copy permit available fully l.if puucts, …. department of transpos tation * j u s,- ma rdw 760...

83
I REPORT NO. FAA-RD-76-186 USER'S MANUAL FOR GENERALIZED I LSGLD-I LS GLIDE SLOPE PERFORMANCE PREDICTION: MULTIPATH SCATTERING S. Morin D. Newsom M. Scotto U.S. DEPARTMENT OF TRANSPORTATION Transportation Systems Center Kendall Square Cambridge MA 02142 ,01 DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161 Prepared for U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research and Development Service Washington DC 20591 COPY AVAILABLE TO DOC DOES NOT PERMIT FULLY L.iF PUUCTS,

Upload: lemien

Post on 17-Jun-2019

212 views

Category:

Documents


0 download

TRANSCRIPT

IREPORT NO. FAA-RD-76-186

USER'S MANUAL FOR GENERALIZED I LSGLD-I LSGLIDE SLOPE PERFORMANCE PREDICTION:

MULTIPATH SCATTERING

S. MorinD. NewsomM. Scotto

U.S. DEPARTMENT OF TRANSPORTATIONTransportation Systems Center

Kendall SquareCambridge MA 02142

,01

DOCUMENT IS AVAILABLE TO THE U.S. PUBLICTHROUGH THE NATIONAL TECHNICALINFORMATION SERVICE, SPRINGFIELD,VIRGINIA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATIONFEDERAL AVIATION ADMINISTRATION

Systems Research and Development ServiceWashington DC 20591

COPY AVAILABLE TO DOC DOES NOTPERMIT FULLY L.iF PUUCTS,

NOTICE

This document is disseminated under the sponsorshipof the Department of Transpo~rtat ion in the interestof information exchange. The United States Govern-ment assumes no liability for its contents or usethereof.

*CE1P 1 qi-tlt tal

liiiV1

Tioeboicel RNpet O16cumiesin P"

Gowj 3 Ress*.e N s Cis...td

YSER'SJANJAL FOR S;ENERALI',LD ILSGLD-IJ/A Nov4111=06J;L7DE SLOPE)'ERFORNANCEyRD(TION: -s"-t -r,,.7 M.

___ LT__ I SC_____TT__

U.S. Department of Transportation I A0(~4Transportation Systems Centeri v,Kendall Square _________

Cambridge M4A 02142 1-_ of 208"__

U.S. Department of Transpos tation * J u S,- Ma rdw 760Federal Aviation Administra ion____

*Systems Research and Development Service Sios-n feit i

*Washington DC 210591 ________

15 suppirtmente'y Notes

1 btAThis manual presents the computer program package for thegeneralized ILSGLD scattering model. The text includes a completedescription of the program itself as well as 3 brief descriptionof the ILS system and antenna patterns. The program listings aleincluded as appendixes, and contain both input-generation programsand output-plotting programs.

For a technical mathematical analysis of the system see theFAA report, "ILS Glide Slope Performance Prediction-, MultipathScattering."

The present report is a partial revision of part 11 of reportI'. FAA-RD-74-157B. The revisions include the treatment of scattering

from randomly oriented rectangular surfaces.

r.~ ~ ~ ~7 Key_________________ Words___________________________

ILS, Glide Slope, CDIDOCUMENT IS AVAILABLE TO THE U S. PUBLIC(HROUOH THE NATIONAL TECHNICALINFORMATION SERVICE, SPRINOPIELO,VIRGINIA 22161

19 Scu"'t CIO.e,.f. (of '.is '*Part) 20. Security Closedf. (of this Palo) 21. No. of Pages 121 Pric.

Unclassified Unclass;ified 84 -

Form DOT F1700.7 (8-72) Reproduction, of completed page authorized

PREFACE

This document is a companion document to the Federal Aviation

Administration report, "ILS Glide Slope Performance Peediction:

Multipath Scattering," and contains the computer program for apply-

ing the model developed in the aforementioned report. The computa.

1 tional program may be used to predict the performance of new ILS

glide slope systems, or modified existing systems. The manual

contains a complete description of the glide slope system, the

program listings, and step-by-step instructions for running the

computer program.

filli

I i

Io

a a I , I

lit H I I I I I II

s 4: 11 I N *1 1 IN

~II I I liii 11.1 HP iI tr'r*II ~ iN ii ,,.I ,,, ,11L1 1t~r~

tS i ~ illi ! ii[i

I5Z 3fJ b. i~:I

I

CONTENTS

Section Page

1. INTRODUCTION: DEFINITION OF INSTRUMENT LANDINGSYSTEM ..................... .......... ... ........ 1

2. ANTENNA PATTERNS ..................... ................. 3

3. GROUND EFFECT SIMULATION WITH ILSVEN ............... 7

3.1 Method of Simulation.......................... 83.2 Operation..................................... 10

4. ADDITION OF SCATTLRERS WITH MOLE .................. 11

S. CDI DETERMINATION USING GLDCDI ..................... 14

6. FMAKE PROGRAM DESCRIPTION .......................... 15

6 .1 Switch: Y ................................... 156.2 Switch: G .................................... 156.3 Switch: P............... 176.4 Switch: A .................................... 19

7. GLDPLT PROGRAM DESCRIPTION ......................... 21

APPENDIX A - ILSVEN................................ 23

%PPENDIX B - MOLE .................................. 40

APPENDIX C - GLDCDI ................................ 52

APPENDIX D - GLDPLT .................... ........... 58

APPENDIX E - FMAKE ...........-................... 69

ILLUSTRATIONS

Figure Page

1. ANTENNA PATTERNS FOR NULL REFERENCE ANTENNA ........ 4

2. REPRESENTATION OF SQUARE SCATTERER ................. 13

[K

1. INTRODUCTION: DEFINITION OF INSTRUMENT LANDING SYSTEM

In a previous report,* a computer program (ILSGLD) was written

to simulate certain terrain conditions which affect the glide slope

portion of the Instrument Landing System (ILS). The ILSGLD model

was developed to treat one-dimensional terrain variations. This

report describes a generalized version of ILSGLD which treats two-

dimensional ground plane variations, and which is able also to

simulate the effects of scattering from planar, randomly oriented

rectangular surfaces. A technical mathematical analysis of the

system is described in a separate report.**

The ILS is used to provide signals for the safe navigation

of landing aircraft during periods of low cloud cover and other

conditions of restricted visual range. Separate systems are used

to communicate vertical and horizontal information; the vertical

system is called the "glide slope." This system operates by the

transmission of an RF carrier, amplitude modulated by two audio

frequencies, and beamed ;, approaching airborne receivers. In an

instrumented aircraft, che glide slope receiver serves to demodulate

the RF signal, amplify and isolate the corresponding audio signals

and derive a signal to drive the ILS vertical display in the

cockpit. The pilot, by reading the display, can determine if he is

on course, above or below the glide path. These signals must be

strong enough to cover a radius of 15 miles in front of the

antenna.

"ILS Glide Slope Performance Prediction," FAA RD 74-157B,Part I. 9/74.

FAA, ILS Glide Slope Performance Predictie' MultipathScattering, Ih Preparation.

The directional information is determined by the relative

strengths of the transmitted sideband signals. The audio frequency

modulations, which are fixed at 90 and 150 Hz, are radiated in

different angular patterns with respect to the intended glidepath.

The "course" is defined as the locus of points where the amplitudes

of the two modulations are equal. The display of a difference of

the amplitudes (90 and 150 Hz) of the sidebands is referred to

as the Course Deviation Indication. Thus, the CDI is the pilot's

indication as to what his deviation is relative to the glidepath.

The CDI is measured in microamperes. The actual course generated

by any particular ILS installation will deviate from the ideal

because of irregularities in the terrain. The deviation of the CDI

caused by these irregularities, from the ideal receiver reading at

that point in space (e.g., on the glidepath a CDI reading other than

0) is the derogation effect.

The glide slope system transmits an asymmetrical pattern by

beaming a "carrier plus sideband" pattern and a 'sideband only"

pattern, the composite of which gives the desired effect.

V.

I

2. ANTENNA PATTERNS

The proper angular variation of the transmitted 90 and 150 Hz

modulation is achieved by the radiation of the two independent side-

band patterns by the transmitting antenna. One pattern, the "car-

rier plus sideband" (C+S) signal, is radiated in a symmetrical pat-

tern; the other pattern, the "sideband-only" (SO) signal, is

radiated in an "anti-symmetrical" pattern relative to the prescribed

glide angle (see Figure 1).

Th- C+S signal is composed of a carrier wave and paired side-

band waves at 90 and 150 Hz. The sideband amplitudes are equal and

represent a 40 percent modulation of the carrier wave (or a "depth

of modulation" of 0.4) at both frequencies. The SO wave is a

carrier wave that is equally modulated at 90 and 150 Hz to the

extent that it retains no pure carrier component.

The spatial modulation pattern obtained by combining theL symmetrical C+S pattern with the "anti-symmetrical" SO pattern is

illustrated in Figure 1. At a given receiver point the total

signal is the C+S carrier plus the combined sideband amplitudes of

the C4S and SO patterns. The sideband amplitudes are phased so

that above the glide path the 90 Hz amplitudes add and the 150 Hz

amplitudes subtract, while below the glide path, the 90 Hz ampli-

tudes subtract and the 150 Hz amplitudes add.

Any angular deviation of the airplane's receiver from the

correct course results in a "Difference in Depth of Modulation"

(DDM) between the 150 and 90 Hz signals. Since the trength of

C+S and SO signals fall off at the same rate with distance from

the transmitting antenna, Zhe DDM is independent of range.

4).4

0. r

'4.# 4r

u.0

-. 4j

I.,.

I LL1

06 04)4oto 14 1

44

0 4)-

1. 9 0

S.. -4

44.

C4) .-

The antenna patterns are generated by using arrays of onc or

more elements in combination with the ground as reflector. The

effect of an ideal ground plane on a single element is a.s though

there was an "image" element located below the ground and radiating

equal power to the real element but with opposite phase. In a

glide slope array there will be two or more elements radiating

different signals zo give the desired combined antenna pattern.

(Note that this means that a glide slope array is defined by giving,

for each element, its location and complex amplitude of the

carrier and sidebands.) However, the real ground is not an ideal

plane. This has the effect of distorting the element patterns and

results in a derogation of the glide slope system performance.

The extended glideslope derogation simulation package consists

of five programs. They are:

FMAKE.F4 Used to generate input files for the sin.,tlation.

ILSVEN.F4 Simulates the one-dimensional-variation ground. Takes

input prepared by FMAKE. Outputs the complex field

instensities at the various receiver locations.

MOLE.F4 Simulates the scattering from a rectangular planar

surface with arbitrary orientation. Takes as input

the data output from ILSVEN. Outputs a new set of

fields.

GLDCDI.F4 Simulates the effects of the receiver, including CDI

determination and dynamic smoothing from the instru-

mentation.

GLDPLT.F4 ProduceF graphical presentations of the CDI results

from the simulation. Takes as input the data file

output from GLDCDi. Outputs graphs of various forms

as determined by the user.

The inputs and operation of these programs will be given in

the following sections.

The basic procedure is to prepare the input with FNAKE. The

ground effects are determined by running ILSVEN. The output is a

data file containing the antenna descriptors, the receiver locations

and the coxlex field intensities for the carrier and sidebands. If

desired GLDCDI may be run at this point to produce the CDI's thatwould be produced by this ,round configuratiun, antenna system,

and flight path. If additional scatterers are involved such as

buildings or hills, they may be represented as rectangular

surfaces and the derogation effects added with MOLE. MOLE may be

used as often as needed to include any number of scattering

surfaces. After all surfaces have been included GLDCDI is run to

generate the CDI file for input to the graphing program. GLDPLT is

then run to generate the graphs required.

3. GROUND EFFECT SIMULATION WITH ILSVEN

The ILSVEN program simulates the effects of a non-planar

ground on the glide slope antenna system.

The program uses a ground description, an antenna description

and a set of spatial coordinates for the receiver locations as

input. The progra-a calculates the out,;vts for each receiver

location, the complex values of the fields for carrier and side-

bands that would be received at that location. This represents the

zummation of the direct fields from each antenna element and the

fields from each antenna element scattered from the parts of the

ground "plane." Additionally the fields that would be produced

by an ideal ground plane are included. This allows comparison

with flights that do not have a simple ideal CDI along the flight

path, for example, flights at right angles to the glide path such

as are used to determine the course width.

