corroborative and weight-of-evidence development and analyses 11-08ccos envair charles blanchard...

48
Corroborative and Weight-of- Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May 29, 2012

Upload: ilene-morris

Post on 17-Dec-2015

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

Corroborative and Weight-of-Evidence

Development and Analyses11-08CCOS

EnvairCharles Blanchard

Shelley Tanenbaum

Alpine GeophysicsJames Wilkinson

May 29, 2012

Page 2: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

2

Overview of Presentation

• Project objectives

• Weight-of-evidence framework

• Trends in emissions, O3 precursors, and O3

• Generalized additive model (GAM)

• Using the GAM to project future O3 response

• (Uncertainty analyses and design value variability)

• (Model demonstration after presentation)

Page 3: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

3

Objectives

• Identify innovative new methods to reduce uncertainty in O3 attainment demonstrations

• Develop and demonstrate use of new methods for weight-of-evidence evaluation:

– Enhance confidence in future year projections

– Provide additional evidence for effectiveness of VOC and NOx emission reductions

– Further assess local and regional influences

• Provide data, software, and documentation suitable for ongoing Study Agency use

Page 4: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

4

Weight-of-Evidence Framework

• Corroborate VOC and NOx emission reductions by comparison with trends in ambient NMOC & NOx concentrations

• Quantify O3 reductions

• Link O3 reductions to observed ambient VOC (NMOC) and NOx concentrations

• Project O3 response(s) to future emission reductions and precursor concentrations

• Reconcile weight-of-evidence analyses with modeling predictions

Page 5: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

5

Our Study Domain -Central California ShowingO3 Monitoring Sites in 15 Subregions

Legend

C BA

C SJ

EBA

N BA

N C C

N SF

N SJ

SAC

SBA

SC C

SEQ

SSF

SSJ

SVN

W BA

Page 6: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

6

0

50

100

150

200

250

300

350

400

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012Year

NMOC Mean Daily Max

NMOC Mean 7-10 am

NMOC Mean Daily

NMOC Mean Daily Max = 27010.592 - 13.352 * Year; R̂ 2 = .773NMOC Mean 7-10 am = 14538.417 - 7.197 * Year; R̂ 2 = .699NMOC Mean Daily = 12532.614 - 6.207 * Year; R̂ 2 = .676

NM

OC

(pp

bC)

Ambient CO, NO, NO2, NMOC Trends Are Downward and Significant

0

200

400

600

800

1000

CO

-AM

(pp

bv)

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012Year

CO-AM (ppbv) = 41980.112 - 20.76 * Year; R̂ 2 = .957

0

20

40

60

80

100

NO

(pp

bv)

1988 1993 1998 2003 2008Year

Y = 4257.307 - 2.103 * X; R̂ 2 = .917

0

5

10

15

20

25

30

35

40

45

NO

2-A

M (

ppbv

)

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012YEAR

NO2-AM (ppbv) = 1057.888 - .521 * YEAR; R̂ 2 = .855

Central San Joaquin Valley (CSJ)

Mean of 7 – 10 a.m. CO

Fresno 1st

Mean of 7 – 10 a.m. NO2

Mean of daily max NO

All sites All sites

All sites

Page 7: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

7

Ambient CO Trends Are Consistent With Emission Trends in Most Subregions

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CBA SBA NBA EBA WBA NSJ CSJ SSJ NCC SCC NSF SSF SAC SVN

Bay area San Joaquin NorthCentralCoast

SouthCentralCoast

MountainCounties

Sacramento

Rat

e o

f C

han

ge

(per

cen

t/ye

ar)

CO Emissions 1995-2004 Ambient CO 1995-2004 Ambient CO 1995 - 2010

Page 8: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

8

Ambient NO2 Trends Exceed NOx Emission Trends in Some Subregions

-7

-6

-5

-4

-3

-2

-1

0

CBA SBA NBA EBA WBA NSJ CSJ SSJ NCC SCC NSF SSF SAC SVN

Bay area San Joaquin NorthCentralCoast

SouthCentralCoast

MountainCounties

Sacramento

Rat

e o

f C

han

ge

(per

cen

t/ye

ar)

