corporate finance

36
Corporate Finance Kap 10 Risk and return

Upload: duke

Post on 23-Feb-2016

35 views

Category:

Documents


0 download

DESCRIPTION

Corporate Finance. Kap 10 Risk and return. Usikkerhet. Vi har hittil budsjettert kontantstrømmer fram i tid som om de var kontraktsfestet og sikre. Vanligvis hersker det usikkerhet både om kostnader, inntekter og varighet på prosjektet. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Corporate Finance

Corporate Finance

Kap 10Risk and return

Page 2: Corporate Finance

Usikkerhet

• Vi har hittil budsjettert kontantstrømmer fram i tid som om de var kontraktsfestet og sikre.

• Vanligvis hersker det usikkerhet både om kostnader, inntekter og varighet på prosjektet.

• Denne usikkerheten (risiko) skal vi nå forsøke å ta hensyn til i våre analyser.

• Vi må da lære oss noen nye begreper.

Page 3: Corporate Finance

Beslutninger under usikkerhet• Beslutningsfatter (person eller gruppe) har ansvar for å ta endelig beslutning, dvs. valg av

alternativ, enten på vegne av seg selv eller andre.• Beslutningsalternativer. Det må foreligge minst to mulige gjennomførbare alternativer.

Beslutningsfatter må velge ut fra mengden av mulige alternativer.• Tilstander. En kombinasjon av ikke-kontrollerbare faktorer relevante for

beslutningssituasjonen. Beslutningsfatter kan altså ikke påvirke hvilken tilstand som vil inntreffe, men vet hvilke tilstander som kan inntreffe.

• Sannsynligheter. Objektive eller subjektive vurderinger av hvor sannsynlige de enkelte tilstandene er. Vurderingene kan endres ved ny informasjon.

• Konsekvenser. Gitt et bestemt beslutningsalternativ og en bestemt tilstand, antas konsekvensene entydig bestemt. Alle konsekvenser er uttrykt i samme måleenhet, og kan dermed lett sammenlignes.

• Preferanser. Det forutsettes at beslutningsfatter kan rangere de ulike konsekvensene, eventuelt angi at han er indifferent mellom par av konsekvenser.

• Kriterier. Et kriterium tilordner en numerisk verdi til et beslutningsalternativ, ut fra de mulige konsekvenser beslutningsalternativet kan medføre, og eventuelt ut fra sannsynligheter for disse konsekvensene.

Page 4: Corporate Finance

Konsekvenser

Beslutningsalternativa1

:

ai

:

am

Sannsynlighet P(s1) .. P(sj) .. P(sn)

Tilstand s1 .. sj .. sn

Tid

th

tl

t0

x11 .. x1j .. x1n

: .. : .. :

xi1 .. xij .. xin

: .. : .. :

xm1 .. xmj .. xmn

Konsekvensen for alternativ 1 ved tilstand j for periode 0.

Page 5: Corporate Finance

Usikkerhetsdimensjonen• Vi har tidligere forutsatt sikkerhet, dvs. bare én mulig tilstand.• Konsekvensene for et alternativ har vært kontantstrømmen på de ulike tidspunkt.• Denne vektoren av tall har vi gjort om til ett tall, ved bruk av nåverdi som beslutningskriterium.• Ved usikkerhet tilføres en ny dimensjon, de ulike mulige tilstandene.• For hvert alternativ får vi istedenfor en vektor av tall nå en hel matrise: hver mulig tilstand har

sin unike kontantstrøm.• Hvordan kan vi gjøre om en to-dimensjonal matrise av tall til kun ett tall? (Dvs. ett tall for hvert

alternativ.)• En metode er å redusere usikkerhetsdimensjonen til forventningsverdien – de ulike tilstandene

erstattes med forventet verdi.• Da kan vi bruke nåverdiberegninger for å gjøre om forventet kontantstrøm til ett tall. Så

rangerer vi alternativene basert på nåverdiene.• Men hvilken rente skal vi nå bruke i nåverdiberegningene?• Vi bruker risikofri rente hvis vi i tillegg beregner andre mål for risiko.• Vi bruker risikojustert rente hvis vi ikke tar ytterligere hensyn til risiko.• Hvordan beregner vi i så fall risikojustert rente?