The ILSVEN simulation makes cer'.ain simplifying assumptions.

They include:

a. Perfectly reflecting ground surface

b. Far-field scattering--all scattering from points on the

ground surface is assumed independent of all other points; thus

multiple reflections and near-field interactions are ignored

c. Noise-free ernvironment

d. Relative field strengths--the absolute field strengtns

involved are not calculated. Thus, while the CDI's can be calculated

in microamperes, the absolute electric field intensities are not

ascertained,

e. Geometric shadowing--the shadowing of one portion of the

ground on another is done by straight ray approximations assuming

a total cutoff with no diffraction, and

f. Antenna elements are assumed to be simple dipoles.

3.1 METHOD OF SIMULATION

An antenna element is described by giving its x , y- and z-

coordinates and the complex amplitt'des of its radiated amplitude

at the three frequencies (carrier, 150 and 90 Hz sidebands).

The ground is broken up into strips; these strips have an infinite

width and a finite length. The infinite extent is parallel to the

y-axis, that is at a right angle to the runway centerline. Thus,

a ground strip is described by giving the x and z-coordinates

ot the leading and trailing edges of the strip. A receiver loca-

tion is described by giving its time, x-, y and z-coorlinates.

The basic part of the simulation consists of calculating the

field at a receiver location. This field is caused by the power

radiated from an element and reflected from a strip. The receiver

fitid can be expressed as a complex gain factor times the radiated

antenna field. This gain factor is expressed as a double integral

over the strip. The integration along the infinite extent (y axis

direction) was approximated by using the stationdry phase method.

The resulting single integral is solved by a modified trapezoid

rule. The trapezoid rule is used with the spacing between sample

points adjusted for the derivative of the integrand.

Thus, for a given receiver location, the program takes an

anLu,,na element and calculates the "gain factor" for each ground

strip, multiplies by the radiated power. and sums the three complex

field intensities for all ground strips. The direct field of the

element at the receiver is then added. This process is repeated

for all elements, giving the total field at the receiver. For

comparlonn purposes the fields resulting from an ideal ground plane

are calculated. The location of the receiver (x., y-, z- and t

coordinates) are output along with the six complex field intensit"

numbers. This is then repeated for each receiver location in the

input file.

If the terrain is sufficiently irregular. part of the eniergy

radiated toward a point on the ground may be intercepted by another

piece of the ground closer to the antenna. This shadowing is

complex including, as it does, diffraction as well as reflection.

This is approximated in the simlulation by using ray optics; that is,

the shadow is assumed to have no diffraction at the edges and a

zero field amplitude inside of the shadow. The program does this

by assuming the ground is continuous; i.e, the far edge of one

strip is the near edge of the ntext, and keeping track of the

"furthest" (in angular sense) edge. If part (or all) of the next

strip is "below" that edge, then that part (or all) will not he

included in the trapezoid integration. For example in the sketch

below:antenna start

I

z A

Cstrip III

all of strip I, none of strip II and that part of strip III between

D and E will be included in the integration.

For the receiver antenna a "semi" directional antenna is

assumed; that is, only the incident fields from the front half-

sphere around the receiver are included. This is as though an

omni-directional antenna was used but blocked by the fuselage fromireceiving signals from the direction of the tail. This is done in

the program by stopping the summation of fields over the ground

strips at a point directly below the receiver.

The back half-plane is assumed to be an ideal flat horizontal

reflector of infinite extent. The field from this is included by

adding the "gain factor" for this as an initial strip to that

calculated by integrating over the "real" strips.

3.2 OPERATION

ILSVEN assumes the ground description is a file called

GRND.DAT, and that the rceiver locations are in a file called

PATII.DAT. The user starts the prugram and Lhen inputs the name of

the file containing the antenna description. The simulation wil

be run, and the output will be found in file STRIP.DAT.

10

4. ADDITION OF SCATTERERS WITH M4OLE

MOLE is used to include the derogation effects of finite

scatterers. This would include sides of buildings and other man-

madc objects composed of flat rectangular surfaces. In addition

portions of the ground surface such as hills can be simulated if

they may be represented by rectangular pieces. The program takes

as input a file generated by ILSVEN. This contains the antenna

and flight path descriptions along with the complex fields

scattered from the ground for both the non-planar ground simulated

and for the ideal ground case. The program adds to these fields

the fields resulting from scattering from the piece being simulated

and outputs a new data file containing the input data with revised

values for the complex fields. The output file being in the sawa

format as the input file allows this output to be used as the input

for another run of the MOLE program. This Permits the user to

continue to add in the effects of as many scatterers as desired.

The simulation makes certain simplifying assumptions. They

include those explained for ILSVEN. In additior, the ground

surface for the MOLE simulation is assumed to be the ideal flat

horizontal ground plane. Thus the multiple reflections from the

antenna element to ground to scatterer, and from scatterer to

ground to receiver, are done using a simple ground plane.

To operate the program the user will have previously run ILSVEN

to simulate the terrain involved When MOLE is run, the program

will request:

INPUT FILE NAME:

Tie user types in the name of the file output from ILSVEN. This is

initially named STRIP.DAT, but may have been renamed by the user if

there is more than one simulation to be done.

The program will then request:

OUTPUT FILE NAME:

The user then types in the name to be given to the file to be out-

put from MOLE. This file will contain the modified filed values in

addition to the antenna and flight path data from the input.

The program will then read .n the piece description data from

unit 20. (Normally, it is a disk file FOR20.DAT.) These data are

in free-field general FORTRAN format (3G). The data consist of the

x-, y-, and z-coordinates for the four corners of the rectangle,

one set of coordinates per line. The corners are described in the

order that they .:z:uld be scanned in traveling around the perimeter

of the rectangle in a clockwise direction. In this sense, the

rectangle is assumed to be facing the user. Fo. example, the

coordinates:

0.0.0,

1.0.0,

1.0.1, and

0.0.1,

describe a square, one foot on a side, situated on the centerline

of the runway oriented with one side on the centerline on the ground,

and one side vertical at the origin. The "front" of the square is

facing in the positive y-direction. See figure exampl,. (Figure 2).

The program will then e, ecute the simulation, output the new

filc, and terminate. Multi1 le runs, scatterers and input cases may

he set up using the usual hatch control features.

FIGURE 2. REPRESENTATION OF SQUARE SCATTERER

5 . CDI DETERMINATION USING GLDCDI

The output files from ILSVEN and MOLE contain the complex

field intensities for the carrier and sidebands for t~he cases

simulated. For analysis purposes the user would usually wish to

Fse the CDI's produced. The difference between these and the

correct CDI's is the derogation that would affect the pilot in

the case being studiil. This CD' generation is done by GLDCDI.

The prcgram will calculate the CDI for aoth the static case and

for a dynamic case using the smoothing time constant input in

FMAKE.

To operate the program the user runs CLDCDI. The program

will request:

INPUT FILE NAME:

The user then types in the name of the file (generated by ILSVEN or

MOLE). The program will then request:

OUTPUT FIiE NAME:

The user then types in the name of the file to be used for the output

file. The program will then execute and terminate. The output

file contains the CDI's static and dynamic for both the simulation

and the ideal ground case. The various CDI's may he graphic using

GLDPLT.

#'

6. FMAKE PROGRAM DESCRIPTION

FAIAKE is a file generation program used to create input files

for ILSVEN. It is designed to be used interactively. The user

starts by running the program. The program will respond by typing:

INPUT SWITCH:

The user then types in a single character switch, followied by a

<CR>, for the file he wishes to generate. The program will then

respond with a request for the input required for that file. If

a blank is used as the input switch the program will terminate.

If any character other than those explained below are used, in

error message will be given. After each file is generated, the

program will return to the switch input point thus allowing the

user to generate the data files for many simulation runs in one

sitting.

(N.B. All units are in feet unless otherwise stated)

6.1 SWITCH- Y

For this switch (Y), the program will type:

INPUT YO, LAMBDA:

The user then inputs in free field format the y-offset (i.e., the

y-coordinate) of the antenna elements and the wavelength of the

carrier, followed by a <CR>. The y-offset is the distance from

the base of the antenna to the centerline of the runway. As this

information is required for both the antenna description and the

flight path, it is input with a separate switch to avoid repetition.

6.2 SWITCH: G

This switch (G) is used to input the ground description.

The program will respond with:

I

INPUT GROUND FILE NAME:

The user thtr inputs a <five(S) character name for the ground

description file, followed by a <CR>. ILSGLD requireq the ground

file to be called GRND.DAT. (The .DAT extension is a system default.)

FMAKE allows the user to generate several ground files with different

names at one sitting. Then by using system renaming commands, a

single batch job may be set up that will run many simulations without

further user interactions.

The program will then type:

I Pill GROUND LABIL.

The user then inputs up to 40 characters to be used as a label for

this ground description. Ihe label is carried in the ground de-

scription file and %ill be placed in the output file by TLSGLD.

It allows the GI.1PI.1 program to label the plot, %ith the ground

description. This is necessary if a batch )ob generates plots from

more than one simulation.

The program will then type:

INPUT GROUND SE:GMINTS. STARTING FROM .\NTINNA GIVIE CONSLCIITIVI:-

I.Y LITPER X AND : INCREMENTS OR Till. Li:NGTH AND .\NGLL FROM

H!ORIT.ONTAl. IN DFGRUI.S, SLPARATEP BY A ZERO. HIT CARRIAGE

R.T!IR.\ FOR I.ND OF DA1\, OR IF TIIIRI ARI NO MORI STRIPS.

The uer inputi ground ,strap end point, in either Cartesian or

polar intrementq u;ing two or three "ields respectively. lhe

are input an floating free field format followed by a *CR The

far~t point a, taken r.aia'e to the origin and is the near edge

of the closest ;trp to the antenna, The qecond point is the

far edgect the farqt ,tr ill and the near edge of the second trip.

This second point is relative to the first. This will continue for

additional strips until a <CR> is hit with no data, at which point

the program will return to the switch input. For example to input

this profile:

.60 tilt1200, 170'

100" 2400'1

1000'

The input would be

0.,0.

1200., 0., -.6

0. , " 100.

2400., 170.

There is a maximum of 20 strips allowed in both FMAKE and

ILSGLD. This is determined by array sizes and could be changed if

desired.

6.3 SWITCH: P

This is used to generate a flight path file. The program will

respond:

INPUT FLIGHT PATH FILE NAME:

The user then inputs a five (5) character file name (the name must

be exactly 5 characters). ILSGLD requires the flight path to he in

a file called PATH.DAT (for explanation of multiple files see

SWITCH:G). Tht program will then type:

INPUT FLIGFT PATH TITLE:

The user then irputs a title, using up to 40 characters, for the

flight path. Ttis is used as a label on the plots ouput by

GLDPLT. The program will then type:

INPUT FLIGHT PATH TYPE:

The user has a choice of two flight path types, linear or hyperbolic.

For a linear flight path, typa a <CR>; for a hyperbolic path type

a 'G' followed by a <CR>. When it is a linear flight the program

will respond:

INPUT XO, YO, ZO:

The usar then inputs the x-, y-, and z-coordinates of the first

receiver point in free field floating point format followed by a

<CR>. The program will respond:

INPUT XF, YF, ZF:

4The user then inputs the final receiver location in the same way.

The program then types:

INPUT # OF POINTS, VELOCITY, TIME CONSTANT:

The user then inputs the total number of receiver locations desired

in integer free field format, followed by the velocity of the air-

craft in feet/sec. in floating point free field and the time

constant in seconds (usually 0.4) used for the "inertia" of the

receiver in dynamic simulation. The program will then generate the

data file and return to the SWITCH POINT.

