correction des résultats expérimentaux lors du processus de criblage à haut débit

39
1 Correction des résultats expérimentaux lors du processus de criblage à haut débit Vladimir Makarenkov Université du Québec à Montréal (UQAM) Montréal, Canada

Upload: kiora

Post on 21-Jan-2016

24 views

Category:

Documents


0 download

DESCRIPTION

Correction des résultats expérimentaux lors du processus de criblage à haut débit. Vladimir Makarenkov Université du Québec à Montréal ( UQAM ) Montréal, Canada. Talk outline. What is HTS ? Hit selection Random and systematic error Statistical methods to correct HTS measurements: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Correction des résultats expérimentaux lors du processus de criblage à haut débit

1

Correction des résultats expérimentaux lors du processus de

criblage à haut débit

Vladimir MakarenkovUniversité du Québec à Montréal

(UQAM)Montréal, Canada

Page 2: Correction des résultats expérimentaux lors du processus de criblage à haut débit

2

Talk outline

What is HTS ? Hit selection Random and systematic error Statistical methods to correct HTS measurements:

Removal of the evaluated background Well correction

Comparison of methods for HTS data correction and hit selection

Conclusions

Page 3: Correction des résultats expérimentaux lors du processus de criblage à haut débit

3

What is HTS?

High-throughput screening (HTS) is a large-scale process to screen thousands of chemical compounds to identify potential drug candidates (i.e. hits).

Malo, N. et al., Nature Biotechnol. 24, no. 2, 167-175 (2006).

A biological assay(specific target &

reagents)

Hits

Leads

Drug

Confirmed hits

Primary screen

Secondary screen& counter screen

Structure-activity relationships (SAR)& medicinal chemistry

Clinical trials(phase 1, 2, 3)

A large library ofchemical compounds

Page 4: Correction des résultats expérimentaux lors du processus de criblage à haut débit

4

What is HTS? An HTS procedure consists of

running chemical compounds arranged in 2-dimensional plates through an automated screening system that makes experimental measurements.

Page 5: Correction des résultats expérimentaux lors du processus de criblage à haut débit

5

What is HTS?

Samples are located in wells The plates are processed in sequence Screened samples can be divided into active (i.e.

hits) and inactive ones Most of the samples are inactive The measured values for the active samples are

substantially different from the inactive ones

Page 6: Correction des résultats expérimentaux lors du processus de criblage à haut débit

6

HTS technology

Automated plate handling system and plates of SSI Robotics

Page 7: Correction des résultats expérimentaux lors du processus de criblage à haut débit

7

Classical hit selection

Compute the mean value and standard deviation of the observed plate (or of the whole assay)

Identify samples whose values differ from the mean by at least c (where c is a preliminary chosen constant)

For example, in case of an inhibition assay, by choosing c = 3, we select samples with values lower than - 3

Page 8: Correction des résultats expérimentaux lors du processus de criblage à haut débit

8

Random and systematic error

Random error : a variability that randomly deviates all measured values from their “true” levels. This is a result of random influences in each particular well on a particular plate (~ random noise).

Usually, it cannot be detected or compensated.

Systematic error : a systematic variability of the measured values along all plates of the assay.

It can be detected and its effect can be removed from the data.

Page 9: Correction des résultats expérimentaux lors du processus de criblage à haut débit

9

Sources of systematic error

Various sources of systematic errors can affect experimental HTS data, and thus introduce a bias into the hit selection process (Heuer et al. 2003), including:

Systematic errors caused by ageing, reagent evaporation or cell decay. They can be recognized as smooth trends in the plate means/medians.

Errors in liquid handling and malfunction of pipettes can also generate localized deviations from expected values.

Variation in incubation time, time drift in measuring different wells or different plates, and reader effects.

Page 10: Correction des résultats expérimentaux lors du processus de criblage à haut débit

10

Random and systematic error

Examples of systematic error (computed and plotted by HTS Corrector):

HTS assay, Chemistry Department, Princeton University : inhibition of the glycosyltransferase MurG function of E. coli., 164 plates, 22 rows and 16 columns.