Page 6: Corporate Finance

Tar eksplisitt hensyn til risiko

• På samme måte som vi kan bruke nyttefunksjoner til å beregne en tidspreferanserate, dvs. avveiing mellom konsum i ulike tidsperioder, kan vi bruke nyttefunksjoner til å beregne avveiing mellom ulike usikre konsekvenser.

• Vi kan for eksempel erstatte flere usikre utfall med en sikkerhetsekvivalent verdi.

• Alternativt kan vi beregne forventet verdi og i tillegg et mål på risiko, som standardavvik.

• Om vi tar eksplisitt hensyn til risiko, skal vi bruke risikofri rente i nåverdiberegningene.

Page 7: Corporate Finance

Forventning og varianst = 0

Tilstand s1 s2

Sannsynlighet 0,5 0,5

Kontantstrøm -100 -50

t = 1

Tilstand s1 s2

Sannsynlighet 0,5 0,5

Kontantstrøm -121 66

I dette eksemplet er det to mulig tilstander, i hver periode. Vi har følgende muligheter:

s1t=0 t=1

p1

p2

s1

s2

s2

p1

p2

s1

s2

p1

p2

s1

s2

p1

p2

t=0 t=1s1

s2

Uavhengighet over tid. Hvilken tilstand som vil inntreffe på et tidspunkt er uavhengig av hvilken tilstand som inntraff forrige periode.

Avhengighet over tid. Tilstanden som inntreffer neste periode avhenger av tilstanden denne periode.

Page 8: Corporate Finance

Uavhengighet over tidt=0 t=1

0,5

0,5

-50

1210,5

0,5

0,5

0,5

66

121

66

-100

s p X0 X1 NV NV2

1 0,25 -100 121 10 100

2 0,25 -100 66 -40 1600

3 0,25 -50 121 60 3600

4 0,25 -50 66 10 100

Forventning: -75 93,5 10 1350

Forventet nåverdi kan beregnes på to alternative måter. (har brukt 10% rente).Det spiller ingen rolle om det er avhengighet eller uavhengighet over tid.

Beregne forventet kontantstrøm.Så neddiskontere denne for å beregne forventet nåverdi.

Beregne nåverdien i hver tilstand.Så beregne forventningen til nåverdiene.

Page 9: Corporate Finance

Forventet nåverdiForventet nåverdi kan beregnes på to alternative måter.

,1 0

1m h

ti ij t j

j t

E NV P s X r

,0 1

1h m

ti ij t j

t j

E NV P s X r

0

1h

ti it

t

E NV E X r

Nåverdiene i hver tilstand beregnes (leddet i hakeparentes). Disse veies med sannsynlighetene i hver tilstand og summeres til forventet nåverdi.

Forventet kontantstrøm i hver periode beregnes.Denne forventede kontantstrømmen neddiskonteres til forventet nåverdi.

1

mi i

j jj

E NV P s NV

Page 10: Corporate Finance

Varians av nåverdien

2

,1 0

1m h

ti i ij t j

j t

VAR NV P s X r E NV

Variansen av nåverdien beregnes som følger:

En kan alternativt beregne variansen til nåverdien slik:

2

0 0

1 2 , 1h h h

t t ki i i it t k

t t k t

VAR NV VAR X r COV X X r

Hvis det er fullstendig uavhengighet over tid er kovariansen null, dvs. siste ledd faller bort i den alternative formuleringen.

, : Kovariansen mellom kontantstrømmene i periode t og k, for alternativ ii it kCOV X X

Generelt gjelder at standardavviket er lik kvadratroten av variansen.

Page 11: Corporate Finance

Varians til kontantstrømmen

2

,1

mi i it j j t t

j

VAR X p X E X

Variansen til kontantstrømmen i periode t er lik den kvadrerte differansen mellom kontantstrømmen i tilstand j og forventet kontantstrøm i perioden, multiplisert med sannsynligheten for tilstand j, dette produktet er så summert for alle tilstandene i perioden.