NOx Emissions 1995 - 2004 Ambient NO2 1995 - 2004 Ambient NO2 1995 - 2010

Page 9: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

9

Ambient NMOC Trends Exceed VOC Emission Trends, But Limited Data

-35

-30

-25

-20

-15

-10

-5

0 CSJ SSJ SCC SAC

San Joaquin South Central Coast Sacramento

Rat

e o

f C

han

ge

(per

cen

t/ye

ar)

VOC Emissions 1995-2004 Ambient NMOC 1997-2010

Page 10: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

10

CSJ Peak 8-Hour O3 Metrics Comparison

0

20

40

60

80

100

120

140

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

Year

Mea

n P

eak

8-H

ou

r O

3 (

pp

bv)

0

5

10

15

20

25

30

35

40

Sit

e-d

ays

or

Exc

ess

> 7

5 p

pb

v

Subregion Max 4th Highest 8-Hour Mean Top 10% Daily Subregion Max 8-Hour

Mean Top 60 Daily Subregion Max 8-Hour Mean Daily Subregion Max 8-Hour

Mean Daily Subregion Mean 8-Hour Percent Site-days > 75 ppbv

Mean Subregion Excess > 75 ppbv

Page 11: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

11

Downward Trends in Peak 8-Hour O3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1CBA SBA NBA EBA WBA NSJ CSJ SSJ NCC SCC NSF SSF SEQ SAC SVN

Bay area San Joaquin NorthCentralCoast

SouthCentralCoast

Mountain Counties Sacramento

Rat

e o

f C

han

ge

(pp

bv/

year

)

4th highest Top 10 percent of days Top 60 days

Page 12: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

12

Conclusions from Trends Analyses

• Ambient precursor trends confirm emission reductions

• Peak 8-hour O3 is trending downward at rates of ~0.2 – 0.7 ppbv per year with exception of CBA (upward) and SCC (downward at 1.5 – 2 ppbv per year)

• The top 10% of days and the top 60 days per subregion per year provide good subsets for study – trends are relevant to 4th-highest and to subregion mean daily excess of 75 ppbv

• Season average subregion daily maximum peak 8-hour O3 is also useful metric

Page 13: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

13

Generalized Additive Model (GAM)

• GAM developed by U.S. EPA to determine meteorologically-adjusted O3 trends

• We adapted the GAM to link peak 8-hour O3 to ambient NO, NO2, and other precursors, while accounting for the influence of weather

• Tested many meteorological and air-quality variables as predictors – focus on final model

• We developed estimates of uncertainty and an approach for projecting future O3 response

Page 14: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

14

EPA published GAM in Atmospheric Environment, 2007

Area of application was eastern US

• EPA used GAM to determine meteorologically-adjusted O3 trends• GAM generates sensitivity of O3 to each predictor variable

Page 15: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

15

The Basic GAM

• Model says that predicted log O3 on day “i” of year “k” is an additive function of:– Overall mean of data from all days of all years, – Mean effects Y=year, W=day of week, J=julian day

– Contributions due to nonlinear functions, f, of meteorological and air quality predictor variables

• Log transform of O3 is useful but optional

• Flexible choice of functions “fi”

– GAM is set up to use natural splines

– Natural splines are (special) cubic polynomials

log(O3)ik = + Yk + Wd + f1(Ji) + f2(xik) + …

Page 16: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

16

Programming Aspects of GAM

• Original software written by EPA as R program (R is nonproprietary, available, runs under LINUX, Windows, MacOS )

• We modified program to generate output files– Graphs of annual average trends (various formats)

– Statistical summaries (text files)

– Daily data linking O3 to predictors (CSV files)

• Output files can be manipulated to select subsets of data and develop projections

Page 17: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

17

GAM Application to Central California

• Predict subregion max daily peak 8-hour O3

– Find daily peak 8-hour O3 for each site

– Take maximum site for each day

• Meteorological variables– Daily max T, 10 a.m. – 4 p.m. RH, 7 – 10 a.m. & 1 –

4 p.m. WS & WD, HYSPLIT 24-hour back trajectory distance & direction, solar radiation, 850 mb T, delta 850 mb T – surface min T, pressure gradients

– Tested precipitation, 925 mb T, lagged met data

• Air quality variables

– Subregion mean daily max NO, 7 – 10 a.m. NO2

– Tested CO, NMOC, visibility, PM TC

Page 18: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

18

Data Used for Application

• 1995 – 2010 O3 season (March – October): 3920 days (3424 – 3661 days data available)

