copy of dnv fire model

Upload: ilmu2

Post on 02-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Copy of DNV Fire Model

    1/15

    by Sissel Eng

    DNV Technology Services

    Dynamic depressurisation calculations

    LNG regasification unit

  • 7/27/2019 Copy of DNV Fire Model

    2/15

    Agenda

    Project background Presentation of results

    HYSYS dynamic depressuring unit

    Service provided by DNV TS

  • 7/27/2019 Copy of DNV Fire Model

    3/15

    Standards and Codes evaluated for LNG regasifications systems

    NFPA 59A: Standard for the Production, Storage and Handling of

    Liquefied Natural Gas EN 1473: Installation and equipment for liquefied natural gas

    design of onshore installations

    IGC: International Code for the Construction and Equipment forShips Carrying Liquefied Gases in bulk Code (Gas Code)

    API RP 520/521/14C NORSOK

    Relevant ISO standards

    DNV rules and offshore standards

    Other class societies: ABS, Lloyds SIGGTO LNG Operation in Port Areas

    IP Guideline/Scandpower guideline

  • 7/27/2019 Copy of DNV Fire Model

    4/15

    Background

    Compare API methodology with Scandpower Guideline

    in general

    Investigate thermal effects during depressuring of LNG

    processes

    Investigate dynamic depressuring utility available inHYSYS version 3.4

    Establish a procedure for performing depressuring

    calculations in accordance with NORSOK, ISO 13702,

    API RP 520, PED

  • 7/27/2019 Copy of DNV Fire Model

    5/15

    Typical regasification unit

    Two stage heating system

    Capacity of one skid: 50-210 tons LNG per hour

    Length, width, height: 11 x 4 x 8 meters

    Operating pressure: 40 to 130 bara

    Locked-in volume approximately 1 ton

    Initial liquid inventory, varied from 0 to 100%

    No insulation

  • 7/27/2019 Copy of DNV Fire Model

    6/15

    Comparison heat absorption models

    API heat absorption equation per area (API fire mode)

    Heat transfer per area, taken into account radiation,

    convection (Stephan-Boltzman fire mode)

    4

    ,,

    4 )())(( tTtTThTq OSSOSfrfS +=

    82,0000,34 AFq =

  • 7/27/2019 Copy of DNV Fire Model

    7/15

    Agenda

    Project background Presentation of results

    HYSYS dynamic depressuring unit

    Service provided by DNV TS

  • 7/27/2019 Copy of DNV Fire Model

    8/15

    Comparison API and Stephan-Boltzman

    Pressure profile

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    0 200 400 600 800

    Time [s]

    P

    re

    s

    s

    ur

    e

    k

    P

    a

    API

    Stephan-Boltzman

    Pressure profile versustime plotted

    Initial pressure 60 bara,and 60 0C

    Initially 50% liquid filled

    Depressuring orificeconstant throughoutsimulations

    Graph shows larger

    evaporation rate withStephan-Boltzman firemode

  • 7/27/2019 Copy of DNV Fire Model

    9/15

    Comparison API and Stephan-Boltzman

    Vapor temperatureversus time plotted

    S-B fire mode shows

    higher temperatures

    Which model is correct?

    Bulk vapour temperature

    -100

    0

    100

    200

    300

    400

    500

    600

    700

    0 200 400 600 800

    Time [s]

    APIStephan-Boltzman

  • 7/27/2019 Copy of DNV Fire Model

    10/15

    S-B compared with experimental values: vapour wall temperature

    0

    200

    400

    600

    800

    1000

    1200

    0 200 400 600 800 1000

    Time (sec)

    Walltemperature(degC)

    Calculated

    Experimental

    Experimental values presented by NH/Sintef at FABIG 2003

  • 7/27/2019 Copy of DNV Fire Model

    11/15

    Results: Thermal effects

    Fire mode selected: StephanBoltzman

    Heat input according toNORSOK fire

    Orifice sized for colddepressuring. Down to 6.9barg in 15 minutes. Orificesize kept constant throughsimulations

    Initial pressure 60 bara, initialtemperature -60 0C

    Liquid level varied from 0, 25,50, 75 and to 100% initiallyliquid filled

    0

    5000

    10000

    15000

    20000

    0 200 400 600 800

    Time [s]

    Pressure[kPa]

    @ 0% init liq vol@ 50% init liq vol

    @ 100% init liq vol

    0

    100

    200

    300

    400

    500

    600

    0 200 400 600 800

    Time [s]

    WallTemperature[degC]

    Vap Wall T @ 0% init liq vol

    Vap Wall T @ 50% init liq vol

    Vap Wall T @ 100% init liq vol

  • 7/27/2019 Copy of DNV Fire Model

    12/15

    Results: other parameters reported by Hysys

    Remaining mass in vessel

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    0 200 400 600 800

    Time [s]

    Rem

    aining

    m

    ass[kg]

    Vapour mass

    Liquid mass

    Mass flow out of valveSB Fire Mode

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    0 200 400 600 800

    Time [s]

    MassFlowrate[kg/h]

    @ 0% init liq vol@ 50% init liq vol

    @ 100% init liq vol

  • 7/27/2019 Copy of DNV Fire Model

    13/15

    Agenda

    Project background Presentation of results

    HYSYS dynamic depressuring unit

    Service provided by DNV TS

  • 7/27/2019 Copy of DNV Fire Model

    14/15

    HYSYS dynamic depressuring utility

    Commercially available

    Rigorous thermodynamic

    Dynamic depressuringsimulation

    Often used for steady

    state process simulations

  • 7/27/2019 Copy of DNV Fire Model

    15/15

    Services provided by DNV TS

    Procedure developed for detailed depressuring

    calculations

    Utilizing a well established simulation tool

    Competence within material data (UTS)

    Competence within piping stress

    Evaluation of results: risk analysis and consequences

    of possible rupture

    Evaluation of results: ESD S/D logic and sectioning

    philosophy