The actual ideal surface of zero CDI is a hyperboloid of two

sheets whose axis of rotation is parallel to the z-axis and passes

t through the antenna. For comparison purposes it is conveiiient to

have the aircraft travel along this surface and see how the Taal

CDI deviated from 0. If the glide path is used for linear flight

in the near field (between threshold and antenna) large CDI's will

occur because of the hyperbolic shape. The program will allow the

user to gererate a hyperbola which is the intersection of the 0

CDI surface and the plane containing the runway centerline parallel

to the z-axis. To do this the user types a 'G' for the flight path

type. The program will respond:

INPUT XO, XF, H:

The user inputs these in floating point free field format

followed by a <CR>. XO is the x-coordinate of the initial receiver

point 'YO is zero and ZO is specified by the hyperboloid), XF is

the x-coordinate of the final receiver point. H is the height of

the main carrier element in the antenna array. The program will

then respond:

INPUT # OF POINTS, VELOCITY, TIME CONSTANT

These art input as above. The progrm will generate the file and

j return to the switch point.

6.4 SWITCH: A

This switch is used to generate the antenna description file.

The program will respond:

INPUT ANTENNA FILE NAME:

The user inputs the 5 character file name. The program will type:

INPUT ANTENNA DESCRIPTION:

The user inputs a <40 character antenna description to be used as

a plot label. The program will then type:

INPUT ELEMENT VALUES-

The user then types in, in free field flo3ting format, a maximum

of 8 fields followed by a <CR>. The fields have the following

use :

field use

1 x-coordinate of element (usually 0)

2 z-coordinate of element (height)

3 real amplitude of carrier

4 imaginary amplitude of carrier

5 real amplitude of 150 Hz side band

6 imaginary amplitude of 150 Hz side band

7 real amplitude of 90 Hz side band

8 imaginary amplitude of 90 Hz side band

This element inputting is repeated for each element. After the

last element is input an extra carriage return is typed. No

y-coordinate is input for the elements. This is because nominally

all the elements have the same y offset (the value input as YO

under switch:Y). However, a small offset correction is applied

for near field ccrrection. An explanation of this correction may

be found in part I (see discussion preceeding Eq. (33)). This is

automatically done by the program. As the first element input is

assumed to have the correct offset, it will always have a value

of YO. Thus the main carrier element should be input first, for

example, a null reference antenna was input as follows:

INPUT SWITCH: Y

INPUT YO, LAMBDA: 300., 3.

7. GLDPLT PROGRAM DESCRIPTION

GLDPLT is a plotting output program to graph the CDI informa-

tion from GLDCDI. The user runs GLDPLT which then types:

INPUT FILE NAME AND AXIS TYPE:

The user then types in a 5 character (left-justified and blank

filled to 5 characters) and two integer fields in free field

format. The first integer is the switch for x-axis type and the

second integer is the switch for the y-axis. The y-switch has

two values, 1 and 2, the x-switch has three 1, 2, and 3; any other

values will terminate the program.

The switches have the following use:

y-switch-l this plots the static CDI values

y-switch-2 this plots the dynamic CDI values

x switch-l th s uses the altitude angle, in degrees

measured from the origin of the receiver

point as x-coordinate

x-switch=2 this uses the x-coordinate of the receiver

as the x-axis

x-switch=3 us,! the time in seconds, at the receiver

point, as the x-coordinate.

After the input, a plot is generated and the program returns to

the input and asks for the !ata for the next plot. The user can

give the same file niam tn plot the data differently, or a new

file name can be given. This would be done when multiple runs

were done before plotting, the output file from each simulation

run carrying its own name.

21

INPUT SWITCH: A

INPUT ANTENNA FIL NAME: NULL

INPUT ANTENNA DESCRIPTION

NULL REFERENCE ANTENNA

INPUT ELEMENT VALUES

0., 15.o 1., 0., .4, 0., .4, 0.

0., 30., 0., 0., -.12. 0., .12, 0.

t1

I'

ii

APPENDIX A ILSVEN

* I

23

ILvikm-ft F42 V27(366) It-APR-74 18

I OVIES0tLAILCI)-1 OIMnE4U1t4 IPTO*TC33)

* 1 ~ ~~ COMMON ,PLXT, m/ x~mM~trRLRM~YmIr~YT4 10m14I"Xt Of , OIRL To RTwr"No 10X OFTORTLTI

ICOMMO'N /VSROUNOY#I4SI

- C04MON /ANT/AN.AYsAiaLAN8OA.OAKADP117 COMMON /VAL/ HA.WI

to C THIS VALUE Of TWO PI IS I'ITtALIPEO THIS WAY TO AVOID USINGIs C BLOCK DATAii OPls6.283199S17179564760

- C

-- 13 C MRTHIS OPENSTH OUTAUT FIL

27 C THE HISw SETIPO LNTAL ICSL S AM D CdTMNSTNT(TU

to C USEDT FACTT O IPT HEGONOAIS ESTIONS31a CALL I7(ILC(24,'GU)3116 FRAI~goI~FLA

H W~RITt(I.11) I~LAIL#A

41 C -

4__4 C THIS SECTION INITS THES ASTOM E N ? EUC

49 C AOTHISCIN INPUTS EA TENN ELEMEON OSCU~iPjiONStPOl

At ~ CALL IFILCC2IILIUD'9 RCAOI24,1ggU) ILAIL

WRIT(1,1610) hILB4& REAOEI*) K#lAMSOA,12C)YIhf,~~j.P~CSI,'~C

m1LrMtmJ F40 VM36281 22-APA-)Z 11314

CALL KEAS (201

C THS 1 TH "A% LOP OR 14ES!"hLUO. TOE q&CCIVtl

66 ~ ~ ~ ~ ~ ~ ~ I CuI PONSTU RNECN RTRS O20

~66___A C HIS ECTON IIT~LIIE TH COMLEXANPLITUCEU FOR

73Ap C GOARIR IH RAL RON

71sose ___iii_ - __ C..-43 901-m

OCh ON1 IS I ITH 'IEAL' GROUND

77 CEAILOA24 - -- -- -

76 CFUlmIP.so.)

As1.. C THIS LOOP IS OVER THE ELE"ENTI Of JY1 ANTINIM

C TMSC RE TE LC471k C0#01098Or 4C ANTENN4A ELEMENTSis CAND CONSTANdTS USED IN THE STRIP INTEGRATIONsoA Ku N I Lof AyYl~IEL)91 A1uI4IEL)92 OEL KuH-AN

u- OCLYORY-AY94 OELIBRI-AltoDqDSBQT(OELI.DELNOCLYOELY.OCLI.OILII96 ESNOL I OR97H DROS eDAof ILuHOPI

%of THIS SECTION tNITIALIEES MR AND 4I TO INCLUCE THEIII4E~iRLG~stf P, Ali -

all TCNPu@OUSIL(LOAT(ILI IeOPI

104 F1s3ORf(lCNP*TCNP#AY*4Y)___L"r2usN.TCMPl(m29Fj

16TC SflRT S *, AYe A /S TINP.TENP ))

its

139

116 C 444 J R TEpCsSA MAI-YPATeO HECMPE

-- 11LC LOCATIONI

121 - owTM P*. ( aOC-GIFRYa4?O7 90'OISLE

let C

129 C

Ili C THIS SECTION 14CULLES THE EFFCT of n TCC v*N IAS O~ FmmuCmc

117 C THE C% SkCT ELE04EN AT'E EL !E

1An CVS3MrSSCCM.C13 IEL131 SSNAN2 o) m~

137 3 OCu136 TIS!(i,3Il3) ACM LAY~ma 'HEc r IELS mArTHE VRIS r4c7S3 IE

142 CF2CSCTE~t2IL

144 I l CAL L IoCAS ) ).S4AP

140 ~ ~ ~~ CL C XqorI*CUPC2?L147 SF3Cr3CEHoF3?L

--A $ ONIU

F 3393V736 1 196"'4W.1 8 ~980"M 3 ssootm3.494 ' UshIIswo9 eesv 411"108006 46914811" 1 te Is @$messes""6g616

^y* pL 1.% 4*8 O^L 1It 'I S, as"1 95&^3a1 1.87a? I I951 0-36 S%1 0j9LZ 1.3*siwi /#LIT 1.11 W 7 IT1-13 4ILT tPLE? 1.14 wrift ^PU *6 6m 931 .19 o" Itlt9111 efts? 1.51 NILT I Ifts 1.14 &100 &LIT? 1.81 &M* Ifts? 1-12 &Irv o953? .111Aw *PLXY1:2.4 &005 1953? I.8 " &W FLItI as8 &WI MIT tell £95? 0"L 1:31

&,/ft It 1 32 3WI IftI' 1.8 1:1 31? tft53 Im3 &OIL IOLI? 1*34 6MK PUT I.sospa5 ^103 1.36 &W5 /PL W 1-37 so% .41.11 1-40 I Irae 1.0 If AKI 1-1to talc 1.2 of MI( 1*3 49183 1C tetc ' 0 9~* Isf"e 1 ieftmton1 1965J61Pal no 1690^5~I11 Is tswaI.s, 3%L I6s666,.13 as Ill? /ofAT l, 11 * a. * LA1% 11 1.3 opt ""1 1.692 P~l i

rS*IL9 If &LPWC. LLPISI. I.? rLIS'. IFILE I25.1. SIcLEl Nsl sk ofe.8 Stst15.5 AW. W l. VU. .8 I , FLO? oW.0 Drs. ale ^01 Ore.4 OL.*

64 3SA M~ CVDL' 16491 1- evil0? 1 11

Ico a8 TAY tell .40 61 1 192 6~ 1m1-- f~ 3* 119L sel I89 sel Sais &sI TIEN1 1014

A"~ 107 SAN 34 Sl 10* AIPM 323 Me~ 13515? 4 C15 tS Cris go NJI 7RA S aT 141a. 1 Se1s its asF I3 A,~ 14 at01.1 194 ITFI ~10 *1a~ 10 LIb 870 sf

SIFT 136 LIL 10' ItN Me ASH 193 9 ISS

siL 1611 IPS. 116 I top 18 1118A-U L Is's IF 89C3 393 11r 1o3 Ii age"

41. 4 j%9po 6M IT t

I1k 1 m t e, 1 IT 1 t% 1al"X 16 411 1 0%, " &It2I

LOI.

--lla[lL 3

-AMng 3LDIL 3

3

142 143

All?

ALT aLIL~t 3

ANn 3___M% so 92

AV 16 96 93 Its 196

Cri 11 93 44 139 14521l I 53 54 14e 146

Ctrs 11 53 54 141 ,477 145 149

cral 79 146 149EDL 1 4 16

erg&1 76 139 1cmK 9 19 146

.__ ll so 1 1

_1L 93 19 9CIT 94 95 3 lt l

._1 99_ 9J6 97 90 1672 1 3. 14

CKIT 11 3'19 ~ftt 153 414C1 12 14

DAR 1___ _.l s19 116 13 13* 143QlL II 140 * 99 1 14

OI 1 26 1 'o 9 1 16

1? 11 1i0 136

F54

? L O A 6 9 9 6 9 1 6 140Its 1,"

Poli is 1

N 17l 12: 19 3

11 120 it$

I! T EL is is 89 9# 91 139 140 141 149 i46 107)I 3l[ s

-- 14 9 3 91 9

06 in 142

ita s 109 n v

Waal 949 SO I

S 3ofR 13 4

6 9 IN 141 |m te 4

a" 13 e9

63 at OR In ISO too

evil 3

:VvI 3

Sus 3

:4IL 3op"? 3

w 11o .$CA 11 3

H ~ 111 I1'3 16 1

t6 131 93

_H _ o 13' 190 19918T4 it$ llo

M6 31 $2

AC 1 : 7 I t ? I S O 1 19ii iS? 11? 119 iN

Moo 119 104 1II1 1ts its 119 199 iN I" 143

VAL 17, 3 4 09

L U 3 94 14o

X& 1 41

o10 S3 94 of

*It S3 94 9 1

39 69 1 .