,1

mi it j t j

j

E X P s X

Forventet kontantstrøm i periode t er lik summen av produktene av sannsynlighetene og kontantstrømmene i hver tilstand i perioden.

2 2

,1

mi i it j j t t

j

VAR X p X E X

Variansen til kontantstrømmen kan også beregnes som den veide sum av kvadrerte kontantstrømmer minus kvadrert forventet kontantstrøm.

Page 12: Corporate Finance

Varians nåverdi ved uavhengighetHvis uavhengigheten over tid er total, kan en altså beregne variansen til nåverdien slik:

2

2

,1 0

1m h

ti i ij t j

j t

VAR NV P s X r E NV

Dvs. variansen til nåverdien beregnes som den veide sum av kvadrerte nåverdier, minus den kvadrerte forventede nåverdi.

2

0

1h

ti it

t

VAR NV VAR X r

Hvis uavhengigheten over tid er total, kan en alternativt beregne variansen til nåverdien slik:

Dvs. variansen av nåverdien er kun den neddiskonterte sum av variansen til kontantstrømmen, men hvor neddiskonteringen skjer «dobbelt».

22

1

mi i i

j jj

VAR NV P s NV E NV

Page 13: Corporate Finance

Forventning og varians til nåverdien ved avhengighet over tid

sj P(sj) X0,j X1,j NVj NVj2

1 0,5 -100 121 10 100

2 0,5 -50 66 10 100

Veid sum: 10 100

11 100 121 1,10 10NV

12 50 66 1,10 10NV

Beregner nåverdiene i hver tilstand:

1

mi i

j jj

E NV P s NV

0,5 10 0,5 10 10iE NV

Forventet nåverdi beregnes ved å veie nåverdiene i hver tilstand med sannsynlighetene, og så summere over alle tilstander.

Beregne variansen til nåverdien ved å veie kvadrerte nåverdier i hver tilstand med sannsynlighetene, og så summere over alle tilstander. Trekk så fra kvadrert forventet nåverdi.

22

1

mi i i

j jj

VAR NV P s NV E NV

2 2 20,5 10 0,5 10 10 0iVAR NV

Hvis tilstand 1 inntreffer, så er kontantstrømmen (-100, 121), ellers (-50,66).

2100 10 0

Page 14: Corporate Finance

Forventning og varians til nåverdien ved uavhengighet over tid

t = 0 t = 1 t = 0 t = 1

sj P(sj) X0,j X1,j X0,j2 X1,j

2

1 0,5 -100 121 10000 14641

2 0,5 -50 66 2500 4356

-75 93,5 6250 9498,5

Forventet kontantstrøm i periode t:

,1

mi it j t j

j

E X P s X

0 0,5 100 0,5 50 75E X

1 0,5 121 0,5 66 93,5E X

Forventet nåverdi er sum neddiskontert forventet kontantstrøm:

0

1h

ti it

t

E NV E X r

0 175 1,10 93,5 1,10 10E NV

2 2

,1

mi i it j j t t

j

VAR X p X E X

Variansen til kontantstrømmen er den veide sum av kvadrerte kontantstrømmer minus kvadrert forventet kontantstrøm: 2

0 6250 75 625VAR X

21 9498,5 93,5 756,25VAR X

2

0

1h

ti it

t

VAR NV VAR X r

Variansen til nåverdien hvis det er fullstendig uavhengighet over tid:

2 0 2 1625 1,10 756,25 1,10 1250VAR NV

Page 15: Corporate Finance

Forventning og varians til nåverdien ved uavhengighet over tid (alternativ)

sj p(sj) X0,j X1,j NVj NVj2

1 0,25 -100 121 10 100

2 0,25 -100 66 -40 1600

3 0,25 -50 121 60 3600

4 0,25 -50 66 10 100

Forventning: 10 1350

11 100 121 1,10 10NV

Beregner nåverdiene i hver tilstand:

12 100 66 1,10 40NV

13 50 121 1,10 60NV

14 50 60 1,10 10NV

Forventet nåverdi beregnes ved å veie nåverdiene i hver tilstand med sannsynlighetene, og så summere over alle tilstander.