20

22

24

26

28

30

32

34

36

38

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Row number

Mea

n n

um

ber

of

hit

s p

er w

ell

(a)

20

22

24

26

28

30

32

34

36

38

40

1 3 5 7 9 11 13 15 17 19 21

Column number

Mea

n n

um

ber

of

hit

s p

er w

ell

(b)

Hit distribution by rows and columns of Assay 1 computed for 164 plates. Hits were selected with the threshold -1.

Page 11: Correction des résultats expérimentaux lors du processus de criblage à haut débit

11

Hit distribution surface of Assay 1

(a) raw data (b) approximated data 1

4

7

10

13

16

19

22

1

6

11

16

10

15

20

25

30

35

40

45

50

55

Num

ber

of h

its

Column

Row

(a)

1

4

7

10

13

16

19

22

1

6

11

16

10

15

20

25

30

35

40

45

50

55

Num

ber

of h

its

Column

Row

(b)

Page 12: Correction des résultats expérimentaux lors du processus de criblage à haut débit

12

Raw and evaluated background: an example

Computed and plotted by HTS Corrector

Page 13: Correction des résultats expérimentaux lors du processus de criblage à haut débit

13

Systematic error detection tests comparison

Simulation 1. Plate Size: 96 wells – Cohen’s Kappa vs Error Size (from Dragiev et al., 2011)Systematic error size: 10% (at most 2 columns and 2 rows affected). First column: (a) - (c): a = 0.01; Second column: (d) - (f): a = 0.1. Systematic Error Detection Tests: () t-test and () K-S test.

Page 14: Correction des résultats expérimentaux lors du processus de criblage à haut débit

14

Systematic error detection tests comparison

Simulation 2, Plate Size: 96 wells, Cohen’s Kappa vs Hit Percentage (from Dragiev et al., 2011)Systematic error size: 10% (at most 2 columns and 2 rows affected). First column: cases (a) - (b): a = 0.01; Second column: cases (c) - (d): a = 0.1. Systematic Error Detection Tests: () t-test, () K-S test and () goodness-of-fit test.

2

Page 15: Correction des résultats expérimentaux lors du processus de criblage à haut débit

15

Hit distribution surface of Assay 1

(a) raw data (b) approximated data 1

4

7

10

13

16

19

22

1

6

11

16

10

15

20

25

30

35

40

45

50

55

Num

ber

of h

its

Column

Row

(a)

1

4

7

10

13

16

19

22

1

6

11

16

10

15

20

25

30

35

40

45

50

55

Num

ber

of h

its

Column

Row

(b)

Page 16: Correction des résultats expérimentaux lors du processus de criblage à haut débit

16

Data normalization (called z-score normalization)

Applying the following formula, we can normalize the elements of the input data:

where xi - input element, x'i - normalized output element, - mean value, - standard deviation, and n – total number of elements in the plate.

The output data conditions will be x’=0 and x’=1.

ii

xx'

Page 17: Correction des résultats expérimentaux lors du processus de criblage à haut débit

17

Evaluated background

An assay background can be defined as the mean of normalized plate measurements, i.e.

where :

x'i,j - normalized value in well i of plate j,

zi - background value in well i, N - total number of plates.

N

jjii x

Nz

1,'

1

Page 18: Correction des résultats expérimentaux lors du processus de criblage à haut débit

18

Removing the evaluated background: main steps

Normalization of the HTS data by plate

Elimination of the outliers

Computation of the evaluated background

Elimination of systematic errors by subtracting the

evaluated background from the normalized data

Selection of hits in the corrected data

Page 19: Correction des résultats expérimentaux lors du processus de criblage à haut débit

19

Removing the evaluated background: hit distribution surface before and after the correction

Page 20: Correction des résultats expérimentaux lors du processus de criblage à haut débit

20

Hit distribution after the correction HTS assay, Chemistry Department, Princeton University : inhibition of the

glycosyltransferase MurG function of E. coli., 164 plates, 22 rows and 16 columns.