• One surface meteorological site per subregion (Redding, Sacramento, etc.) – also ran HYSPLIT for each surface met site

• Nearest upper-air site (Medford, Oakland, San Diego)

• Means of CIMIS data in each subregion

• Means of NO, NO2 data in each subregion – (CO and NMOC data tested, not in final)

• IMPROVE data in each subregion (tested)

Page 19: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

19

CIMIS Sites

Page 20: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

20

NMOC Data Limitations

• Inconsistencies between measurement methods, changes in methods, incomplete canister sampling – longest, consistent record is for continuous NMOC coded as Method 164 (TEI 55 instrument)

• 14 NMOC sites in 8 subregions

• 5 Bay area sites with 5 – 6 years data plus 9 other sites with 11 – 13 years

• Variability of NMOC data greater than variability of CO, NO, and NO2 measurements

Page 21: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

21

GAM Results

• Fit

• Sensitivity coefficients

• Factors contributing to high O3

• Projections

• Uncertainty

Page 22: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

22

0

20

40

60

80

100

120

140

160

Mea

sure

d O

3 (p

pbv)

0 20 40 60 80 100 120 140 160Modeled O3 (ppbv)

SCC

NCC

Measured O3 (ppbv) = -.668 + 1.01 * Modeled O3 (ppbv); R^2 = .703 (SCC)Measured O3 (ppbv) = -.223 + 1.004 * Modeled O3 (ppbv); R^2 = .618 (NCC)

0

20

40

60

80

100

120

140

160

Mea

sure

d O

3 (p

pbv)

0 20 40 60 80 100 120 140 160Modeled O3 (ppbv)

WBA

SBA

NBA

EBA

CBA

Measured O3 (ppbv) = .279 + .991 * Modeled O3 (ppbv); R^2 = .543 (WBA)Measured O3 (ppbv) = -.082 + 1.002 * Modeled O3 (ppbv); R^2 = .707 (SBA)Measured O3 (ppbv) = -.189 + 1.004 * Modeled O3 (ppbv); R^2 = .722 (NBA)Measured O3 (ppbv) = -.495 + 1.012 * Modeled O3 (ppbv); R^2 = .69 (EBA)Measured O3 (ppbv) = .152 + .996 * Modeled O3 (ppbv); R^2 = .628 (CBA)

Coastal

Bay Area

0

20

40

60

80

100

120

140

160

Mea

sure

d O

3 (p

pbv)

0 20 40 60 80 100 120 140 160Modeled O3 (ppbv)

SSJ

SSF

SEQ

NSJ

CSJ

Measured O3 (ppbv) = -.347 + 1.005 * Modeled O3 (ppbv); R^2 = .846 (SSJ)Measured O3 (ppbv) = -.352 + 1.005 * Modeled O3 (ppbv); R^2 = .702 (SSF)Measured O3 (ppbv) = -.035 + 1.001 * Modeled O3 (ppbv); R^2 = .817 (SEQ)Measured O3 (ppbv) = -.194 + 1.003 * Modeled O3 (ppbv); R^2 = .821 (NSJ)Measured O3 (ppbv) = .006 + 1 * Modeled O3 (ppbv); R^2 = .85 (CSJ)

0

20

40

60

80

100

120

140

160

Mea

sure

d O

3 (p

pbv)

0 20 40 60 80 100 120 140 160Modeled O3 (ppbv)

SVN

SAC

NSF

Measured O3 (ppbv) = -.271 + 1.004 * Modeled O3 (ppbv); R^2 = .721 (SVN)Measured O3 (ppbv) = -.502 + 1.008 * Modeled O3 (ppbv); R^2 = .791 (SAC)Measured O3 (ppbv) = -.418 + 1.006 * Modeled O3 (ppbv); R^2 = .752 (NSF)

SJV and Sequoia

Sacramento Valley & Sierra

Page 23: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

23

Which Variables Are Important?Variable CBA CSJ EBA NBA NCC NSF NSJ SAC SBA SCC SEQ SSF SSJ SVN WBA