3606 t 46 4936639 149 191

291 629

1.9%6 fee 49150#1 #1'011 stags ~'If A I ' '

.1 .. .&.vt-~j9SeIO" a

* C -?S S~'?4 ~ S '4 V6I1(* asC*I

P C &a 111W1 *m( *4' -6 : u* I

Ca.,4 ,, F

'4 15 If /o:0

49161 11 k%S Is

95' 13 1

30

CAL Alllsllsaff

*a /5C /of "Ilii /oft /04

qus.*su

SCALARS

-ali a

acetasvj

ILJYMNF P4o V21(361) 22-APP-76 11155

I Ca C THIS SUOuTtoE S'104 ?41 EFFECTS Of IN( STRIPS T14AT "RE3 C UP WE GUOUMOIU~rAC(. ,..Emc At[ '4' STRIPS OCrISlED 101 CONNOR* C GROUND0 Af FOLLOWS:9 C wifis TWE I-COORDINATC Or TOE LCADIIOG EDGE Of THE 11'tW STRIP

&C U11I) THE I-COORDI'ih' 3r ',i LEIII'4 EDGE OF INC P'T 5?flZP7C X211) TWC I-CCOROIAT[ Of H [%Owi C~PC OC CF THE PmT STRIP*C 12111 T14[ I-COORotmATE OF THE CNPIl'6 COGE CF THE 1TH STRIP

SUNRSNADO. SCAT

14 C

1s C ?.TES THEf 1141TIA VALUE rM( STHEPARMTRSSDI ND*

_I& C

is4 C ~1 LaIGNC00~'

24 C xll LEADING X-CCOD14aE

30 C will TRAIL14.G N-C5OUIhA'17 C off TRAILI'49 I-CIOROTE'

31 2110211)32 C33 C THItS 13a A TST TAI r '"[b~ SU""ATfON OVEN 'TH GROUND34 C STRIPS waS RECHEn 'ME RECEIVER LOCWl'l. IF IT 140 THE SUPN~ATIO435 C 1S STOPPfO. THIS IS Tn GIVE ?ME Err[c' orOWARO LOCKING RECEIVER16 C ANTC'W.s PATTERN.37 Ii vii .GE. mX) Gm ?c *36 C39 C IF THE QECIEvES 15 LOCATED OviR IMF OIDOLE OCRION OF A STRIP46 C 'lvE $'l1. HILL 9E IN'CCRA'E IL' JP ?0 THE VA6U[ Of THE41 C DECEIVER X.COO4OjA'E42 IFEW3a 4L. pl) CC TA

45 9 CONTINUE46 C

47C 'THIS SECTION DOES 'oaf SMA~nI%G. If PART OR ALL or THE STRIPC IS IN THE SmAo~w or A PREVIOUS S5':P. N.II 5IU 4ILL It LLININAo'LD

45C 00 "ASWE 10 GIVE TOE frFCre Or Sws~flwING.59 OiEu1WXv-AX91 irhorLX .Lt. 0.) GO 11 3

93 IrISLOPE -0'. F.) CC '0 1

91-aps76 wo

*1 C '?t SUIINE HILL ItAvj,%I Tat mto 3 ' at61 C CS"PLIN %&I'l CPVIC? Pt THIS Stt ILL K ASKS TO NO 60 "1C %cpo AL3 CAL U

/600V"I.74~~~A IWI ISONI11.11 16; 19 w * 1

off S 1.3 ISI /.a 53 3 i

(Lu 14? am 0 S S PO I 'S $9$5

lo 19 ' 5 4' 1 IlL 1113

a 4

CS 33

A Sa 59 60ANT 11_AL.- -, 52 15 19 48 4,1,

AY 11_-A l2 52 15 69 el

9 99 62D[LX so st 52

GROUNO 12z- 25 29 30 31

IEL 1212 29

N 13

PHIE 17 52 54 67

RX 37 42 43 44

ml itSCAT 9SEC 53 94 16 to 61 ?-

SUN 66X1 12 28X2 12 30X&I 13 28 37 43 55 57 so 59 II 61

Exl 13 3f 42 43 44 96 57 IIu~ 29

132 12 3111 13 29 43 15 so 9 61

Il 13 31 43 92 so

IF in 54 6S3P 91 53 96 66Q? 57 619P 42 45

3P 37 69

C34

.LIYU7F4 r4I V21(361) 22-APR-76 iiII6

I C__ C THIS SUBROUTINE INTEGRATES OVER TH SURFACE STRIP OFINDO

3 C Iy XluIX2,12 IN COMMON 'SEC*# TO GIVE THE FiELO EFFECT4 C OF THEANTE NA CLEMENT I

N COMMON NO AT' AT RECIVER CEVINED- C IN CONMON *R€C'. THE VARIABLES ARE AS FOLLOW$$

__- .... C AX ANW[A 1GOO1DINA-MC AY ANTENNA Y-COOROINATE

.... Al A | NTENNA I-COORDINATE9 C LMBOA WAVELENGTH Of CARRIER

__lJJL C AM TWOepi/LAMIDA11 € DPI YWO*PI (DOUBLE PRECISION)42 _ _... .... Ayr IIP,[.E8 e3 nfnnm!N _ .T[.

13 C RY RECEIVER Y-COORDINATE

__4 C RZ RECEIVER I-COORDINATE19 C HR MEL PART Of 'GAIN' FACTOR

... - l C M! IMAGINARY PART OF 'GAIN' FACTOR17 C 11 LEADING FOGE Or STRIP'$ X COOROINATCiL ---. .C -It LEADING I-CONCOllIT..,it C X2 TRAILING [ECV X-COORDINAVE

.+Ill C 12 TRAILING I-COORDINATE

21 C THE INTEGRATION IS PERFORMED BY A MODIFIED TRAPIIOIO RULE._ Cl TN[ SPACING BETNEEN POINTS ALONG THE VARIASlI OF [ITEGRATION13 C 11 YARIEM MY THE RATE OF CHANGE or THE INTOGRAND,P .....-. UROUTINE SIU1 COMmm /SEG/ XI,|IX2.F2.N26 DOUBLE PRECISION AI,AI,I?,XLAY217 REAL JR,JIJORJI#J4R#JNI

-. REAL LANSOAit DOUBLE PRECISION AK,lPIORs- COMMON /ANT/AXAYpA,LAM9DAaAK, DPj31 COMMON /REC/RX,RYRE

_ - 31 CONMN /VAL/HR,HI33 REAL L3eLII14 C11 C THIS I THE INITIALIIATION SECTION3A. AY. .lOL[fAY)DIL[(Av)17 AN(mSNGL(AX)as S ell-1i39 CLOXI-91

41 C XMAX IS THE LENGTH ALONG THE SURFACE Or THE STRIP____ _ - XMAXjSORT(SlE4ECE#CE)43 -- -C -

4. C C THESE ARt THE SI AND COS OF THE ANGLE ?E $TRIP MAKE WITH49 C A HORINONTAL PLANE

_$S[/XMAX47 CEaCt/HMAX

ii I

91 C XL IS THE VARIABLE OF INTEGRATION. IT IS THE 0ISTANCE

__ "C LONG THE SURFACE Or THE STRIP STARTING FROM THE LEADING EDGE

35

IL.SVENJF4 F40 V2,(36?) 22-APR-14711

94C

17 C THECSE ARC THE L40WER AMP UPPER 9OIJNDS FOR THE SPACING SETWEM56C POINTS &LONG THE VARIARLE Of INTEGRATION

Li ,.0LAOA,

62 A2940-11

Al 9.6166 TEMPvUE

7 As SORT(A*A*T[MhP!EP)

72 - ORmOSOR TIOLE(TEP)ORPLE(TMP)0L!4(AYAI))

-- ?I IDD/R

76 FPAsMQOL(AP*SI)I

is DLs$ DLAE

94 IFEOL ,G?/*. l) OCuLiR

94 SFL.XL.DL

to2 JO 244CF.EMP*X)

ISI 9P(lC~SECO ACLTEVROSTEN SDI VAUTN

C1 INErANis THE.DRAIVEO AND PAS FUNCTION

2336

J.LSIRf t F41 V(368) 22.a01-76 1$

C6 AR YLUTAE SRATELLY. TCOR AY 7TEPAEFNTO111 C IS EVALUOTCD TO OETERMUINE THE ShEE From ocLTA x

lot OLSE9OL@SE1"m OLCC.DLOCCIII AIAI-OLCClitZ~ AZ.&2-OL.I - -----113 Slu91.OLCE

14 -Al

sit O.C.R1

-in*IsSORT0690EMPOTE)i)

UsTE"PSGAMoO

1243 C @%LD)TN

119 C THIS 18 THE RCALE PANGL7 E ODUORN WOR T'

121 JNOR'DICFLTCN.SF~

143 C CoIco; H IAINm PR

- 1334 C-14 C THIS 11R TH ALTD UNCAIAYPRSO N H NTIO

139 JRIP.EJOR.N).42 III. JEAm W 1 -. -O - -. - .C -

-4- C

L139 C TH IS 12THE ELAT O THE PHEASE FUNCTION41 JNP.ASSI(AP&P/C

13C TI 9TEIAIAYPR

masi~.ra r~o $270361) 22..06-76 11139

163 c 1L I~ 't IELA X AN? M4 11. 0 LI 3 E ' 'WE POVIDS L! L It

lot If(L GT L8)OLLP163 Iv31L .01. L3) OL-63.

166 r Twr VARIABLE of P.'16*t~j4 IS I Cq!4('i?1C A'iC If TWE END Or THE

167 C STR3~IP 15 ACNE0 THE LAST '6433 £O1D IS ADDED

lotIF 34. L.' X411 CC '1 1173 OL.I"*3.SL-9LII111xA171 IT..173 G0 ",176171 c 'T.IS SECTION £3:S 74. t3(L CrECC rRPw 714C STIP TO THE(176 C '711. ?34. I" l £U41 ANT . 01040U *C41157011?? 1 C a 4114VE176 %.%IN

179 E'll(l1*Al3CC*vi*sr32.146.3e~RTm

III ".ISHI~j.0EP

Cl' E2 4

X1 /SIG t.1 11 /1CC. /.I va /1G1 .'2 12 tsic l*3 hi Iss /*4

AN i&%T /.31 AV JAN l.1 &1 1A4T '.2 4.4630 /ANT t-3 £x /ANT /.4

.1 /VAL. /-I

11E 13P",, 440C. SON, r3$0' 3$.z 1!?NN.2 OF0.2 101%' FLOAT' DFS,3 CFO.# O 1 00310 !.4Of-,# O48,3 '704 ANS OFA-.2 IrS,2

SC46AOI

S1M 1064 1.7 1eas AV I 16 AN 411 1079 12 13 it I Ct toll x2 111 9 X4A1 SPIT? .04 1#71 4 1074 X~ L IM41 1377 IT 1133 63S 11st 4.8450 3 4.LO 10Al 1133 63 ON 3 42 IMl 011 2 $1 11762 1111 At I A 1113 TEMP 111IA 111306 1116 C 1121 I 1121 UPI 6 tillO 1123 3 1 174 1 11st 9 1129 C4 13qF 113f a*P 113 1 1O 113 1133 3 13fp 1139 04. 1136 M.'1 113 04.0 1143 !:R 11141

I.SVCENC4 r4e 0/7f347 22-APA-16 11:01

jhI 1142 hi 4 .4 1 41 1 AN I

38

A I 67 71~ 79 U 6o 7 1 10oale 131 $10 131 194

At 61 69 7 its 1161 as&

£69 93 1,6

2 t 19 3: 3? 74 124£6 3 3? 62 111£6? 36

AP 1? 92 194 1n

AT as 36 72 ltIVA to 3691 36 6' 1,9

60 71 71 76 GO Of 110 13s III 1n 131 $99i1 36 63 66 86 113 1t INM-L__ as 64 69 14 114 19 an39 66 92 199 196

___ 73 77 is 9 6 92 1 s I 1N 131 Illcc 89 42 47 67 I to0 Ive 15 Illc 0 es $6 136 141 104

99 96 9? 66 199 113 143 i 161 16 6 164 $i0p 9 1 It 71 9 12 126

IN itsll 1131 ~Bil I 38 12 76 Il

is7 3 4 76 1 3 Its it 124 a3l at,

V76 63 64 126 136 I1-Lb t 76 126Wp $1 99 111 161c3-- It 6 As 16 11 -.39 141 144

7l 76 Its U2; 1 1 0111 163

JI 17 40 its lotJ~l al 144 is# 193

m7 141 149 1 2

-- T It 61 196 13

Joe 27 Is 149 192jI It 41 149 111

$11 31 61 96 1620 33 so 95 ? 16t 16

if1 1 30 S 6

a t @1 131 132

MY 31 6

3-" 1 62

of 8I 1 131 132

IE 31 42 46 67 so Lo 194 139 179

A d- -&i S 137 4I1 144-l 64 137

37 123mal 41 y TO of 117 is 1313001 24?liP 66 67 69 76 71 72 77 62 of 66 116 117 11 its