1

mi i

j jj

E NV P s NV

0,25 10 0,25 40 0,25 60 0, 25 10 10iE NV

Beregne variansen til nåverdien ved å veie kvadrerte nåverdier i hver tilstand med sannsynlighetene, og så summere over alle tilstander. Trekk så fra kvadrert forventet nåverdi.

22

1

mi i i

j jj

VAR NV P s NV E NV

22 2 2 20, 25 10 0, 25 40 0,25 60 0,25 10 10 1250iVAR NV

21350 10 1250

Page 16: Corporate Finance

Avveiing mellom forventning og risikoForventet verdi

Risiko, målt vedvarians eller standardavvik

Alternativ A

Ved positiv nytte foretrekker vi mer framfor mindre, dvs. størst mulig forventet verdi.

Ved risikoaversjon foretrekker vi mindre risiko framfor mer, dvs. minst mulig risiko.

Foretrekker A.

Større forventet

verdi, mindre risiko.

Foretrekker ikke A

Uklart hva som

foretrekkes

Vi trenger en nyttefunksjon som foretar avveining mellom forventet verdi og risiko for entydig å kunne angi om alternativ A foretrekkes framfor andre alternativer.

Indifferenskurven viser kombinasjoner av forventning og

risiko som gir samme nytte. Ved risikoaversjon er kurven

konveks.

Page 17: Corporate Finance

Avveiing mellom forventning og risikoForventet verdi

Risiko, målt vedvarians eller standardavvik

Indifferenskurven viser kombinasjoner av forventning og

risiko som gir samme nytte. Ved risikoaversjon er kurven

konveks.

Preferanseretning.Høyere nyttenivå.

Ved risikonøytralitet er indifferenskurvene vannrette.

I så fall ignoreres risiko, en vurderer bare forventet verdi.

Page 18: Corporate Finance

Rangering basert på forventning og varians

Forventet verdi

Risiko, målt vedvarians eller standardavvik

Alternativ A

Bedre

Dårligere?

?

Hvis vi bruker forventning og varians som beslutningskriterium (velger det med høyest forventning hvis samme risiko, eller det med lavest risiko hvis samme forventning), må en av to betingelser være oppfylt for at det skal gi samme beslutning som maksimering av forventet nytte:

1. Om sannsynligheter: Alle prosjektenes nåverdier er normalfordelt.(Uansett preferanser, dog risikoaversjon.)

2. Om preferanser: Beslutningsfatter har en kvadratisk nyttefunksjon.Eks. U(x) = x – cx2, c > 0. (Uansett sannsynlighetsfordeling)

Page 19: Corporate Finance

NyttefunksjonerNytteverdi

Konsekvens

2U X a bX cX

Nytten av en konsekvens (et utfall) X beregnes vha. nyttefunksjonen U(X). En kvadratisk nyttefunksjon har formen:

En nyttefunksjon med avtagende marginalnytte impliserer

risikoaversjon

En lineær nyttefunksjon impliserer risikonøytralitet

En nyttefunksjon med stigende marginalnytte impliserer

risikopreferanser

Vi kan bruke nyttefunksjoner til å beregne sikkerhetsekvivalenter. Da kan vi gjøre om usikkerhetsdimensjonen til en sikker kontantstrøm, som vi neddiskonterer med risikofri rente. Dermed har vi gjort om en matrise til ett tall.

Page 20: Corporate Finance

Sikkerhetsekvivalenter og nåverdit = 0 t = 1 t = 0 t = 1

sj P(sj) X0,j X1,j U(X0,j) U(X1,j)1 0,5 -100 121 0 14,8662 0,5 -50 66 7,071 12,884

Forventet nytte 3,535 13,875

Bruk nyttefunksjonen: 100U X X

100 100 100 0U 121 121 100 14,87U

50 50 100 7,07U 66 66 100 12,88U

Forventet nytte E{U(xt)} i en periode er forventningen av nytten i hver tilstand i perioden:

,1

m

t j j tj

E U X p U X

0 0,5 0 0,5 7,071 3,536E U X

1 0,5 14,866 0,5 12,884 13,875E U X

Nytten av sikkerhetsekvivalenten er lik forventet nytte E{U(xt)}

Sikkerhetsekvivalenten :t t tX U X E U X

20 0 0 0 0: 3,535 100 3,535 100 3,535 87,5X U X X X X

21 1 1 1 1: 13,875 100 13,875 100 13,875 92,52X U X X X X

Nåverdi sikkerhetsekvivalent: Neddiskontere sikkerhetsekvivalentene med risikofri rente:

0

1h

ttX

t

NV X r

0 187,5 1,10 92,52 1,10 3,39XNV

Page 21: Corporate Finance

Sikkerhetsekvivalent nåverdi• En framgangsmåte som vil lede til nyttemaksimering er altså å beregne

sikkerhetsekvivalenten til et prosjekts kontantstrøm i hver periode, og så neddiskontere denne «sikre» kontantstrømmen med den risikofrie renten.

• En kan så rangere alternativene etter disse sikkerhetsekvivalente nåverdiene.

• Merk at skalaen på nyttenivået kan velges fritt, det betyr at en ikke automatisk kan anta at positive sikkerhetsekvivalente nåverdier indikerer lønnsomme prosjekter, eller at negative sikkerhetsekvivalente nåverdier indikerer ulønnsomme prosjekter.

• Isteden kan en beregne nyttenivået av «nullalternativet», og bruke dette som referanse.

• Alternativt kan en justere skalaen for nyttefunksjonen, slik at «nullalternativet» har nytten 0. Dermed vil en kunne bruke sikkerhetsekvivalente nåverdier på vanlig vis.

Page 22: Corporate Finance

Risikojustert renteDen risikojusterte renten må være slik at neddiskontering av de fremtidige kontantstrømmer gir samme forventede nåverdi som sikkerhetsekvivalent nåverdi, for at vi fortsatt skal få samme beslutninger som ved nyttemaksimering.

Sikkerhetsekvivalent kontantstrøm tX

X Forventet kontantstrøm t

risikofri rente (konstant over tid) fr

risikojustert rente (konstant over tid) sr

Da må følgende sammenheng gjelde:

ˆ0 0

ˆ1 1h ht t

t f t sX Xt t

NV X r NV X r

ˆ1 1 for alle t t

t f t sX r X r t

Page 23: Corporate Finance

Risikojustert rente

Hvis rs > rf vil at synke med t. Dvs. risikoen antas å øke med tiden.

Vi får da:

ˆ ˆ1 1t t

t t f t sa X r X r

ˆt t tX a X

1 1t t

t f sa r r

1

1

t

ft t

s

ra

r

11

tf

ts

ra

r

La forholdet mellom sikkerhetsekvivalent og forventet verdi i periode t være at.

Hvis den risikojusterte renten skal være konstant over tid, forutsettes det implisitt at risikoen utvikler seg etter et helt bestemt mønster over tid, et mønster som neppe er framtredende i praksis. En anbefalt framgangsmåte er derfor å la renten kun ta hånd om tidsaspektet. En justerer da for prisstigning ved å deflatere kontantstrømmen, og justering som følge av usikkerhet skjer ved enten å beregne sikkerhetsekvivalent kontantstrøm; eller beregne nåverdier av de forventede kontantstrømmene etter risikofri rente, og så foreta avveiinger av forventning mot risiko, målt for eksempel med varians.

Page 24: Corporate Finance

Nyttemodeller

• Vi forsøker å ta hensyn til aksjonærenes nytte.• Vi søker en positiv modell som beskriver

menneskers faktiske nyttevurderinger.• Basert på de faktiske nyttevurderingene forsøker

vi å bygge en normativ modell, som gir råd om hvordan beslutninger bør fattes.

• Beslutningene fattes av bedriftene, på aksjonærenes vegne, helst på samme måte som aksjonærene selv ville ha gjort det.

Page 25: Corporate Finance

Rasjonelle aktører

• Beslutningsfatter kan foreta valg ved å rangere alternativene, basert på et spesifisert kriterium.

