cosmic-rays and particle physics toru shibata aoyama-gakuin university 17/aug/2010 (based on...

46
Cosmic-rays and Particle physics Toru Shibata Aoyama-Gakuin University 17/Aug/2010 (based on Brazil-Japan Emulsion Collaboration)

Upload: meredith-johnston

Post on 27-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Cosmic-rays and Particle physics

Toru Shibata

Aoyama-Gakuin University 17/Aug/2010

(based on Brazil-Japan Emulsion Collaboration)

April 12, 1912

radiation from space !!!

l a ~ cm*

l g ~ 10 m*

l b ~ m*

1933: (Alvarez) east-west asymmetry effect

positive charged particle !

cosmic rays

magnetic field

W E

: our data

histogram: simulationAstrop. Phys. 6 (1997) 155

W E

q

SANRIKU

(b, l) = (39.2 。 N, 141.8 。 E)

open symbols: opening-angle methodfille

d symbols:

E-W effect method

Astrop. Phys. 6 (1997) 155

age of new particles: 1930 ~ 1950

1932: positron (Anderson)

1937: m-meson (Anderson & Neddermyer)

Dirac Theory

1947: p-meson (Lattes, Ochiallini, & Powell) Yukawa Theory

1947: V-particle (Rochester & Butler)

strangeness

(birth of elementary particle physics)

Sakata, Gell-Mann quark model

1948: p-meson with machine (Gardner & Lattes)

1935:Yukawa hypothesis

1-ry CRs astrophysics

particle phys.2-ry CRs

cosmic-ray physics after 1950

big machine

1-ry CRs

2-ry CRs

particle astronomy

definition of “cosmic rays”

in narrow sense●   nuclei (p, He, ….., Fe, …) :

ultraviolet-visible-infrared-radio :

●  g -rays : ● X-rays :

in wider sense

related field

X-ray astronomy

g-ray astronomy

radio astronomyastronomy infrared astronomy

●   antiparticles (p, He, …) :●   electrons & positrons :●   neutrinos :

in wide sense(neutrino astronomy)

I. Cosmic-rays and Particle physics

new particle search “big” machine

go to higher energy ( >> machine energy ~ GeV)

> TeV

multiple meson production

after 1950

key to solve difficulty in Field Theory ?

Wataghin: cutoff momentum (19??) => fireball production

Heisenberg: universal length (1939)

Fermi, Landau: thermo-statistical model (1950, 1953)

Miesowicze, Cocconi, Niu, Hasegawa: two fireball (1958), H-q.(1961)

. . . . . . . .

ICRCInternational Cosmic Ray Conference

1947: 1st ICRC @ Cracow, Poland

2013: 33 th ICRC @ Rio de J., Brazil

2014: World cup @ Rio de Janeiro, Brazil !!!

2016: Olympiad @ Rio de Janeiro, Brazil !!!

sessions in ICRC

HE: High Energy InteractionsEA: Air shower phenomena MN: Muon, NutrinoOG: Origin of CRsSH: Solar HeliosphereT: Techniques

1955: EC project starts in INS (Inst. of Nuclear Study, University of Tokyo) Balloon exposure with baby EC (Kobe-group) (Fujimoto comes back from Bristol)

1962: Brazil-Japan collaboration at Mt. Chacaltaya First exposure of simple-type EC

short history of emulsion chamber in CR research

1952: Emulsion stack => new particle hunting (Bristol)

=> but poor cost-effectiveness    Brass plate emulsion chamber (EC) => A-dependence (Rochester)

1956: Balloon flight => pt-invariance (Nishimura)

1958: EC exposure at Mt. Norikura => g, hadron spectra

1959: Letter of Yukawa to Lattes

E0=1~10TeV

10~100TeV=> g, hadron bundle

> 1000TeV~

basic structure of EC

e -, g hadron (p, n, p )

EM-cascade shower

Pb-jet

p 0 2g

EM cascade shower

hadron + Pb p0’s

p +’s p -’s+ +

e -, g + Pb => bremsstrahlung, pair-creation => EM cascade shower

+_

shower curve(1987, NIM-A257)

1-ry layer :

target layer :

spacer :

calorimeter :(EC)

for Balloon experiment

4p0 2g cascade

3

2

1

Physics in emulsion chamber

●   accelerator :

●   balloon :

●   high mountain :

neutrino oscillation (n m nt ; OPERA)

composition of CRs => origin, accle., prop. ;

forward hadron physics

=> nothing new in small q2 ?=> very difficult to see with machine (important for the EAS study)

LHC

anomalies in [e , p] => signal of DM, PBH ? ;+_

exotics => q-nugget, mono-pole . . . ?