Lai 122 123 139 141 144 143 14t 11 171 in0 IIIVAL 1X1 nl 39 61 63 179X2 is 39IL. 26 93 9o 166 169 176 ill6XNX 42 46 47 169 17t 171St *5 3 62 34 096I2 to 36

IF l6 169 17369 191 177

: ' 3 9

APPENDIX B MOLE

40

@tQAS8 F4 146 V2743661 24-AP0.74 139

DEGI.p;I c IPTTt) -R

9 CMPLui 65'Lb CE)RM.XKNXTRL.YUAYNAU.YTto 1"wtmSI rT6L.Tw3TxsrNT?

1I6jtdjON X(26)T(1g).3(il

to CSLOCK DAYA21 OP) .. 26318539?7956419it WRIMg9g1101)

13 2061 FORMATi' OUPUT FILC NAMEC2',l)

26E AOII268) IJj -- ;ALL IF11,L12i;1L )

3 ~ 1 46 PONNATI41314/) -33 116OI1111199 ILAIL-'AU14 Wo ITUi1U11) ILAIL

3- 00 3 101@1!Ld ,is~ms) LAIL

37 3 WRITEEtIII) ILAIL31S lop ORNlT1645,T)

41DAN. OP t OULE CL AMBOA)

43 O 0(939001 P41 3100 fORMAY4301

49 00 9 IQ1N

48 A116AW)91 CycPlos1. f .Iit CALL INTSZ!gTfmP)93 C T CPC FI 134pc

41

[ "@1J4F40 V27(360) 23-APR-is 3.31

6* CON 11 No.C

63 40 10 19% 3t64c~.C'3e

to 28 CALLEIAIW 1

*3~ ~ ~~ CL ETh113'..,fiRrl1R.r3C lcr2rICO 1YI 33

C0SA0 15121516 a F90frps 3 gA IOO

26621171 1

41k /PK /-8 SUIPU IFLC 157 /PIY'C Ii~ PORR II47 0

Ov 3s CA01 ECLEA x(13- *L 1LAl 11 o /LT I

% /PLK T . Pd a01 I FL% 1.1r (03 PL NI 1-33 R IL 'L OT 1.3 4 &ONO( JP ? I SS

A7 1 A ~ i t : L X 1 -3 1 4 0 1 WP 1 .6 -3 2I I K l 7 W L * 1 L K 11 l a t e I P I' ? -%1 -

(13(35 ~ ~ ~ ~ ~ 0 jPO .2/IL1 .3 'L PLI. 1.140 OttW 131 11 2.7 11

4R /~l li5 AO lLI? 1.37 AO'L /2y0 /03 I /3C .0* 6C /-I

A;W Lid -36 1.(36 p4 /* 3 A? (4 DP /40? .6 uR 'VAL. I-

4 /AN? *.2 PASI #AN,3 13 /;P0C11 4 IOTOAT PI 1*

SCALARSTA 41

~P SILIL 404 487 y 4I A 1

LAMIDA 3 '(IL 411 .13 114 is

~l 2 *~CfRI 413 %Oimp 5 FS 1

CIS, 411 3112p 423 ItI45A ~ IA~~l I C'C~YE 427 7 42SP BOW I

52!' 4 3 41417 4 It(1 RIN 12OIY t --

v r ?. 1 7 1 0 i5 4 7 ( 1 0 %33 1 7 & R ol " I I IS4W %I"1i

* 6130 16t'

31 610 4 AIN

&IN It4%

MOLI.F4 P46 V1713601 23.APP.? j.,53

£~ir 34 AML '97 Alo N son 3 ~ 432 1£51L 4 r1 LIn S. 43U 33 3?

MLAIL 433 JPT3DAT 443 1 44, 1 Its

A94,

404 39

43

isR 431*

erg 1& 530 ' 5* 5

-Al &A, -No 46 -. ,cra 4L 1 33 34 3

ef 3-LIM $99 g6 97 6 9V

IL11 1, 33 $4

"To 94 o 3

NOAT 0L 4 is 3

*CC 13RELEAS GoRT 13 42 03R T-FT 3

*T6T 3RN 3

mUx 3

mX 13 42 63mXFT 3MIt 3mINN 3Rxmx 3

my 13 42 63

*YT 3NY T 3

4y:% 3NYNK

lf 13 42 63

aM r 3

YAU 33VAL 16K it 39 as 46V II 39 to 49

t oi 39 46

3F 35 37

so 47 62

lt? 42 662 1P 42 64

OItUP 33 34 36 37 36

29o1P 24 25 29

ialIP 32 232992P 27 26

lo 42 44 633gggP 45 464011P 31 32

~44

SL r4a V1?1343 38097 13IS3

to me w ~TI.ovoyof14 YV3(,3VI E

1: l~V4,3114 S

t 13 V2 0i: v lgV4 136 3

i 44

NOMA 141 1 14 2 1113v 14v 4

144 it 14 v in7al o

Vs 13 22 44 V3 tvV 3

741 12 13 14 is

V& 1 23 3

V3 11114

11 12 13

'1 3 12 i s

45

NOLL.F4 r43 V27C360) 2.1-APA-76 13:53

1 004ILE PRECIS!DN PltCT!Od DISTCK.V)

2 OIMEWSIO% v~l).Yf1)3 DOUBLE PRECISION4 R.'E"P

4 Rap.Do 1 181.3

6 TE.PXWl)v(l)

OISTsOSORT CR)

OM2 OFAM.2 OSONT

DIST 61 4 1 64 TEM4P 65

ARRAYS

9 6 y 15

DIS! I.

1 5 6R 3 4 7 S

T EMP 3 0 7x 2 6y 2 6

iP 5 7

[ 46

!S@LC814 V4f 127060) 23-P.76 13t"5

3 DIhhENSION NTA3II.TA1314 ~ OtML CISION 16602900160020S COPLC &AS

494L N&LANSOAlj1.I2,W3S _ COWOqiSN/ Pi3#4)@%3

LE ~~~JQCOALEN IM711'A &~e112 c~OAHe TU/C/I.T~.ap

- 21UCAL- YfIA

it TPlIINLID'I)21 AKNIMLICAR)

IL~~~~ri XAI1Ii3P(1)A6

33 XA(3)@(9I3.22-P(3.1)l/O6I

39 DGOYIUTA(2160[LXSA OGNIIhsXAMOOeBC _ _

3? O61u'ISTP1j.1.PEI,4))

fILE

--ai IfiI uJ.i li -1141 tFIIP XL?. 1) 111

43 LSOILtII-44 ___~ tP~4)P1J)fS

WL PT I jjA&Ljj!US)"11.)tflj _47 OG119lA(I)SOCLI

40 0 Yul TA 131j L

91 fxsVLOATIIX,).JU xSep1AwoD"; -

47

94 ~ ~ D Isfi .1 P*DS

66 PI)f9I-.

69 42S~A..l.STo aCperson'0457%, 4(upgySINV5

14 YEwWA3U.EIVIST"9es1

302

7

3

noc A -OS07 r~~~wC^Sl04 CO.S~lA

194 DwuC5*.C0SIts Vwis~ft2?*! I

IIOLW.4 F41 VI1f 1 23-APA-76 &3;96

its IDODIIts 029011.OSLE(trLOM?(t0')*PI

113 .l,3

its 42010lgDLt(LOA?(10110OPI

119 CICNPOCTgNw#TECPCPPLIuI. .0l13tit-prgSN*NC1DL.5.IR*e~ ~L../Iwe3D3R3

it I CJtu

lit (NO

CONISTIfi --

14.OS*L OUNNIES

COMo-ON

p 440N0 4. N ,RNM /#14 is lateC /-a yoN late lot in IRC 1-21L- 1AN I-#&g TA /ANY 191 rk 1ANT 1-2 LANBIA /A.N? /-a wil t-072 ..LtL

* PI /AN, /-6 As IG61f l /14 It .1934 lots il /cme lost Pit /some /00

P13 /GRN91-/3 P21 PG9'. /.I P24 /0953 /-It pi1 /coke0 lI. P34 /SNpeC /O13

- M& - NG DISThi 151 2 IFIX F60AT DI1LL 071.1 OAHS.1 0110? OIM.3 P0.2 tCmxi 0".j O.Mn.....1 N C(EP t"PLX 379.4 fFO.4

SCALARS

INT42 1347 Ox 1391 fly O3t1 My 1391 pit 0313 3 lEMP 1333 JAI 1214 1& 1 TPI lassl92 6 AN 133* 11*9 4 CIgNP 1341 OIL% s-I

"I9 I'll IN 31Y 1313 163 Ilia 0691 1364n01 1349 'ELI 13:16I 13:7 0113I 1370 Doty 11710611 1$71 INK 1373 II 1374 ys 1379 vs 1376Is 1377 113 14of 73 1461 COS 1 4* It a

49

0"0LC.F' r4o V27(3611 233400-70 1429

cc? 1493 PA I y9 P 1M2 1496 it 2TE"93 1490. 1496 19,? 1416 S12 i41 622 141341 14' 2 1.14 ' 1426 4 1421 ?'112 1422 02 12 1 1424 N., 1424 01 143I"2 1431 1I 1'3 is9 1 1 43 16

fit 43 OS 43 Si :.13 CCSG 1434 COS861 143,Cost 44 oI '4 113 144 CacI 1443 C 1444CH

MI 1:4 C42 1444"4 14 C :",o CIM9 1491

.2 142 C3 %493 11 s494 1C cc 9 I LA 9 3

Pat 1 92 4 12 031 2 92. 13

Ii c?" 1496 ITA 1441 A r 1

112

1 23: 11119 11 1262

84 22 1' a 1C3 111 121M2 94 IS g '9 4 95

cc? 41 43 40 at 192 113

QA4 1.1 137 7 .9 6

COF~ 18 39t 121 4741423 16 12 2

14' 3 It9

(7I 37 it4

C112 49 129

0#2 4 4 4 1 71 93

05097 7 1 2 2 1, 3

0 50

I

711 99 9? 1$' 1l03 36

fie 66 16o 11 i

rLOAT s .3 l 99 iP 111 s 119

7x 91 92 93 $4ra so S? go q

I C C 1 2 ?

cc 'll 119 Ii 111 11 113 114 11

ITll IIx 26 2 is 29 36 so Ivy

II 39 46 41 42 43 so It?

IIN 9 96L4S? 13

n 9 toWI S 15 614

92 S 19 q6

43 6 1o 46 07

.1NiL 1sP 9 14 1 1 31 31 33 37 44 49 46 $1 93 94

Pit 14 to

pit 14 1SPat 14

P24 1

1 i3s 6-

a1 71 9 4 113 0l7 111

Rig 4 ?1 2 M 1 11 ? II1

all 6 1616 it942 73 ! 91 11t I0 s$ 12

iS2 4 71 73 947 114 its

$Im 116 Its its 122

T21 611 It? 74 ? 1 5 111 199 1211 121 111 11

It. 1 6 1 Is 16711 I's

14 /it I 17 to 19

1 ill It 116

XA is 61X4 is 61 86 67

YA $3 74 As at Ol 9

ve 12 *2 86 of #1 e4 49

ys 93 44 45 74 4 71 49 99 94

I 3 1: 1 9 76.. .. .. .. 61 4 vo -if e 69

to l9 4 so 63 64 vs 76 F6 is it to Ot of 93 4 . ...

