Ejector Increase Size of Last Pass Coils and Modify Transfer Line

Delayed Coker Debottlenecking Example (see Figure 3) Increase PA rate and Heat Recovery from Fractionator Decrease Decoking Cycle Time with Delta Valves Retrofit Heaters with Convection Coil and SCR-DENOX

Page 22: Cost Effective Debottleneck Expansions

·Basecase 140 KBPD

Page 23: Cost Effective Debottleneck Expansions

·Basecase 140 KBPD + 20 KBPD LTO

Page 24: Cost Effective Debottleneck Expansions

Basecase 140 KBPD + 40 KBPD LTO   ‐ CDU WORK SCOPE

Page 25: Cost Effective Debottleneck Expansions

Basecase 140 KBPD + 40 KBPD LTO   ‐ VDU WORK SCOPE