T maxa 116 115 62 45 49 21 46 57 100 38 86 31 114 82 78

RHb 105 27 92 75 16 19 14 28 84 6 30 7 53 21 154

WS amc 6 8 1 6 0 5 5 7 6 1 1 4 5 5 5

WS pmd 21 33 20 16 11 3 26 26 14 13 14 4 2 0 28

WD amc 4 8 0 2 5 1 5 1 15 0 1 2 6 1 2

WD pmd 5 6 16 8 1 4 5 5 1 4 3 5 23 13 6

delta Te 7 31 54 37 24 57 28 41 5 34 36 23 9 27 12T 850 mb 10 6 11 19 25 7 7 12 11 14 12 24 4 2 16

Tran Disf 7 38 21 21 39 3 29 9 5 12 5 8 49 5 23

Tran Dirf 8 3 6 4 7 4 7 1 2 35 3 11 10 13 11

DoWg 42 17 44 25 3 4 28 12 39 10 8 4 10 4 17Year 9 41 21 20 20 18 58 11 23 24 21 13 14 22 25Julian 70 53 48 8 11 36 51 27 67 17 17 72 16 34 17Solar rad 25 60 12 31 84 27 75 50 25 106 10 14 96 19 6NO 92 51 51 114 15 67 69 96 67 63 15 21 69 51 64NO2 144 115 52 192 56 69 176 128 122 177 24 64 204 95 44

SF_Mfh 1 6 6 22 1 5 2 3 5 10 2 4 2 3 7

SF_Rnh 2 9 20 17 33 12 4 10 25 1 2 15 25 14 6

SF_Fah 5 7 41 21 4 6 19 8 6 7 8 7 12 9 5

SF_LVh 2 20 11 19 8 16 15 16 2 12 40 11 21 12 6

(Higher values of F-to-remove statistics indicate greater importance)

Page 24: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

24

Sensitivity to Daily Max Temperature

-30

-10

10

30

50

70

90

Per

cent

_O3_

Cha

nge_

Dai

ly_M

ax_T

275 280 285 290 295 300 305 310 315 320Daily Max Temperature (Kelvins)

SVN

SSF

SAC

NSF

-30

-10

10

30

50

70

90

Per

cent

_O3_

Cha

nge_

Dai

ly_M

ax_T

280 285 290 295 300 305 310 315 320Daily Max Temperature (Kelvins)

WBA

SBA

NBA

EBA

CBA

-30

-10

10

30

50

70

90

Per

cent

_O3_

Cha

nge_

Dai

ly_M

ax_T

280 285 290 295 300 305 310 315 320Daily Max Temperature (Kelvins)

SCC

NCC

-30

-10

10

30

50

70

90

Per

cent

_O3_

Cha

nge_

Dai

ly_M

ax_T

280 285 290 295 300 305 310 315 320Daily Max Temperature (Kelvins)