IN& 44 4S 46 47 4$ 49 92 93 94 Of

J ~~~ :18'

APPENDIX C GLDCDI

t 52

dinDCl-LfA - 42 V2?(SII 22-APR-74 tits# -

I DIPE431ON IPTDAT(33)3 COi'.OW /PLXT/ MPRM.xNRr.XTSN~,0ir~,T

2AMM.,AIMX#AIFT,AILT,AR"N.ARMX.ARfT.AULTI

7 4ADRNAORW.AORV.ADNLA EOUIVALENCE (IPTDAT(I)*NRP)9 IMPLICIT COMPLEX (C)

U OIMCWSION X(20),YCfia.2f)11 OImE'.StO4 Cfl(2#).CF?(2f).CF3(2@)

03 COMMON/REC/RX.RY**lRTs4SIfE

isCOwMflW /OROUNO, .1IIE(l.W(412I6.C16 COMMONO /AMT/AX,AytAZ#LAMSOA.OAK#DPI17 Co'."Of /VALl MRUI

It C THIS VALUE Of Two PI IS INITIiL11CO THIS WAY TO AVOID USINGa# C BLOCK DATAat OPt .'.26316530179SS44769-3 WAJTV(9.ulg2,)

23 2111 r ORMAT41 INPUT FILE NAMC:',St

HCALL) OINEC(1,ILIL)-31 WRITE(911 I2OA29 REA(211II) ILALTA

33 WRtTC(j.1gII) hLAIL34 00 3 1*1#239 REAof2I.1UII) ILABL

____ - - 3 - WM1Ttii6I) 1111 - - - --37 logo PORMAT(OA9.7)31 READ(lf) AOAEL(XI.t)IIF(IC(IFI.alE)39 211 READ12I6I.C9,Non?61 *X.RY#NI.RT,41 ICFRm1CFRI#CFR3,CFSI#CFSZ#CF$3

44 C THE CDIIS ARE CALCUATED* I45 C Wfll COI VON THE GROUND SUFACt

*~4. -- C ACDI CDI rOR IDtAL'VDPUND.PLAU47 ACONGSI.14OREAL( (Crtt-CFR3),CVRI)

*49 C-H5 C 4CrnP 11 THE COUNT Of THE RECEIVERP014TO

----92tF(N*P .4f,* 1) GO TO0 493 C

53

6LUq~lsF4 F49 V21131) ANE22-APR-16 ____ A1VAUI4

94___ - THIS SCININIIALIECS TH AXIMUMND MNIMUMNALE

so C USED IN THE PLOTTING PROGRAM TO SCALE THE PLOTS. AFTER T0997 11 RUN IS FINISHED THEY WILL 9C OU'PU' IN PLACE Of ?ME

i6 C INITIAL DUMMY RECORD-W. - - A02ISACOt

ADIXOsACOR62 ADINVACOI

44 AOINACDI-- t-__ AOftUACI

66 ADONGACOR-JI ADRFvACoR

I, Ryp~RYet70 RIFT.,'

72 AIrTvACODI1 APF'gACD%74 NMNuRE72 Rxioxnax

RX"! I. -- Ity r, 5"

*1 AIMTsACOI

91~ ~~~ - Ivmwa"! xu!4~K----

st ---- R L T, TMjRTNmR

92RT LT YN)R7 ~ R

04 ARLNCO 0.AM) INAO994 IF I ALT. AIN) AINMuACO

96 tr(ACO *.G. RN) pvmxsoR97IFACY LT. RM) RN COR

to irRY G. "YX) Nmx54

- ti C WE.NC LL~I£ . NRIA N? L

114 41R£92 1 *4?.31O4' A'.S102C

F I~FADDI .67. 451m) 4AtESA0OO

I V , P LT... 49h1 £ADMADflAlit 4rta.3 AT. &LINN An"Yeacoo

£ORL 34339C

12C 1131 It C?( OU'9

1L, Of THE REAL A10 'IDEAL', SIATAC

13 C 6000 O".£A"IC Coils lWITi ..V R(CLUyC' M420l'it5

126 GO3 EuT ltlis? C 414'£ o a.

It$ C THE. OUIP"T 'IL9 IS WMIIY'% £142 'HE PIOS£W 1194£I4.

13 6 CALL RC'II(11,4 ENO1 s'rI,0 A.W I1

04 43333231011 IT

5)9 2131 I3? SLT /IA 1 /.12£861 2 /4'IPPOSO2414 3 12119116009 4 PI 21642269

£21 I,' /3 £ 1 lL ? 13 'ILI' 1- 111? /* 3 2 'Ll? 1-34 MILT. lIL Y /.4

;I £01 /LIT 1:34 £If? lILAy :.3 414L p1

2 /. 3 /I isC I 4x /3CCT /*16Ia /4 L . ST Ly CC &. 41 /zos' /4 I :?"MAX CJ* MIL a A fll/31 ~ 1 /9/.5 42 :4 '/*I 2 1:2O1.*4 l ,,SO/h2 -7 .11 40.? I.

1111C4. /-2 AT /A / / . L41119 -/AS? /34 349 /14.? 4 I /44.1 /.4*.0 1 ", L p W I iti., .II 14? "', P .

55

WQ4U .JV f ALP"O. &LPNI;. 9ILt FCILI WOO. rL6U?. FUN't. INDs. 4941. c19.2 Env en.2 MIKA$

WAON. DhfI -1c ate". momoc. cni

SCALAS

DOt IMI 1447 TAU 975 1 its LARM3 -149L sit at 0 wy I "1 2 a, 4OftI 373 core? 979 crQ1 977 Cr11 60l Crt 03crs, "S AW #a? £602 611 'sIp 1 00wl

hof1 12 To2 73 &DIN 32 40: 1 00 ft4 F 14 22F 17AT 3Wry a,00

AN"% 47 I A O13 I A OUT t4 OIL 1 tySA 11"

%tug 4 IA 116A

ARRIIA

WE Iti

cr11F 3 64

cr32 3 It?4914 3 '63COWN 35 11 116

442y 1 7

AIL 3 93

IlISL a 31 33 39 14 3

419?1? 2 3 2 1 13ANTC 14to1

MYS 3 A 1 4

AN~l 13

Al 56

3

11? 3 3 9 1 9

9jL? 3 9:

Tooi 3 29 9To 41 1?3

: hh 33 11'.

Rho 3 36El 13 6 7 0 7 t 2

3 3

9233

3 0 34 392 o e 2

9 3 99

33.3 39 10.

to3 39 02

it1' 3 35 3 34 3

2 339 14 13t

I 3p 39 4

I2 399 11 3'?233 2 2LfIot -7

I,

t

~ II APPENDIX D GLDPLT

I

jK K

GLflPLT.r4 741 V27(360) 22-&PP-76 11:6

I 0140LSIOd ITT*C(3,21a DATA ITYPC/ISTATII.IC YAL'.'UES%'OYNA"'.'I.: W'LLEsI3 DATA PIO.PMO/COIO'.'b4[OD'4 01"E%610t4 SPACECA),14Xd2.a)

9 DATA SPACCl...2.S@./.

-0 CAT# I~x/ AOIV* Ll AO. ADAM,. *1R , smL ,01

7I DATA PXC'd.LCW.PT2.I.,21/

1I DIMNSIONJ IPOY1(33

13 3ANAMEIT,7RCO, YILC.YOC.AVS.DWI.4,OAXOL.P.21463 EgAVALENC INP FI N NDAIS"C)'

29 CALL PLOYS(IIUF,360.1S)21 3 WRIMr9.106

23 RAcaCs'less) %ANc.gSw.TSY.IoUwa---Il too rORMqAT(AO,II.7)29 IF(iSv -0T. 1) GO TO 234if Ir'IlY CT. 2) 90 TO 21427 IF(ISX .LT. 1) GO TO V34if IV(I9X 9GT. 3) GO TO 24429 CALL LT3,?.)

31 CALL PLOT(St,1.,-3)

32 CALL IrILE(23.NA0ME)33 READ(20) IPTOAT34 wR1T93.1102) 9NRP39 136? romaqTi* TWERE AFE',19,' RECEIVER 0OI14'S'"./I36 WR1TC(3,1163)37 1663 OMT1x'I'9.MX.x*hS.XeA ',3$ 1364 rOm4AT(1XA5,lX.4F12.4)39 WImTC(3,11UI4) PRXUXP4N,RXMX,RXrT.RXLT43 WAITC(3,1094) PRY.AYNdPMm.A~TT .L T

f41 hRITE(3. 1634) PR2.M.IMNIMX.RJrT,RFLT.9WI?(3,1664) PAT.OTMtN,ATNX,ATFT,R!LT

*43 WT(3,1164) PA!, AIMN,AIMX,AIr~ PAiL?44 WRIn 73, 1364) PAR,ARubN,AMK, R FT, ALT

* 45 WRTCM1.14) PIOoA0I4., Oll. AOlF,AOIL46 WIT(3.1604) PRO.A0RNAnRX.ADRFAORL47 GASOuS.41 ~ GASUPI.49 GArjh3.91 00 7 11:1.351 REAOI(fl,11I) ILAOAL92 WRITM(3111) ILAIL93 13 ORMAT(IX#IA5)

GLOV'rTj IOU V27( 363) J2.A04-76 11834

9413 OAt09

99 CALL SfP1OL(1..6..2.1L6UL.98.p4@)90 7 CALL PLO,(.3.0.,.3,97 CALL S~O(.3.2!YC1I~.3.3Is CALL PL0Y(2...31

Al T~EPPse1?(XUON.YY68 jr((T[0WP -0. 3S93.1 .04. ('EMoP .67. IP?21.)) GO TO 663 GASuSGA5UOC64 GASOOGAS00CO

60 Go CONTINUE67 1*i0i

- - GO Te 0P@4931) ISV

72 GO TA 3ii73 3 O'tUY(DCO74 OV1(t)vmO73 332 CONINtUE

76 ~GO T" (299.291s21 ISI

__m. 28 OXis)ATAM2(l.SOITIZXOYI)O3*7.25.3

79 211 OXC!)vXso GO '0 199Al. 292 OX(11s? gU2 GO If 199

iti$ IF:! IvEC. 1) GO TO 19634 0041400%(1)

64 16o1 rOmWT5%.3F)IN I *Lys 26081 GO TO 1

96 2 Pr(I .0T . 2) GO TO 391 YLEt.CSAMAXA1PqKAU(OUN).-AIMq4#.)92 II(RSIBOUNO) LT?. 1.1-4) 60 TO 10

93 YO[LoYLIE4694 00 7111.1 it YL[E4S@Af4&X(YLE4G.ANWX.ARM"4)06 VO1L6FLOATc IrIX(YLCN91VLVN))37 YLC[4ftvYOfL*VLEti$1 11 CALL AvTU3dU..3..-VLCdG.VL[t4G.YOCLYLtWoti I'MICROAPRS.12#.9..YSC3

III !IP1IXALOG11cOmAX-Ow1N~).IJ

lot 00 Ito J6.u14111 DE OLIIPACE(J)OPOW164 IThIr!V(OMAX/OEL-l. ).I-!IFIX(D1t'/OCL)us3 I!(J? .0?. ITIC: Go To 121110 120 CONTINUE

It

AUUI9L.4 -04 9r occl0 1.ABB 16

**I Ifo t3 n ) a 1b 1 .0-i .1 1

it le.

in* It *Lo-h .. P oi. ..

31A 1506l1& @.h Ci18

0?3 CA.,a 0 ~~cWs I(LI9*i

113 'A.'

1*4 4 C#,,L EW IDt')1S ,(/S Z1393U'J.' .'~ *

set@@ of i o34 1

I~ 7. J. 4~) .0 3.11000906

3 1 ...... 3 ...... 0 3 83" os

CLOPLI.Fi F40 V27136f 22-AVO-76 11M6

- ruos[ *Jorr ALLIS. PLOTS ALPHO. &LP!. ItO. INT. FLOUT. FLINT, PLOT IFIL9 93141. STISOL tN0.

see? 4?12 13 w1 AUX&~ ass FLOAT 1113 A9183 404111 101 P.3 WLl?, 1917

SCALARS

p. ip 11303 ~ PRO 13 IX 13 ply 133 pal 1134PIT 133l, P', 1236 Pl 1337 XL.C. 1343 YLIN 1341111C 1343 ZINGC 13243 'DCL. 1344 Tic 1341 19114 146aCL 137EL 1396 I 1391 toSC 1391 33

44P * Sle I WSIN RMAFr 3 NUTL?