Hit distribution by rows in Assay 1 (164 plates): (a) hits selected with the threshold -1 ; (b) hits selected with the threshold -2

20

22

24

26

28

30

32

34

36

38

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Row number

Mea

n n

um

ber

of

hit

s p

er w

ell

No correction

Evaluated background removed

Approximated background removed

(a)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Row number

Mea

n n

um

ber

of

hit

s p

er w

ell No correction

Evaluated background removed

Approximated background removed

(b)

Page 21: Correction des résultats expérimentaux lors du processus de criblage à haut débit

21

Well correction method: main ideas

Once the data are plate normalized, it is possible to analyze their values in each particular well along the entire assay

The distribution of inactive measurements along a fixed well should be zero-mean centered (if there is no systematic error) and the compounds are randomly distributed along this well

Values along each well may have ascending and descending trends that can be detected via a polynomial approximation

Page 22: Correction des résultats expérimentaux lors du processus de criblage à haut débit

22

Example of systematic error in the McMaster dataset

12

34

56

78

910

12

34

56

78

0

50

100

150

200

250

300

Nu

mb

er

of

hit

s

Column Row

Hit distribution surface for a McMaster dataset (1250 plates - a screen of compounds that inhibit the Escherichia coli dihydrofolate reductase). Values deviating from the plate means for more than 1 standard deviation (SD) were taken into account during the computation. Well, row and column positional effects are shown.

Page 23: Correction des résultats expérimentaux lors du processus de criblage à haut débit

23

-3

-2

-1

0

1

2

3

0 200 400 600 800 1000 1200

Plate number

Varia

tio

n o

f valu

es

Experimental trend

Evaluated trend

-3

-2

-1

0

1

2

3

0 200 400 600 800 1000 1200

Plate number

Varia

tio

n o

f valu

es

Experimental trend

Evaluated trend

(a)

(b)

Well correction method: an example McMaster University HTS laboratory screen of compounds to inhibit the

Escherichia coli dihydrofolate reductase. 1250 plates with 8 rows and 10 columns.

Page 24: Correction des résultats expérimentaux lors du processus de criblage à haut débit

24

Well correction method: main steps

Normalize the data within each plate (plate normalization)

Compute the trend along each well using polynomial approximation

Subtract the obtained trend from the plate normalized values

Normalize the data along each well (well normalization)

Reexamine the hit distribution surface

Page 25: Correction des résultats expérimentaux lors du processus de criblage à haut débit

25

Hit distribution for different thresholds for the raw and corrected McMaster data

12 3

45

67

89

101

23

45

67

80

20

40

60

80

100

120

Nu

mb

er

of

hit

s

Column Row

(c)

12 3

45

67

89

101

23

45

67

80

20

40

60

80

100

120

Nu

mb

er

of

hit

s

Column Row

(d)

12 3

45

67

89

101

23

45

67

80

10

20

30

40

50

Nu

mb

er

of

hit

s

Column Row

(e)

12 3

45

67

89

101

23

45

67

80

10

20

30

40

50

Nu

mb

er

of

hit

s

Column Row

(f)

12 3

45

67

89

101

23

45

67

80

50

100

150

200

250

300

Nu

mb

er

of

hit

s

Column Row

(a)

12 3

45

67

89

101

23

45

67

80

50

100

150

200

250

300

Nu

mb

er

of

hit

sColumn Row

(b)

Hit distributions for the raw (a, c, and e) and well-corrected (b, d, and f) McMaster datasets (a screen of compounds that inhibit the Escherichia coli dihydrofolate reductase; 1250 plates of size 8x10) obtained for the thresholds:

(a and b) : (c and d) : – 1.5(e and f) : - 2

Page 26: Correction des résultats expérimentaux lors du processus de criblage à haut débit

26

Simulations with random data: Constant noiseComparison of the hit selection methods

10

20

30

40

50

60

70

80

90

100

Noise coefficient

Hit

det

ecti

on r

ate

(in

%)

8

9

10

11

12

13

14

Noise coefficientF

alse

pos

itiv

e ra

te (

in %

)

Hit detection rate False positives

� - classical hit selection

O - background subtraction method ∆ - well correction method

Page 27: Correction des résultats expérimentaux lors du processus de criblage à haut débit

27

Simulations with random data: Variable noiseComparison of the hit selection methods

� - classical hit selection

Hit detection rate False positives

O - background subtraction method ∆ - well correction method

10

20

30

40

50

60

70

80

90

100

Systematic error

Tru

e p

osit

ive

rate

(in

%)

0 5 /10/10 2 /10 3 /10 4 /108

10

12

14

16

18

20

Systematic error

Fal

se p

osit

ive

rate

(in

%)

0 5 /10/10 2 /10 3 /10 4 /10

(a) (b)

Page 28: Correction des résultats expérimentaux lors du processus de criblage à haut débit

28

Comparison of methods for data correction in HTS (1)

Method 1. Classical hit selection using the value - c as a hit selection threshold, where the mean value and standard deviation are computed separately for each plate and c is a preliminary chosen constant (usually c equals 3).