• Rangeringene er transitive: Hvis A > B og B > C så er A > C.

• Alternativene blir kun vurdert ut fra de konsekvensene som inngår i beslutningskriteriet. Andre forhold er uvesentlige.

• Beslutningsfatter er i stand til for hvert usikkert alternativ å angi et sikkert beløp som gir samme nytte som det usikre alternativet.

Page 26: Corporate Finance

Konstruksjon av nyttefunksjoner• Vi velger skala for nyttenivå mellom 0 og 1. • Laveste nyttenivå 0 tilordnes dårligste konsekvens (For

eksempel -2000).• Høyeste nyttenivå 1 tilordnes beste konsekvens (For eksempel

5000).• Beslutningsfatter må så angi det maksimale beløpet han er

villig til å betale for å delta i et lotteri der han vinner 5000 med sannsynlighet p og taper -2000 med sannsynlighet (1-p).

• Dette beløpet tilsvarer lotteriets sikkerhetsekvivalent.• Ved å gjenta prosedyren for andre verdier av p, kan en utlede

en detaljert nyttefunksjon.

Page 27: Corporate Finance

Eksempel på nyttefunksjon 2000 0U 5000 1U

1

m

j jj

E U X p U X

5000 1 2000 1 1 0E U X p U p U p p p

For en gitt p må beslutningstaker angi sin sikkerhetsekvivalent til dette lotteriet. Hvis p = 0,8 må beslutningstaker angi det maksimale beløpet han er villig å betale for å kjøpe seg inn i lotteriet:

0,8 5000 1 0,8 2000 0,8 1 0,2 0 0,8U X U U

Om beslutningstaker angir det maksimale beløpet til 2000, så har det beløpet en nytte på 0,8.Vi fortsetter så med andre verdier på p, og vil etter hvert kunne plotte en detaljert nyttefunksjon.Om beslutningstaker krever å få 500 når p = 0,4 vet vi for eksempel at -500 har nytten 0,4.

Page 28: Corporate Finance

Eksempel på nyttefunksjon

2000 0U 5000 1U

Alternativt kan vi be beslutningstaker angi laveste sannsynlighet p som gjør at han vil delta i lotteriet uten å betale innsats:

0 5000 1 2000 1 1 0U p U p U p p p

Om beslutningstaker angir for eksempel p = 0,5 så har vi tre punkt på nyttefunksjonen:

0 0,5U

Tar vi så utgangspunkt i en kvadratisk nyttefunksjon, kan vi beregne de tre parameterne: 2U X a bX cX

22000 2000 2000 0U a b c

25000 5000 5000 1U a b c

20 0 0 0,5U a b c

0,5a

58280000

b

3140000000

c

Page 29: Corporate Finance

Plot nyttefunksjon

-2000 -1000 0 1000 2000 3000 4000 50000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

258 30,5280000 140000000

U X X X

Page 30: Corporate Finance

Forventet nytte• Ved forventet nytte tar vi hensyn til risiko.• Nyttefunksjonen U() over usikre utfall X må være slik at

nytten til et alternativ a: E{U(a)}, er lik den forventede nytte av konsekvensene:

,1

m

j a jj

E U a p U X

• Sikkerhetsekvivalenten er den sikre verdien som gir samme nytte som nytten av det usikre alternativet:

,1

m

a j a jj

U X E U a p U X

Page 31: Corporate Finance

Eksempel forventet nytte 0,02560,65 100 XU X e

0 10 20 30 40 50 60 70 80 90 100

-40

-30

-20

-10

0

10

20

30

40

50

60

Usikre konsekvenser

Nytt

e

Tre alternativer (A, B og C), og to mulige tilstander (1, 2). Følgende konsekvenser:

Konsekvenser (x)Sannsynlighet 0,25 0,75

Tilstand 1 2A 100 0B 70 20C 10 35

Konsekvenser (x) Nytte U(x)Sannsynlighet 0,25 0,75 0,25 0,75 Forventet Sikkerhets

Tilstand 1 2 1 2 nytte ekvivalentA 100 0 52,4 -39,4 -16,4 10,4B 70 20 43,3 0,0 10,8 27,9C 10 35 -17,2 19,0 9,9 27,1

60,65ln

100

0,025

U X

X

Alternativ B har størst forventet nytte (og størst sikkerhetsekvivalent), og bør velges.