*INN 13 miry 13 NIIL? 14 IT4h is *TNd 16ltry 17 OTLY 20 At"" 21 AlM 33 AltT IIIal67 24 £6.11 2S LIII 24 ARlI 27 ARL? 31AO14 31 A011 32 LDll 33 ADIL 34 ANIN 39L00% 34 £011 3? 404L 43 6490 1341 SASU 1343AAGN 1243 I 1 1204 v 1to Y Laos

? 113 C 1271 an 137 C 07lt"P 1379 POW 1274 a 177 1? 13, seism 131

ITYPE 1)63 SPACE 1316 Wl 1314 IPTDL? I 164L 01OTI 1332 ON s292 ny 11172

62

A06 1 45

LDIN Is 45

LOIX 1: 46LORN 10 46LPlL it 46

ALI! 1o 43

LILY 16 431

A,.. to 43 91ALOCII I0

4 MAXI 8, 91 9

LI!? 1: 4'ALL 1:A.ll Im 44' f

SOUNI 23 91 92 129

DEL0 19 091 0,II0MX itb # 1114 6s I0:1 to 4 76 01 04 05 1 19 14 2 2

9?j9u 3 I1s 110 1 3 12401 17 7' 74 116 123 177 129

Fi A~L 90 ~ ~FRD 19 114

* OCN 49 65 it? 11a 119G600 47 04 110 119GASU 40 63 117 119 4 1

131 6, 70 7t 73 74 77 79 01 93 4 9 4 6I9M1 122 170

IAX 4: A 111

Iii I lo 4 I? 'LIII. Is 31 q2 Is

MAT0£ 29 14 33

I3v 23 77 ;70 70 illSy 23 25 P6 57 60

I? 14 1605

TYE2 37

63

5 102 1N 122 123 124 128 1299APE 23 32

to 14 34PA! 7 43969 7 44

PlO 3 4sPLO

T 29 3? 96 90 112 113 S19 124 127 129 131 133

PLOT% 2__._ul 111 193

PRO 3 46PRY 7 42P1 7 59PAY 7 4FPRE 7 41

9 99 71IRTT to 42

TLT to 42

97149 IS 4?

M99X Ii 3911PT 1 41__ YLT is 41

1YM4 1: 41

RELY 1 41

_.R,111 1: 411

SPACE A 5 103

SORT 61 77

1 99 81TEMP 1 62

s 61 77 791LI" 16 111 113 131

XIC 19 111 115 124 127 129v 99 61 77Y014" i9 93 96 97 90VLIN 16 96 97 96 112YLkI6 1 91 93 t9 96 47 to

* YSC 19 9o 119 124 177 1299S9 77

_. st 59 892P 59 90SP 21 90 1324 122 124

- p 1. 121 1307p 5u 54#_ 5p 125 131top 92 95__ P___P .... 94 90

63p 62 66__A P 51 54

161P 52 53_12.P 132 l6

1210 M3 137

199F 78 so 92 83~Ailp 76 77

26 76 79__212P 76 61214P 25 26 27 28 133IM - -_1 U 69

66 68 731P 72 75

_loP so 165IsliP of 116 1231652p 34 35

.I.MI.3L--.--U 3716P 38 39 40 41 42 43 44 45 46

-ins? 21 241066 21 22

_AIl7P 119 120

r4f V27(36f) 22-APA-76 11804

S.SURROUTINE AXS(PY.lA.MNDL# INC CC NCR.NOEC.PWIeELW)

2 DIMENdSION *CO(I)3 ~ H 1 Y.10

4 OELA9SIGN(OELA#(AMAX-AMIN))

WIS.

45 uMSrI( (MAKAMNwdfLX.9

I 31629pW.[., 25EX.0

CI4 v(A5(ANW)..ILT1)Q Q '

U3 20ANUM.Nw/LT)!1315

&7 IP1INCHW.T. .) TO . MNCTNCTOT74)

is CNT~ rLATII)W221.w~39 GO 7t 105

45 ~ 1 CALL PLO(XIX.W2,1Y.W1 2

DEXX.NDELX11**WRA29 V4ANCGM14DEL

Yom

OLI.F4 r4o V21(36rl ?2-apa-76 11164

CALL SYN6OI.(KXC.,IC, .lZ.PCO.9.112,4C1

66 ~~CALZ WMENK(Q70!AI67 ~~CALL 'OLl...1.4*1...25

is CALL 46C61 (xo.yo.xClX Wo SQ*XXC-.9s-19uSW2

66 V aY YC.67)A61 CALL 16C(,..,P69.d,162 REUO4is 61 DELN * 1.E-3.1,..Pa6,CIdCM64 No'w C;is

as6o T1'C9g11u) AMAAAMNOLp6.Sfh)Z1N66 1o6e IopMA1110.27UI42IICIEN? NANCE FIR AXIS

- 67 I1/1X.4G./.1X13AS)

66 CALL EXIT76 ENM

P 179631463146 1 16740611.1564 2 166517426642 3 68174631-631 4 101699006635 2614676666,6 6 174631463146 7 Imes14624 1: ?646314631;4 t I 11 666666212 so666p666626 e 175753412172 14 17771243666 16 96634131 16 177243:6661.7 20IL24413160 26 po6636666666 21 6666t66663 22 7191$16412.1 23 17664 16670$4

GOBAL DUMIEIS

X6 66, 67£6 666 LIN ::1 KLA 662AIIC- 6:63 SCa 664 4MA 663 4D rC 6 366 667WWN__ All167

* SUBPROGRAMS

*SION. IAS &as IFIX lLI£?T PLOT CXP3.2 1532.2 £6141l N116(6 SYM26 66161 ALLIO.: 46.34 ALPWI.,

SCALARS6

£I6 73 :7 :74 IELX 7 IA 6266 6A"I" :61 61 676 2 67? W2 7'6 IIS E. of,New 762 NCR 606 P6 66 CINCW 7613 626CM 6634 764 A 4C 765 II T 6 :1 67 DEL" 676AhUM 716 I 767 v 716 Xl 711 I 1

0 1 713 16161 714 %Ole 666 CIITt6 716 OFF 716wC 717 yC 72f IS? 721 SIC 762 Tye 725sQ go 24 To 729 vXII 726 4 717

$CD 644

A"1 11 12 so 3'

&INC" 1 it 1

4 -J 4 &2 t3 is *mw31 1 4 12 13 is 23 69

64C 18 22 37 As 49

23 2 38 332 3 46 9

1 2? 3 4 *9

31 33 34 36333

1CMNC is 0 91 6

916 1 9 AS 6OI.aLf 1 22 6362

9U9 19T 16 2738 9

"TF 39 42 92 42 46

P1 21 3 44 49 4

9y'q8S 94 9is 37 24 37 332 4 9 8 9 3 6

mNR 16 98 1 6

4EX 2 to 43 4 41

"UIt 46 461 4m4 26 41 92

II it 94 9961 63 6

l 21 2w 3 44 49 44 49 48 61 s3 6

1a 21t 43 42 44 45 47 93 3 5 76

W3 48 14 93 2 52 5

-- N M 96 57 961

x 9 1 /2?7 4 99 6

1 6 19 21 43 4 4% 6

119 37 54? S

Y* 49 2 43 5

1031 )9 36

APPENDIX E FMAKE

IMAKJ4 F45 V27(361) 22-APR-76 11114

I DIMENSION IDUM(2)2 DATA I|UM(2)/'.OAT*/3 CONMON XVYY.,!.TT4 DIMENSION ILARL(S)5 DIMENSION X(26),T(?).(2o)

A-. - IMPLICIT COMPL.EX (C)7 OI.E'NSIO C1(2F),C2(2l),C3(2@)

- 5 COMMON /GROUND/ K, (2g) ,Xil.2)/hX2(g/3),,2C6 l[26)IEL9 C

ii C THIS SECTION ACCEPTS THE INPUT OF THE SWITCH JOKE CHARACTER) TO

11 C O[TER'4Nr WHAT KIND OF FILE TO GENERATE.-. _U C (BLLNK) TO LO THE PRORAn -

13 C V TO SET ANTENNA OFFSET ANO XMISSION WAVELENGTN

- . 14 C G FOR GROUND OESCRIPTIONis C P FOR FLIGHT PATH

1 C A FOR ANTENNA OESCRIPTION17 2 RIT((M113)

- -a.. -- REAog3,Ii9) NAME .t9 IF(NAMC ,E.' ,) Go TO 3

.- 1 IF(NAMt ,O. 'VI) 00 TO 26

21 IFC[AME ,EQ. '0') 00 70 21It !F(NAME ,Q, 'P') GO TO 2223 Ir(NAME A.EO 'A') 00 TO 23

-.-. WRITE(S,1012)29 GO it 2

24 C27 C THIS l9 THE INPUT FOR THE ANTENNA OFFSET AND FOR THE

to C TRANSMISSION WAVELENGT,. qOTH ARE IN FEET AND ARC FLOATING POINT.

-REO5.LL RIAL-5,11-). Y--RL31 GO T2

33 C THIS SECTION IS rOR GROUNO DESCRIPTION

34 .1 WRITE(5,1114)35 C.. .C THIS IS TO INPUT

THr FILE NAME FQR GROUND OESCIPI D!i.. .

37 READ15,189) IOUM01.14 WRITIE 114)

39 C4C THIS IS TO !N0UT 'Hf PLOT LAMEL FOR GROUND OESCRIPTION

41 REAOIfS9.P) ILAOL

43 C44 C THIS IS THE INPUT rOR THE GROUND STRIP COGECOORINATESdS C a DELTA X-COOOINOTE FOR CARTESIAN AND

44 C RANGE FOR POLAR COOROINATgS47 C li DELTA Y-ClORnINATE FOR CAOTESIAN ANDi C USUALLY iCRO FOR POLAR UORINATES

49 c THETA NERO FOR CARTESIAN COOROINATrS AND14 C THE CLCYAION ANGLt FOR POLAR

C C THIS Iq T04E INPUT FOR THE STARTING EOG OF THE FIRST STRIP92 RE&Ott,1e1,EN~v2) V,li,TWETA

93j X216)wR.COSO(THETA).21151N0(TNETA)

Li 7

EHA.rfflAf r42 V2?t68) 22-APRyTA 11114

94 22(63R@INOTWETA)?.COSOT4E1A

96 WRITEC.102)

I6 C THIS IS THE INPUT LOOP FOR ?'4E REST or THE STRIP EDGES. T1UEM -- C. EDGES ARE THEL TIAILINE -EZE flF.IME. FttlEVI ASlIPAlil IMff -

60 C LEAvING EDGE OF THE NEST. THE LOOP WILL CONTINUE TO A IhAK!MUM Of

C TWNTY STRIPS OR UNTIL BOTH 'Rv AND #IZ ARE EERO.

621 EAgOn2LKoig*N.SI RMflTWTAt~D0TLk7-3- IFKR..) GO TO 674 IF1O 4E6. G T

76 GO TO 11- .6--- -- --4

---70 C IN BIXaRY AN CL OS THE ILE. FLO4d THRETURST TESICHPIT

72 IdRIKLTu,1) GO TOL73 WRITE(6I,1 .W,)

64 GO TA 4

17 22 WRITCKI.102)

95 GEO TO 115 ~NI

93C THIS IPES TO CREATEO THIE IFRONE OES NO OLRPATS EIT,--- 1C TIS BISAR NCOSYES THEA OILES FLOW CTHE R ES. H WTHPWso4 CALL OfILC (21, IUM(1))

6.1 CAU LL L(23)

as C-- 1 C THIS IS TOE OECTEILE TOR .JVRAXAfIM AI !f

----1 22 RITIiS.1.61I$6 CAs51 -C TH !IS INPTS TIIPU rLMC PATH FAIL I ANE -AC-UXU L-C-

itI C TEFL

164 CALLOr,1I5A ILAI0mL )

96 CALL jOvSI1ILAMI.S)166J WRITt(sI6U3l

Iqi;16 4EOSo.9 ILA

1

J& 4m V27(362) 12-APA-76 t111

17 C_. .,C THIS SWITCH IS TO SELECT EITHER sTfIGHT LINE FLIGHT OR13C C HYPERBOLIC.' 'C INPUT WILL SELECT HYPERBOLIC A4VYThIG ELSE WILL

-All C GIVE SRISHT LINE.111 READ(9S, O9) I

__JLL 1_11 .M£ W. 'G') GO TO L2

113 C_-4 C THIS 1 THE HYPEFBOLIC FLIGT ECTION

its WNITECS. 112115 IC.I|

117 C ?NIS IS THE INPUT TO OESCRIBE THE rLIPT__I L -.--. C Im STARTING XJI- I"UE. ..

ISO C wr ENDING X-COOROINATE

_1 C 4 WEIGHT OF MAIT ELEMENT USE TO EETC0T NE GLIAI ANCGA129 C AND EIGHT ABOVE GOUNDOr RENO CO SURFACE AT CLOSEST-In_ C APPROACh4

IRS R[IE(S1. ) X.XrM-- _i124 CAL JOVOA__

In C THIS INPUT IS RE THE FLIGHT PATH OUA4T11ATICN PARAETN S127 C E K IS THE NtA OU R F POINTS TLO FLIGHT PAG PLTH37 12# V 1 THE VELOCITY (FT,/SEC,) Of THE AIRCRAFT&If € TAUJ 13 THE TIME CONSTANT IS[C.) rOR THE CYNANIC COI

__ III .. RELD|S,127) NKVsTAU

131 (fNW.K Lt. 0) CO TO 22.... C ALL JQVWO(1,TAU*I,1)

133 C-_--2I4 C THIS LOOP GENERATES THE COORINA?[| Or THE POINTS ALONG THII0$S C HYPERBOLA AND OUTPUT$ THEN To THE FLIGHT PATH FILE

_ --136 A. -*-*-5 H H- e ? ... ..