SSJ

SEQ

NSJ

CSJ

Sacramento Valley and Sierra

Bay Area

SJV and Sequoia Coastal

Page 25: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

25

Sensitivity to Mid-day RH

-40

-30

-20

-10

0

10

20

30

40

Per

cent

_O3_

Cha

nge_

Mid

_Day

_RH

0 20 40 60 80 100RH 10 am - 4 pm

SSJ

SEQ

NSJ

CSJ

-40

-30

-20

-10

0

10

20

30

40

Per

cent

_O3_

Cha

nge_

Mid

_Day

_RH

0 20 40 60 80 100RH 10 am - 4 pm

SCC

NCC

-40

-30

-20

-10

0

10

20

30

40

Per

cent

_O3_

Cha

nge_

Mid

_Day

_RH

0 20 40 60 80 100RH 10 am - 4 pm

SVN

SSF

SAC

NSF

-40

-30

-20

-10

0

10

20

30

40

Per

cent

_O3_

Cha

nge_

Mid

_Day

_RH

0 20 40 60 80 100RH 10 am - 4 pm

WBA

SBA

NBA

EBA

CBA

Sacramento Valley and Sierra

Bay Area

SJV and Sequoia Coastal

Bay Area

Page 26: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

26

Sensitivity to 850 mb Temperature

-40

-30

-20

-10

0

10

20

30

Per

cent

_O3_

Cha

nge_

850M

b_T

_Del

ta

-20 -15 -10 -5 0 5 10 15 20Anomaly 850 mb T

SSJ

SEQ

NSJ

CSJ

-40

-30

-20

-10

0

10

20

30

Per

cent

_O3_

Cha

nge_

850M

b_T

_Del

ta

-20 -15 -10 -5 0 5 10 15 20Anomaly 850 mb T

SVN

SSF

SAC

NSF

-40

-30

-20

-10

0

10

20

30

Per

cent

_O3_

Cha

nge_

850M

b_T

_Del

ta

-20 -15 -10 -5 0 5 10 15 20Anomaly 850 mb T

SCC

NCC

-40

-30

-20

-10

0

10

20

30

Per

cent

_O3_

Cha

nge_

850M

b_T

_Del

ta

-20 -15 -10 -5 0 5 10 15 20Anomaly 850 mb T

WBA

SBA

NBA

EBA

CBA

Sacramento Valley and Sierra

Bay Area

SJV and Sequoia Coastal

Page 27: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

27

Sensitivity to Daily Max NO

-40

-20

0

20

40

60

80

100

Per

cent

_O3_

Cha

nge_

NO

-1 -.5 0 .5 1 1.5 2 2.5 3Log NO

SVN

SSF

SAC

NSF

-40

-20

0

20

40

60

80

100

Per

cent

_O3_

Cha

nge_

NO

-1 -.5 0 .5 1 1.5 2 2.5 3Log NO

WBA

SBA

NBA

EBA

CBA

-40

-20

0

20

40

60

80

100

Per

cent

_O3_

Cha

nge_

NO

-1 -.5 0 .5 1 1.5 2 2.5 3Log NO

SSJ

SEQ

NSJ

CSJ

-40

-20

0

20

40

60

80

100

Per

cent

_O3_

Cha

nge_

NO

-1 -.5 0 .5 1 1.5 2 2.5 3Log NO

SCC

NCC

Sacramento Valley and Sierra

SJV and Sequoia Coastal

Bay Area

Page 28: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

28

Sensitivity to 7 – 10 a.m. NO2

-60

-40

-20

0

20

40

60

80

Per

cent

_O3_

Cha

nge_

NO

2

-.5 0 .5 1 1.5 2Log NO2

WBA

SBA

NBA

EBA

CBA

-60

-40

-20

0

20

40

60

80

Per

cent

_O3_

Cha

nge_

NO

2

-.5 0 .5 1 1.5 2Log NO2

SVN

SSF

SAC

NSF

-60

-40

-20

0

20

40

60

80

Per

cent

_O3_

Cha

nge_

NO

2

-.5 0 .5 1 1.5 2Log NO2

SSJ

SEQ

NSJ

CSJ

-60

-40

-20

0

20

40

60

80

Per

cent

_O3_

Cha

nge_

NO

2

-.5 0 .5 1 1.5 2Log NO2

SCC

NCC

Sacramento Valley and Sierra

SJV and Sequoia Coastal

Bay Area

Page 29: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

29

Sensitivity to Day of Week

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

Per

cent

_O3_

Cha

nge_

Day

_of_

Wee

k

1-Sun 2-Mon 3-Tue 4-Wed 5-Thu 6-Fri 7-SatDay of Week

WBA

SVN

SSJ

SSF

SEQ

SCC

SBA

SAC

NSJ

NSF

NCC

NBA

EBA

CSJ

CBA

Page 30: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

30

Declining NO2 Has Reduced Peak O3

-15

-10

-5

0

5

10

15

Per

cent

_O3_

Cha

nge_

NO

2

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012Year

WBA

SVN

SSJ

SSF

SEQ

SCC

SBA

SAC

NSJ

NSF

NCC

NBA

EBA

CSJ

CBA

Page 31: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

31

Declining NO Has Increased Peak O3

-15

-10

-5

0

5

10

15

Per

cent

_O3_

Cha

nge_

NO

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012Year

WBA

SVN

SSJ

SSF

SEQ

SCC

SBA

SAC

NSJ

NSF

NCC

NBA

EBA

CSJ

CBA

Page 32: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

32

Net Effect of Declining NOx Has Been to Decrease Mean Peak 8-Hour O3

-15

-10

-5

0

5

10

15

Per

cent

_O3_

Cha

nge_

NO

x

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012Year

WBA

SVN

SSJ

SSF

SEQ

SCC

SBA

SAC

NSJ

NSF

NCC

NBA

EBA

CSJ

CBA

Page 33: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

33

Net NOx Effect is Robust to Change in Model Formulation

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12P

erce

nt_O

3_C

hang

e_N

Ox_

Mod

els_

9_10

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12Percent_O3_Change_NOx_Model_6