Method 2. Classical hit selection using the value - c as a hit selection threshold, where the mean value and standard deviation are computed over all the assay values, and c is a preliminary chosen constant. This method can be chosen when we are certain that all plates of the given assay were processed under the “same testing conditions”.

Page 29: Correction des résultats expérimentaux lors du processus de criblage à haut débit

29

Comparison of methods for data correction in HTS (2)

Method 3. Median polish procedure (Tukey 1977) can be used to remove the impact of systematic error. Median polish works by alternately removing the row and column medians. In our study, Method 2 was applied to the values of the matrix of the obtained residuals in order to select hits.

Method 4 (designed at Merck Frost). B score normalization procedure (Brideau et al., 2003) is designed to remove row/column biases in HTS (Malo et al., 2006). The residual (rijp) of the measurement for row i and column j on the p-th plate is obtained by median polish. The B score is calculated as follows:

B score =

where MADp = median{|rijp – median(rijp)|}. To select hits, this computation was followed by Method 2, applied to the B score matrix.

)4826.1( p

ijp

MAD

r

Page 30: Correction des résultats expérimentaux lors du processus de criblage à haut débit

30

Comparison of methods for data correction in HTS (3)

Method 5. Well correction procedure followed by Method 2 applied to the well-corrected data. The well correction method consists of two main steps:

1. Least-squares approximation of the data carried out separately for each well of the assay.

2. Z score normalization of the data within each well across all plates of the assay

Page 31: Correction des résultats expérimentaux lors du processus de criblage à haut débit

31

Simulation design Random standard normal datasets N(0, 1) were generated. Different percentages of hits (1% to 5%) were added to them. Systematic error following a standard normal distribution

with parameters N(0, c), where c equals 0, 0.6, 1.2, 1.8, 2.4, or 3 was added to them. Two types of systematic error were :

A. Systematic errors stemming from row x column interactions: Different constant values were applied to each row and each column of the first plate. The same constants were added to the corresponding rows and columns of all other plates.

B. Systematic error stemming from changing row x column interactions: As in (A) but with the values of the row and column constants varying across plates.

Page 32: Correction des résultats expérimentaux lors du processus de criblage à haut débit

32

Systematic error stemming from constant row x column interactions

A. Systematic errors stemming from row x column interactions: Different constant values were applied to each row and each column of the first plate. The same constants were added to the corresponding rows and columns of all other plates.

Page 33: Correction des résultats expérimentaux lors du processus de criblage à haut débit

33

Results for systematic error stemming from row x column interactions which are constant across plates (SD = )

30

40

50

60

70

80

90

100

0.0SD 0.6SD 1.2SD 1.8SD 2.4SD 3.0SD

Systematic error

De

tec

tio

n r

ate

(%

)

(a)

50

60

70

80

90

100

0.5% 1.0% 1.5% 2.0% 2.5% 3.0%

Hit percentage

Det

ecti

on

rat

e (%

)

(b)

0

100

200

300

400

500

600

700

0.0SD 0.6SD 1.2SD 1.8SD 2.4SD 3.0SD

Systematic error

FP

+ F

N

(c)

0

250

500

750

1000

1250

1500

0.5% 1.0% 1.5% 2.0% 2.5% 3.0%

Hit percentage

FP

+ F

N

(d)

The results were obtained with the methods using plates’ parameters (i.e., Method 1, ◊), assay parameters (i.e., Method 2, □), median polish (x), B score (○), and well correction (). The abscissa axis indicates the noise factor (a and c - with fixed hit percentage of 1%) and the percentage of added hits (b and d - with fixed

error rate of 1.2SD).

Page 34: Correction des résultats expérimentaux lors du processus de criblage à haut débit

34

Systematic error stemming from varying row x column interactions

B. Systematic error stemming from changing row x column interactions: As in (A) but with the values of the row and column constants varying across plates.