139 XXSXP

141 T781.IA1 XOLuS C(IjgX)143 26L3SQRTCA1IVEBKX1)*A2)_. 1 44 00 13 lal,49

14) f|es nq(fA1-XXoXX)oA2)

_T SO1_4#T TEHPLXX-XOL147 TEMP|Ial-eOL148 TTT?*SgRT(T[HpoT[.P,,TEMP *TEMPZ|/V149 CALL JOVWO(I,XX,4,f)Ls XOL&VX

ImXXQXWODX

t113 13 CONTINUE---- inL4. - O0 T 14

199

• 06~q C T41S SECTION 13 FRo STRIGHT L4NE FLIGHT19t 12 CONTINUE

__ 1|1 WR|TE(g,1114) .

S 4

.1r 1.f .. F48 V27(361) 22-APR-76 11iM4

169 C THESE INPUTS ARE TO DESCRIBE THE FLIGHT PATHC XX STARTING X-COOqOINATE (FEET)

162 C YY STARTING Y-COOROINATC (FEIT)C 11 START!' I-C0ORDINATE (FEET)

164 C Xr ENDING X-COORDINATE (FEET)lag CNDING Y- -lf~h! LFELL!1

166 C Ir ENOIG ?.COOROINATECi NK NUMBER CL POITS ALONG TGO F4140T POTH

1, - C V VELOCITY OF AIRCRAFT AFUTAM.S)16 . c TAV TIME CONIANT FOR DYNAMIC COI |19)

170 R5AD(5,100 XXYYPII

172 R[OY(19l16) xFYryr117 WRIT[U5,1116)174 R[ADIS,I8IT) NK.yAU

1A"-- IF( .L2, 8) G2 TO 22176 CALL JOVEOl(1 ,,)177 rm q 1. . . . . . . . .171 OX@(WF;XV)IFN

__179 OY-cVF;YY)IFNtoo ol,(IF;21)/FN

-In OTeSlRT(OXoX*DY*Oy#DfE*V/vt

1O2 TTO 2

1S4 C LO C TO GENERAT E X-.Y-. AND A-COOOINA ES ANC UPUT T[E .._ --ill1 C TO THE FLIGHT PATH FILE

186 00 1 IvINK

too XXBXN*OX

-191 1 TTTT*OT_. C] THIS CLOSES TWE FLIGHT PATH FILE AND RETURNS TO SNITCH P014T

19t4 14 CALL JOVO[L(l)

Its - GO To 2 .. .

196 C197 C THIS SECTION IS TO GENERATE ANTENNA DESCRIPTION FILEits.19 23 Nof

- - IIIWI(5,167)to4 C.~22 .C~ ... INPUT FR ANTENNA FILE NlmE212 READ15,2869) ILBL

,164 c. W - C INPUT FOR ANTENNA PLOT LABEL266 REAO(glIS) IL49L

2ie C

_C9 C THIS IS THE INPUT FOR ELEMENT DEICRIPTIONall C W(I) X-COOROINATE Or I'TH ELENENT (FEET)

.... C l(I) I-COOROINATE OF I'T4 ELEMENT (FEET)212 C Cl1(I COMPLEX AMPLITUDE Or CARRIER COMPONENT Of 1'?N CLINENT

_[..JAKIE,4 F43 V27(360) 22-APR-76 11114

11C C211) COMPLEX AMPLITUDE Of 156 641 SIOCIANO Or lTN ELEWENT... c2 C3tll COPLEX #"PLITUDE OF OP 41 $ID[|ANO Cr 1iT14 ELEMETm

219 C THE PROGRAM WILL LOOP THRJ 10 FOR ADDITIONAL CLENTS UNTIL A-__216 C lEQO IS ENCOUNTEREO FOR 1(4)

17 URTrC .01 17)21ALI ... i RAO(5.2111) X(N)#ltN).CI(N).C21N)AC3(%Ilit IF( R() EQ0. 8) Go T3 9

_2211 C221 C THIS SECTION oETERMINES THE v OFFSET OF EACH ELEMENT. THIS

S22 C 15 kNnINALLY YN BUT THERE IS A SMALL CHANGE (LESS THEN ONE NAMENL(GTN)213 C FOR NEAR FIELD CORRECTION PURPOSES-22-- SwoStiGnti.&IMN-li1))

115 IrON .NE. 1) GO TO 15

27 F9SOQTIYP*Y6*l(1)*q(C))in GO TO 16229 15 XlxYP*SORT(FeF*?(N)*oF())23m IF(XioSw .LT. e.) GO To 7231 19 XPsY -9O TC((*RL)*(r*RL)*|(N)e|(N)I

_m IF(XPeSW .LT. t.) GO TO 18231 rer*uLOSW

XU.XP23 GO TO 19236 17 FF.RL*SW137 GO TO 15

____ Y(.isYI-wI139 10 CONTINUE_---X41 MBN*l

141 GO TO 11

143 C THIS SECTION 09'PUTS THE ANTENNA ftdi- 'PTIO T+ .-tME01[

2 49 C PO14Tn146 9 ELM- R

247 CALL OFILE(211ILRL)14 _ WRITI(18 A9L) IlL

249WRzTE(20~)

_ -1 WRItI(3.11o) ILAIL191 WRIT1($,2*IL) (X(IhYI, I 6I),CI(I),C|IIIC3(I),*Ia1NEL).. CALL RELEAS(29)293 GO TO 2

299 C THIS IS THE PROGRAM TERMINATION POINT

1!:t STOPI. le 1012 rOMMAII'. UNKNOWN SWITCM,')299S 1113 FRMAlNT(' INPUT SW|T Wll,$)-noJ 1014 FORMAT(' INPUT G"CUNn FILE NA4E;lj$)161 1911 FORMAT(' INPUT FLIGHT PATH FILE N,.tt,,$l16 1617 FORMAT(' INPUT E6EMENI' VALUES..',/)

163 1916 FO.MAT(2wgAS)164 114 FORpAW INPUT GROUND LABEL',/)169 1l9 PORMATIGAS)

trggJ4 F~a v2713611 22-04O-76 11114

Iff to 100 "0Na"' INPUT sCaur SICco('sS. 5'a?471" rap" £b6T(ISW.%I.at7 ': SiI COuiICUIVEL' fI"43 P £10 I INCCHNTS? C11 Ts14*800 2 k.(6CfM £1.0 ANGCLE F. 'OOj£O%4&L 11i f4$4[(9. SI004001,.

dC 113 fDiwat 0*' 8 0111r '.S AL6.WO. COPPU?£'tON "ILL -.1.273 1 PRCC "IT' 0A LRC£' 0£'s. /374 102 VOO"£?(' ..0'273 If03 FOAM£?1' INPUT' FLIGHT 410i TITLE'./)376 10:0 rgompt1 INPUT rLIC.7 *&Tm P(.l

...2 IM0 fRM00*IALJIll$ 1010 rospA,,*. INPUT3.C~.11

V3 1011 TDBM£?,e INPUT Y*.kA"6Ol£1%3

3001 1NS4 I3£ I PeUI Or.I2S

lot 1000 VRoMhA, :4PU? 6 cr 0t141s. vF.cI".vv 'I-I co1.ssyme'I%12u0 I80? "Dof q?.2F1

It4 19 OFN0wlrl I'sPU' £'if1%h rl'd N'.'L.I

817 2001 rOR*I£?IF)

P 2:10442FIV0I 1 41*904211P 1 439614128181 3 S419948891, 4 49104491109

d spe00efJ614 G foroseOaltl 7 t,0t0 013 10ol to 300is0 1 9 0000000164

is 2014erI100.o

£1 /GROt0/.1 el ,1Rli.o/.29 XI /GROL'l0I.sl 18 1SRCU's0*76 IEk. ,BdOuNsO,13

£ - *RILCRAIS

romoc. .jorr c'st. eCOS oz'sy Or..c SINNlO. RILEAS .JOVS' JOVWD FLOAT? too, JOWNEL $ION EXIT

SCALAS

%A"[ 1410 TO 1411 4L 1412 0 1413 11 1luCIA 1414 4111ili 1419 1 141£ 2 1417

1.1 14042 t421 11 142 I2 IIT 3 101. 1434 IOL 1411 ?(INP 1431 TEMPI 0433i f 1414 IF 1431 Fl. 14'.* 01 163? Of 1441m, 1441 N. 1447 21.0k 1'-.i 1' 1444 r 1449XF 144£ MEL. 144? RLk 123

aPRAYs

r vo V2?SGI2J 6 12-;PP-76 11184

lu 143 143A2 13, 143 145

cl. -- - -W - 20) 21-. - -

ca 7 216 249 251

I its 249 251

COSO 93 54 it 71

OR 136 152 1?$ 1let 6

-Y L A 143 7 1 399 2 6

119a7, 229 231 233 236

bLAUN - -- IiI 3

-i%*6 4 41 6 1 14 o 26 14

us- in 241.806621 194

.80660 its 132 149 176 %7 6 0 7 2 i

6l 1911 2J' "I's 2 19 t 2 225 4

MAKE uI 19 26 21 22 23611 346 241 al25115 17 1

63 130 131 136 144 7 17

hwlar 96of LA go 94 247

4 Ill s3 44 62 63 70 71

.311uk is to 292 3 26 14

OL 36 136 137 231 23 23 34

$116 53 SA T6 71 3SIR? L4 15 146 M6 227 229 31

IN to a 1 236 22 2713 236

IAMIL I3l 131 11' 17*YEN0 146 146

goII 63 3 94 62 6 7

97 421 146 16 191

V 13! 146 17' 101

39 214 249 256 I 1 136 129 221 930 2' 3

Xl 6 66 62

K? 2 S 3 of217

ROL 141 146 190

Il1l 134 1~ 4 146 149 156 152 17# 171 167 16

9 22* 236 24 21

y 6 36 136 226 227 729 21- 236y, 1 72 179

y y4 170 179 161 16 i 224 P7 229 2in 29 3

11 6 69 9222 6 ' 9 71 92

172 '6*

14 3 1. IS3 34 62 64 76 71 143 147 131 371 111 19s

11, 166 291

29 17 45 31 32 62 65 04 13 23IF L: 2564* 66 74 90IF 43 64 67

:IF 219 246

Up. 62 7612; 112 19'

2 1 23321* 21 239

1?? 2 26top 3 23? 2 138 7 7

13 2723

1X7 199 29'266 23 24

164 36 256 22 13 7 7 7

'663 Is171 2.

37 4166 166 2710906 28

1L1o* 113 276

,loop O4 236

all3; 17 2596 17

1012* 24 2681610P 7 25L114* 146 26^

Zi:Li- 21* 26 1

260%R .116 '31 26'