WBA

SVN

SSJ

SSF

SEQ

SCC

SBA

SAC

NSJ

NSF

NCC

NBA

EBA

CSJ

CBA

Page 34: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

34

Higher Peak O3 is Related to Stagnation (Shorter Transport Distances)

a. WBA

-15

-10

-5

0

5

10

15

O3

Cha

nge

(per

cent

)

0 50 100 150 200 250 300 350Direction (degrees)

> 900 km

700-900 km

500-700 km

300-500 km

200-300 km

100-200 km

0-100 km

b. CBA

-15

-10

-5

0

5

10

15

O3

Cha

nge

(per

cent

)

0 50 100 150 200 250 300 350Direction (degrees)

c. EBA

-15

-10

-5

0

5

10

15

O3

Cha

nge

(per

cent

)

0 50 100 150 200 250 300 350Direction (degrees)

Page 35: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

35

Multiple Factors Enhance Peak O3 on High O3 Days (Top 60)

-5

0

5

10

15

20

25

30

35

CBA EBA NBA SBA WBA NCC SCC SAC SVN NSF NSJ SSF CSJ SEQ SSJ

Bay Bay Bay Bay Bay Coast Coast SV SVN Sierra SJV Sierra SJV Sierra SJV

O3

En

ha

nc

em

en

t (p

erc

en

t)

Surface Temperature &RH NO and NO2 Temperature Aloft Season & Solar

Airflow Local Wind Day of Week & Trend Pressure Gradients

Page 36: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

36

Precursor Reductions Lowered O3 in CSJ

-10

0

10

20

30

40

50

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

O3

En

ha

nc

em

en

t (p

erc

en

t)

Surface Temperature & RH NO & NO2 Temperature Aloft Season & Solar

Airflow Local Wind Pressure Gradients Day-of-Week & Trend

CSJ Top 60 Days per Year

Page 37: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

37

Precursor Reductions Lowered O3 in NSJ

-10

0

10

20

30

40

50

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

O3

En

ha

nc

em

en

t (p

erc

en

t)

Surface Temperature & RH NO & NO2 Temperature Aloft Season & Solar

Airflow Local Wind Pressure Gradients Day of Week & Trend

NSJ Top 60 Days per Year

Page 38: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

38

Projecting Future Progress

• Method I: Combine annual O3 sensitivities to NOx with projections of NOx emissions

• Method II: Combine daily O3 sensitivities to NOx with projected ambient NOx concentrations generated from synthetic data

• Implicit assumption in both methods: ratio of VOC/NOx remains constant or follows trends similar to historical trends

Page 39: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

39

Projection Method I

-25

-20

-15

-10

-5

0

5

10

15

Y V

aria

bles

1990 1995 2000 2005 2010 2015 2020 2025Year

Percent_O3_Change_NOx: NBA

Percent_O3_Change_NO2: NBA

Percent_O3_Change_NO: NBA

-25

-20

-15

-10

-5

0

5

10

15

Y V

aria

bles

250 300 350 400 450 500 550 600 650 700 750Basin NOx Emissions (tpd)

Percent_O3_Change_NOx: NBA

Percent_O3_Change_NO2: NBA

Percent_O3_Change_NO: NBA

Project historical trend lines to estimate effects of future basin NOx emissions

Page 40: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

40

Projection Method II

• Use 2008 – 2010 as base period, utilizing daily monitoring data with daily R sensitivities

• For each month and day of week, remove date with highest NO2 – for ties, remove date with highest NO

• For each month and day of week, retain 5 dates using random selection

• Recode data as 2011

• Repeat steps to generate 2012 – 2020

• Aggregate daily sensitivities to NO, NO2, NOx

Page 41: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

41

NO2 and NO Concentrations “Continue” Declining at Historical Rates

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

CBA CSJ EBA NBA NCC NSF NSJ SAC SBA SCC SEQ SSF SSJ SVN WBA

Subregion

Tre

nd

(p

pb

v p

er y

ear)