ECs used in Brazil-Japan collaboration

2-types of EC

local interaction (C-jet)

atmospheric int. (A-jet)

p0’s

p +’sp -’s

p 0 2g

H = 1 ~ 2m

H = 100 ~ 1000m

EC

target

“clean” “dirty”

r ~ 1mm r ~ 10cm

nu

mb

er o

f p

airs

per

30

MeV

/c2

Physics in Brazil-Japan collaboration

personal speculatio

n

C-jet :

similarity in multiple meson productionH-quantum Feynman-scaling

deviation from pt-invariance

F(E0 ; E g , pt) = f(x)dx g(pt)2p pt dpt

d3pg

Egwith x = Eg / E0

SH-quantum (break in Feynman-scaling)

ten years earlier than CERN-SPS

production cross-sections of g ’s in p-p collision in very forward region

E0

(E g , pt) i (i = 1, . . ,  n) (p 0

2 g )

pt = pg sinq

A-jet :extremely massive fire-ball with high temperature

UH-quantum

1 ~ 2GeV/c2

10 ~ 20GeV/c2

100 ~ 200GeV/c2

~ 0.3 GeV/c ~ 0.5 GeV/c ~ 1.0 GeV/c

discovery of “ANDROMEDA”

air shower core just before cascade development

Exotics: CENTAURO, Geminion, CHIRON, . . .

< pt >:

H-quantum SH-quantum UH-quantumMass:

“new state of matter” (H-q, SH-q, UH-q)

(temperature)

before collision

after collision

Xin CMS

NN

fireball physics in BJ-collaboration

critical parameters:

fireball mass

fireball temperature

(both are quantized)

M

T

“new state of matter”

phenomenological stage

substantialistic stage

essentialistic stage

Taketani’s three-stage theory in cognition of nature

?

Thermodynamics Statistical mechanics

Quantum mechanics (substantialistic stage ?)

(essentialistic stage ?)

1977: R. D. Field and R. P. Feynman, Phys. Rev. D15, 2590

1978: R. P. Feynman, R. D. Field, and G. C. Fox, Phys. Rev. D18, 3320

(1969: “Parton” model by Feynman for SLAC e-p deep inelastic data)

parton

protonelectrons = 1

2 !

(a) lepton-hadron

(b) lepton-lepton

(c) hadron-hadron

mechanism of multiple meson production

(based on “parton” model)

break in pt-invariance in fireball picture

d3sE d3p

pt (GeV/c)

H-q

SH-q

UH-q

e-6pt

: pt-invariance

break in pt-invariance in “parton” picture

d3sE d3p

pt (GeV/c)

e-6pt

signal of point-point int. Rutherford scattering

questions in hadron-hadron collision:

(Mfller scattering)

q q q q

q q q q

g g

(e) (e) (e) (e)

(e) (e) (e) (e)

( g ) ( g )

(Rutherford scattering !!)

ISR data ???

Why not pT-4, but pT

-8 ?

“-8” => many models modifying point-point interaction approach

not “essential”, but “acceidental” due to QCD effect

(Feynman et al. 1978, Phys. Rev.)

not yet asymptotic free in the data available

higher order corrections for point-point int.

q

q

q

g -

g

: fractional g-ray energy

: Feynman variable

E0

(E g , pt) i (i = 1, . . ,  n) (p 0

2 g )

pt = pg sinq

E0 100 TeV (B-J)

E0 1TeV (ISR)

CMSforwardbackward

central region(covered by machine)

(covered by EC)

1978: Feynman et al., Phys. Rev. D18, 3320

our targetcentral region

1980, Phys. Rev. D22, 100

large pt phenomena:

We, CR physicists, have already observed point-point interactionsin hadron-hadron collisions in the form of large pt-phenomena!!

1962: M. Oda and Y. Tanaka, J. Phys. Soc. Jpn. 17, Suppl. A-III, 282

1963: S. Miyake, K. Hinotani, and T. Kaneko, J. Phys. Soc. Jpn. 18, 592

1967: Brazil-Japan Collaboration, Canadian J. Phys. 46, 660

multi-cores in air shower observation

first two-storey-type emulsion chamber

(far from “normal” pt with ~ 300 MeV/c => heavy 1-ry)

(interpreted as H-, SH-quanta productions)

“parton” = quarks, gluons

1990: Nobel prize for Friedman, Kendall, Tayler (MIT-SLAC)

We missed a signal of “parton” in CR data much earlier than MIT-SLAC !!!

Exotics :

I could not follow these “ZOO-series” ,

CENTAURO, Geminion, CHIRON, . . .

while I have learned many things fromProfs. Lattes, Fujimoto, and Hasegawa

I moved to 1-ry CR study with balloon

(Letter of Prof. Y. Fujimoto to Colleague; 28/Oct/1998)

Thank you

Illustration of CENTAURO I

production cross-sections of g ’s in p-p collision in very forward region

ten years earlier than CERN-SPS

key data for H.E. EAS study

g-ray astronomy

proton + proton g + anything

pbefore collision :

after collision : X

E0p

E0’Eg

s (E0 , E g ) dEg

due to detection bias Astrop. Phys. 23(2005)510

(compiled by Stecker)