Page 32: Corporate Finance

SannsynlighetsfordelingerForventning og varians

• Ved usikkerhet må vi egentlig sammenligne sannsynlighetsfordelingene til de enkelte alternativene.

• En metode kalt stokastisk dominans gjør nettopp dette.• Vi skal nøye oss med å beskrive sannsynlighetsfordelingene

med forventning og varians, eller standardavvik.• Om sannsynlighetsfordelingen er symmetrisk, så er faktisk

fordelingen komplett beskrevet ved forventningen og variansen.

• Om sannsynlighetsfordelingen er skjev, må en i tillegg benytte mål som angir skjevfordelingen.

Page 33: Corporate Finance

RisikoS

erie

s1

0

50

100

150

200

Chart Title

Negativ risiko

Positiv risiko

En investor ønsker selvsagt å unngå dårlige resultat, dvs. den negative risikoen. Men samtidig ønsker han å oppnå størst mulig resultat, dvs. han er på utkikk etter den positive risikoen.

En sannsynlighetsfordeling som er toppet og smal (mindre

spredning) har mindre risiko, både positiv og negativ, i forhold

til en sannsynlighetsfordeling som er flat og bred.

Forventet verdi

Page 34: Corporate Finance

Avkastning, forventning og risiko

1

mi i

j jj

E r p r

0,3 35% 0, 4 20% 0,3 5% 20%iE r

2 22

1 1

m mi i i i i

j j j jj j

VAR r p r E r p r E r

2 2 20,3 0,35 0,2 0, 4 0, 2 0, 2 0,2 0,05 0, 2 0,0135iVAR r

2 2 2 2 20,3 0,35 0, 4 0, 2 0, 2 0,05 0, 2 0,0535 0,2 0,0135iVAR r

i ir VAR r

t = 0 s1 p1 t = 1 r

-100 1 0,3 128+7 = 135 r = 0,35

-100 2 0,4 117+3 = 120 r = 0,20

-100 3 0,3 105+0 = 105 r = 0,05

Page 35: Corporate Finance

Empirisk forventning og risiko• Om vi har historiske data, kan dette noen ganger benyttes for å estimere ukjente

framtidige forventede verdier.• Vi har da ikke sannsynligheter, men relative hyppigheter.• Formelen for risiko mister en frihetsgrad etter å ha beregnet forventet verdi.

1 1

1 1m mi i i

j jj j

E r r rm m

2

2 2

1 1 1

1 1 11 1

m m mi i i i i

j j jj j j

VAR r r E r r rm m m

2

2

1 1

1 11

m mi i i i

j jj j

SDEV r r r VAR rm m

Ofte brukes symbolet for forventning, og symbolet for standardavvik.

Page 36: Corporate Finance

Empiriske dataObservasjon Verdi (r) r2

1 5 % 0,00252 -20 % 0,043 -5 % 0,00254 15 % 0,02255 1 % 0,00016 -8 % 0,00647 7 % 0,00498 10 % 0,01

Sum 5 % 0,0889

Her har vi årlig avkastning for de siste 8 år, for eksempel fra et børsnotert selskap. Dette kan i enkelte sammenhenger benyttes som indikasjon på fremtidige avkastninger.Gjennomsnittlig historisk avkastning (forventning) er da et estimat på forventet framtidig avkastning, og estimert historisk standardavvik blir et estimat på framtidig risiko.

1 1

1 1 1 5% 0,625%8

m mi i i

j jj j

E r r rm m

2

2 2

1 1

1 1 1 10,0889 0,05 0,0126551 8 1 8

m mi i i

j jj j

VAR r r rm m

0,012655 0,11249 11,25%i iSDEV r VAR r

Merk: Varians har benevning «enhet i andre», mens standardavvik har samme benevning som forventningen.