Historical NO2 1995 - 2010 Synthetic NO2 2011 - 2020

Page 42: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

42

Decreasing NOx Concentrations Will Continue to Decrease Peak O3

-25

-20

-15

-10

-5

0

5

10

15

Y V

aria

bles

1990 1995 2000 2005 2010 2015 2020 2025Year

Percent O3 Change NOx: CSJ

Percent O3 Change NO2: CSJ

Percent O3 Change NO: CSJ

-25

-20

-15

-10

-5

0

5

10

15

Y V

aria

bles

1990 1995 2000 2005 2010 2015 2020 2025Year

Percent O3 Change NOx: NBA

Percent O3 Change NO2: NBA

Percent O3 Change NO: NBA

-25

-20

-15

-10

-5

0

5

10

15

Y V

aria

bles

1990 1995 2000 2005 2010 2015 2020 2025Year

Percent O3 Change NOx: SAC

Percent O3 Change NO2: SAC

Percent O3 Change NO: SAC

-25

-20

-15

-10

-5

0

5

10

15

Y V

aria

bles

1990 1995 2000 2005 2010 2015 2020 2025Year

Percent O3 Change NOx: SSJ

Percent O3 Change NO2: SSJ

Percent O3 Change NO: SSJ

Page 43: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

43

Decreasing Peak O3 on High O3 Days

-20

-10

0

10

20

30

40

50

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019

O3

En

han

cem

ent

(per

cen

t)

Surface Temperature and RH NO & NO2 Temperature Aloft Season & Solar

Airflow Local Wind Pressure Gradients Day-of-Week and Trend

NSJ High O3 Days (Top 60)

Page 44: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

44

Compare and Contrast Modeling and Weight-of-Evidence Analyses

• Need to consider prediction uncertainties for modeling and weight-of-evidence analyses

• GAM uncertainties quantified in two ways

– Parameter standard errors from R

– Bootstrap uncertainties

• Design value variability assessment used to characterize one type of modeling uncertainty

Page 45: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

45

GAM Prediction Uncertainties

• Parameter standard errors are computed for each day by R – but are they realistic?

• Tested using bootstrap uncertainties– Leave out one year at a time (16 combinations)– Leave out one group of meteorological variables at

a time (10 combinations)– Add AQ variables one at a time (4 combinations)– Generate variances from each– Sum variances

Page 46: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

46

Bootstrap and R Standard Errors are Comparable and ~10% of Coefficients

0

2

4

6

8

10

12

14

Y V

aria

bles

-50 -30 -10 10 30 50 70 90Percent O3 Change NO2

R Std Error of Coef. NO2

Bootstrap Std Error of Coef. NO2 NBA

0

2

4

6

8

10

12

14

Y V

aria

bles

-50 -30 -10 10 30 50 70 90Percent O3 Change NO2

R Std Error of Coef. NO2

Bootstrap Std Error of Coef. NO2 SAC

0

2

4

6

8

10

12

14

Y V

aria

bles

-50 -30 -10 10 30 50 70 90Percent O3 Change NO2

R Std Error of Coef. NO2

Bootstrap Std Error of Coef. NO2 NSJ

0

2

4

6

8

10

12

14Y

Var

iabl

es

-50 -30 -10 10 30 50 70 90Percent O3 Change NO2

R Std Error of Coef. NO2

Bootstrap Std Error of Coef. NO2 CSJ

Page 47: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

47

Annual Effects of NO, NO2, and NOx on Peak O3 with Uncertainties, CSJ

-10

-8

-6

-4

-2

0

2

4

6

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Year

Eff

ect

on

Mea

n P

eak

O3

(Per

cen

t)

NO NO2 NOx

Page 48: Corroborative and Weight-of-Evidence Development and Analyses 11-08CCOS Envair Charles Blanchard Shelley Tanenbaum Alpine Geophysics James Wilkinson May

48

Design Value Variability Assessment – Baseline Design Values Vary 1 – 14 ppbv

40

50

60

70

80

90

100

110

Arvin

(ssj)

Beth

el Is. (nb

a)

Co

ol (n

sf)

Fo

lsom

(sac)

Fresn

o 1st (csj)

Liverm

ore (eb

a)

Merced

(nsj)

Pin

nacles (n

cc)

San

Martin

(sba)

San

Rafael (cb

a)

San

ta Ro

sa (wb

a)

Seq

uo

ia (seq)

Sim

i (scc)

Tu

scan (svn

)

Yo

semite (ssf)

Site

Alt. F

Alt. E

Alt. D

Alt. C

Alt. B

Alt. A (2008 DVr)

EPA DVb

DV

b (

pp

b)