Page 35: Correction des résultats expérimentaux lors du processus de criblage à haut débit

35

Results for systematic error stemming from row x column interactions which are varying across plates (SD = )

The results were obtained with the methods using plates’ parameters (i.e., Method 1, ◊), assay parameters (i.e., Method 2, □), median polish (x), B score (○), and well correction (). The abscissa axis indicates the noise factor (a and c - with fixed hit percentage of 1%) and the percentage of added hits (b and d - with fixed

error rate of 1.2SD).

30

40

50

60

70

80

90

100

0.0SD 0.6SD 1.2SD 1.8SD 2.4SD 3.0SD

Systematic error

De

tec

tio

n r

ate

(%

)

(a)

50

60

70

80

90

100

0.5% 1.0% 1.5% 2.0% 2.5% 3.0%

Hit percentage

De

tec

tio

n r

ate

(%

)

(b)

0

100

200

300

400

500

600

700

0.0SD 0.6SD 1.2SD 1.8SD 2.4SD 3.0SD

Systematic error

FP

+ F

N

(c)

0

250

500

750

1000

1250

1500

0.5% 1.0% 1.5% 2.0% 2.5% 3.0%

Hit percentage

FP

+ F

N

(d)

Page 36: Correction des résultats expérimentaux lors du processus de criblage à haut débit

36

HTS Corrector Software

Visualization of HTS assays

Data partitioning using k-means

Evaluation of the background surface

Correction of experimental datasets

Hit selection using different methods

Chi-square analysis of hit distribution

Main features

Contact: [email protected]

Download from: http://www.info2.uqam.ca/~makarenv/HTS/home.php

Page 37: Correction des résultats expérimentaux lors du processus de criblage à haut débit

37

Conclusions The proposed well correction method (Makarenkov et al, 2007)

rectifies the distribution of assay measurements by normalizing data within each considered well across all assay plates.

Simulations suggest that the well correction procedure is a robust method that should be used prior to the hit selection process.

When neither hits nor systematic errors were present in the data, the well correction method showed the performances similar to the traditional methods of hit selection.

Well correction generally outperformed the Median polish and B score methods as well as the classical hit selection procedure.

The simulation study confirmed that Method 2 based on the assay parameters was more accurate than Method 1 based on the plates’ parameters. Therefore, in case of identical testing conditions for all plates of the given assay, all assay measurements should be treated as a single batch.

Page 38: Correction des résultats expérimentaux lors du processus de criblage à haut débit

38

Future research

Application of clustering methods for hit selection in HTS

Incorporation into the method the information about chemical properties of the tested compounds

Possible combinations with the virtual HTS screening (vHTS) information and combinatorial chemistry models

Page 39: Correction des résultats expérimentaux lors du processus de criblage à haut débit

39

References Brideau C., Gunter B., Pikounis W., Pajni N. and Liaw A. (2003) Improved statistical

methods for hit selection in HTS. J. Biomol. Screen., 8, 634-647. Dragiev, P., Nadon, R. and Makarenkov, V. (2011). Systematic error detection in

experimental high-throughput screening, BMC Bioinformatics, 12:25. Heyse S. (2002) Comprehensive analysis of high-throughput screening data. In Proc.

of SPIE 2002, 4626, 535-547. Kevorkov D. and Makarenkov V. (2005) Statistical analysis of systematic errors in

HTS. J. Biomol. Screen., 10, 557-567. Makarenkov V., Kevorkov D., Zentilli P., Gagarin A., Malo N. and Nadon R. (2006)

HTS-Corrector: new application for statistical analysis and correction of experimental data, Bioinformatics, 22, 1408-1409.

Makarenkov V., Zentilli P., Kevorkov D., Gagarin A., Malo N. and Nadon R. (2007) An efficient method for the detection and elimination of systematic error in HTS, Bioinformatics, 23, 1648-1657.

Malo N., Hanley J.A., Cerquozzi S., Pelletier J. and Nadon R. (2006) Statistical practice in HTS data analysis. Nature Biotechnol., 24, 167-175.

Tukey J.W. (1977) Exploratory Data Analysis. Cambridge, MA: Addison-Wesley.